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NUMERICAL EXPERIMENTS ON SOLVING THEODORSEN’S INTEGRAL
EQUATION FOR CONFORMAL MAPS WITH THE FAST FOURIER
TRANSFORM AND VARIOUS NONLINEAR ITERATIVE METHODS*

MARTIN H. GUTKNECHTt

Abstract. In [M. H. Gutknecht, Numer. Math., 36 (1981), pp. 405-429] we investigated several
iterative methods for solving discretized versions of Theodorsen’s nonlinear integral equation. Here we
present corresponding numerical experiments and discuss some related questions, such as the application
of a continuation method, the evaluation of the approximate mapping function, the selection of the
appropriate type of approximation, and the use of preliminary maps to eliminate corners. Both the nonlinear
SOR method and a related second order Euler method are seen to be very effective, even if the assumptions
of the theory do not hold.

1. Introduction. Theodorsen’s integral equation [-4, p. 65] is a well-known basis
for the numerical computation of the conformal mapping g of the unit disk D onto
a starlike region A given by the polar coordinates -, p(-) of its boundary F. The
mapping g is normalized by g(0)=0, g’(0)>0. It is uniquely determined by the
boundary correspondence function 0, which is defined implicitly by

2"n-

(1.0) g(e it) p(O(t)) e i<t) (Vt e R), O(t) dt 27r

Theodorsen’s integral equation simply states that Y’t-O(t)-t is the conjugate
periodic function of X:t--logp(O(t)). A bibliography up to 1964 is contained in
Gaier [4]; more recent work including [10], [15], [16], [21], [22] is referenced in [12].

Upon discretizationubriefly described belowJTheodorsen’s integral equation
becomes a fixed point equation

(1.1) y P(y) :=K log p (t + y)

for y R2N. Here t:= (kr/N)= is constant, x:= log p(t +y) is the vector obtained
by componentwise evaluation, y approximates Y(t), and K is a circulant skew-
symmetric Toeplitz matrix. The product Kx can be calculated in O(N log N) arith-
metic operations by using the fast Fourier transform (FFT) [11], [15].

If the discretization is based on trigonometric interpolation, K=K is called
Wittich’s matrix. K, y, and t can be brought to the form

PKPT= Py=\y,/, Pt=\t,/
by permuting columns and rows, simultaneous in such a way that all even indexed
ones come before all odd indexed ones. Then PKPr is a consistently ordered weakly
cyclic matrix of index 2, anduas pointed out by Niethammer [22]--we may apply
the nonlinear SOR method to (1.1):

Y+I :=-wLr log p(t’ +y’,.) + (1 w)yL,
m=0,1,2,....

y’ (t"+l := oL log p +y,,+l)+(1-o)y’
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(y, yJ, and the relaxation factor to must be given.) As shown both by the author [11]
and by Hiibner [16], each iteration step still requires only O(N log N) operations.

In [12] we established new theoretical results on this and several other iterative
methods for solving (1.1), namely the nonlinear Jacobi iteration with relaxation (JOR)

y,,+l := to(y,,) + (1-to)y,-l, m =0, 1, 2,...

(yo and to given), a nonlinear second order Euler iteration

y,+l := to(ym) + (1-- to )y,-l, m =0, 1, 2,.

(y0 y_ and to given), the related nonlinear Chebyshev iteration (CSI) using an to

depending on m, and the nonlinear cyclic Chebyshev iteration (CCSI) so related to
SOR. Both SOR and CSSI require Kv. K, while the other methods allow other
discretization (i.e., approximation) techniques.

The main purpose of this paper is to present numerical experiments with SOR,
JOR, and Euler iteration, the latter with various types of approximation. We also
discuss some related questions that turn out to be important in practice, such as the
use of a continuation method to avoid convergence to useless solutions of (1.1), the
evaluation of the approximate mapping function and its derivative, the behavior of
the boundary correspondence function 0 at a corner of F in case F is piecewise analytic,
and the elimination of corners by preliminary maps.

Our numerical experiments on the rate of convergence indicate that the range
of application of our results in 12] is far wider than one would expect from the theory.
Most theorems in [12] require either assumption (D) or assumption (SD)--as we
called themmwhich could be replaced by the following more convenient conditions:

Assumption (D’): p is continuously differentiable.
Assumption (SD’): F is symmetric about the real axis and ,-fold rotationally

symmetric about 0, where => 1 is a divisor of N; O is weakly monotone and con-
tinuously differentiable in (0, rr/v).

Moreover, we always assume that y* is a solution of (1.1) and that, in case
assumption (SD’) holds, both y* and its initial approximation y0 (and thus all iterates
y,,) lie in the (N/v 1)-dimensional subspace 6e of vectors y e R2N satisfying

(1.2a) y0 YN 0, yk --Y2r-k (k 1, , N- 1),

(1.2b) Yk Yk+2r/v (k 0," , 2N 2N/u 1 if u > 1).

(The existence of y* was established in [10], [16].) Consequently, (D’) implies (D),
while (SD’) and the additional conditions Ks K and

(1.3) 0k := tk + yk (0, r/,), k 1,. , NI, 1,

for y y* imply (SD).
The classical discretization [4], [12] of Theodorsen’s integral equation, where

Ks K is Wittich’s matrix, is based on interpolating the data (t, x), i.e.,

(1.4) tk := kTr/N, Xk := log p(tk + Yk), k 0, ’, 2N 1,

by a trigonometric polynomial T and evaluating the conjugate polynomial KT at
every tk, tWO operations done by a fast Fourier transform (FFT) [11], [15]. As we
show in [13], [34], it does not cost much more to interpolate or approximate the data
(1.4) (or rather its periodic extension) by a function Px, where P’H2v-g is an
operator with known attenuation factors x (Zk)k=_o l [7], [13]. Here, g denotes
the space of real 2r-periodic functions having absolutely converging Fourier series,
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R
and 1-I21v (rl2N) is the space of 2N-periodic real (complex) sequences. If we further
denote the 2N-point discrete Fourier transform (DFT) [3], [15] by 2r 1-I2r- H2r,

then the DFT coefficients e := 52rx of x and the usual Fourier coefficients C := rPx
are related by Ck ’kCk (tk) [7]. In particular, interpolation by periodic spline functions
of degree 2m- 1 (m >-1), which is of this type, proved to be optimal (both in the
sense of Sard and Schoenberg and in the sense of Golomb and Weinberger) for data
corresponding to values of functions X H", where

H" :={X C"-1(, ):X 2,r-periodic, d’*-IX/dt"-
(.5)

abs. cont., dmX/dtmltO,Ea L2[0, 2r]}.

We also allow for various classes of smoothed approximants such as trigonometric
polynomials with Cesaro (Fej6r) or with Lanczos smoothing and splines interpolating
smoothed data (so-called smoothing by spline functions) [13].

To account for these modifications algebraically, we have to replace Wittich’s
matrix K by Kx := KX, where X is a symmetric circulant Toeplitz matrix, for which
[IKxl[ <--[[Xll -< 1, but very close to 1, in all cases of interest. Moreover, one can then
replace

eo := ess sup [P’(’r)
O’r2"n" ]’p (’r)

by e := eollKxll when choosing the relaxation factor o (of one of the nonlinear iterative
methods mentioned) according to the formulas given in [12] for the case when
assumption (SD) is satisfied. Here we use these formulas even for asymmetric regions,
and we always identify e and co, i.e., we neglect that IIKII may be slightly smaller
than IIKII, which equals 1.

Our experiments on the accuracy of the approximate mapping function show that
the classical Theodorsen method (where Kx K) becomes inaccurate if F is not smooth.
Often the components of 0 := t + y are no longer monotone. Although more suitable
types of approximation yield much more useful results, it seems that the best idea is
to eliminate the corners by preliminary maps. If the resulting boundary is not starlike
or if its eo is large, one can try additional preliminary maps such as, e.g., those
incorporated in osculation methods [2], [4], [8], [14], [26]. Apparently, such pre-
liminary maps were used successfully in the precomputer era of conformal mapping,
but experiments with a sufficiently flexible computer program for an osculation method
have only recently been published by Grassmann [8]. For Example 5.2 (below), his
program has been linked with a new general program to eliminate corners.

If F is smooth, the discrete Theodorsen equation can also be solved by a combina-
tion of Newton’s method [4, p. 90] with a linear iterative method, e.g., by Newton-SOR
[22], or by Newton-Euler. Though these methods are not treated explicitly here or
in [12], it is clear from the general theory [23] that their asymptotic behaviors are
similar to those of the corresponding nonlinear iterative methods. They are particularly
efficient if the evaluation of O is expensive and that of O’ is not much more expensive.

There are also a number of related numerical methods [4, pp. 105-115], [31], [33],
for computing the conformal map of the disk D onto the given region A. They are
all based on the fact that t,--> Y(t):= Im G(e") is the conjugate periodic function KX
of t-->X(t):= Re G(e") if G is analytic in D, continuous in ES, and real valued at 0.
(There are also a great number of numerical methods for the inverse map.) If we let
G(w) be a suitable branch of log [g(w)/w], the relation Y KX becomes

(1.6) Im log {e-"g(e’t)} K[Re log {e"g(e")}](t),
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and in view of (1.0) this leads easily to Theodorsen’s integral equation

(1.7) O(t)- K[log p(O(. ))](t) (Vt [).

(1.7) is obviously restricted to starlike regions A, but one must be aware that
relation (1.6) persists if this property does not hold. If we assume that F=
{(cr);0<=o’=<l}, relation (1.6) in conjunction with the condition g(e")=(O(t))
defining 0 becomes upon discretization a nonlinear system of equations for O(t).
Similarly, one could use G(w)= g(w)/w, as in the method of Kulisch and Melentjew
[4, pp. 106-109], or G(w) g(w) as in the methods of Fornberg [33], and Chakravarthy
and Anderson [31], or even G(w)= log g’(w) as basically in the methods of Timman
[4, pp. 110-111], Woods [39], James [35], Bauer, Garabedian, Korn, and Jameson
[30], which were designed for mapping the exterior of an airfoil profile and allow for
an open trailing edge [30], [35], [39] and for various other less idealized situations
[35], [39, p. 302]. In all these cases one can apply the FFT. (This was in fact done in
[30], [33].)

The discretized Theodorsen equation is particularly simple since it is in a natural
way a fixed point equation of a function which is a contraction if e < 1. Even for e -> 1
the various methods to solve it are well understood if assumption (SD) holds [12].
This is not really true for any of the other methods mentioned. Its drawback--the
limitation to starlike domains--can be overcome in practice by preliminary maps, cf.

4 and 5. Among the more recent methods, the one in [31] is not competitive since
conjugation is done extremely inefficiently there. (The matrix A in [31] could be
replaced by our L defined above, and multiplication by L is an O(N log N) operation
[11].) In contrast, the methods in [30] and [33] are also "fast". They require that F
be smooth. The first one has the advantage that the derivative of the approximate
mapping function never vanishes. Fornberg [33] chooses G(w) g(w) and solves the
nonlinear system (mentioned above) in the frequency domain, i.e., by requiring that
the Fourier coefficients of X + Y with negative index vanish. Apart from his different
choice for G he determines in principle the same approximate mapping function as
we do by solving (1.1) with Ks K, or, generally, the correspondingly discretized
version of (1.6). Therefore, our discussion of accuracy in 7 is also relevant to
Fornberg’s method and to some of the other methods. (In fact, only a small part of
our material is strictly limited to Theodorsen’s equation.) It is still an open question
which method is best in which situation. But the numerical experiments presented
here show that our methods are definitely among the fastest.

2. Numerical experiments on the rate of convergence. The underrelaxation
factors o*(e) given in [12] for JOR, SOR, and Euler iteration are optimal in the
following sense: If assumption (D’) holds and the spectrum of J := @’(y*) (known to
satisfy A(J)_-< e) is purely imaginary and contains +ie, or if assumption (SD’) holds
(possibly up to the monotonicity of p) and the spectrum of the restriction of to
6 has these properties, then the spectral radius A(J) of the Fr6chet derivative of the
respective (nonlinear) iteration function becomes minimal for o o*. This means
that ultimately the rate of convergence becomes best for o o* (if y,,-> y* at all).
Practically, it is important to know whether o* is still a good choice if some of these
conditions do not hold. In [12] we proved that the spectrum of Jlse is purely imaginary
if K=K and (SD’) and (1.3) hold; but we must expect that actually

However, a new theoretical understanding of Fornberg’s method arises from recent results
presented by O. Widlund at the Workshop on Computational Problems in Complex Analysis at Stanford
(September 1981).
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Moreover, we need a starting vector y0 so that y,, y*. Many questions may be raised:
Is y0 0 good enough? And, if y,, y*, are we sure that y* is a useful solution? How
fast is the convergence at the beginning compared with the asymptotic convergence
rate?

In this section we describe a few of our experiments with the nonlinear JOR,
SOR, and Euler iterations. We gradually relax assumption (SD’). Fortunately, it turns
out that the convergence behavior is not much affected.

Experiments with the nonlinear cyclic Chebyshev semi-iteration (CCSI) and with
the Chebyshev semi-iteration (CSI) showed that they are usually slightly less efficient
than SOR and Euler iteration, respectively. In particular, the first few iterations often
yield only a moderate improvement. But there are also examples where CCSI or CSI
reach the stopping criterion within fewer iterations.

Example 2.1. The reflected ellipse

(2.1) p (’r) := [1 (1 ct 2) cos2 "r]1/2 (0<a <-1)

obtained by reflecting an ellipse with semiaxes 1/a and 1 across the unit circle satisfies
assumption (SD’) with u 2. Its exact boundary correspondence function is elementary,

(2.2) O(t) tan-l(a tan t),

and, owing to the fast convergence of the Fourier series of Y(t) O(t)- t, high-accuracy
results may be obtained with moderate N (unless c is small). These two features also
explain the popularity of this example [4], [21], [22], [28].

Some of our results are summarized in Tables 2.1 and 2.2. Except for the last
two lines of Table 2.2, a total of 2N 64 boundary points have been computed, but
due to the symmetries, the number of variables was only 16 (for JOR and Euler) or
32 (for SOR). In addition to e =1/2(1-ct2)/o, to * := to *(e ), and the corresponding
asymptotic factor of convergence tr*, we list in Table 2.1 the actual spectral radius
A(J) of J, the true optimal relaxation factor topt:= to*(A(J)), and the corresponding
asymptotic convergence factor o-pt. The subscripts J and S refer to JOR and SOR
iteration, respectively. Recall that for the Euler iteration to(e)=tos*(e) and
o’S(e) =[trs* (e)]1/2, cf. [12, Thm. 6.2]. Finally, we display

(2.3) i* := -1/loglo tr*,

i.e., the number of iterations ultimately needed to get one additional decimal of the
result if tr* were the correct asymptotic factor of convergence. This may be compared
in Table 2.2 with the number

(2.4) m (1):= inf {m Ily,. O(y,.)l[o <- 10-}

.8

.6

.4

.3

.2

.1

.05

TABLE 2.1
Comparison of nearly optimal and o 9timal underrelaxation (Ex. 2.1)

AiJ)

.225 .221

.533 .523
1.050 1.030
1.517 1.488
2.4OO 2.354
4.950 4.549
9.975 9.783

.952 .954

.779 .785

.476 .485

.303 .311

.148 .153

.039 .047

.010 .010

0" O’j--Pt

.220 .215

.471 .464

.724 .717

.835 .830

.923 .92O

.980 .979

.995 .995

.988 .988

.937 .940

.816 .821

.710 .716

.556 .562

.331 .354

.181 .185

O’S S"Pt

.0123 .0119

.0625 .0604

.184 .179

.290 .284

.444 .438

.669 .646

.819 .815

1.52 .524
3.06 .830
7.13 1.36

12.75 1.86
28.77 2.84

115.12 5.74
460.52 11.50
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TABLE 2.2
Actual convergence of JOR, SOR, and Euler iteration (Ex. 2.1).

N

32

128

N

32

128

N

32 .8
.6
.4
.3
.2
.1

128 .2
.1

mj(3) mj(6) mj(3) rj ej

3 4 7.871o-7 1.451o
6 9 7.351o 3.181o

17 20 8.001o-7 3.701o
30 37 8.521o-7 2.711o-6
75 78 9.831o-7 1.141o-4

311 317 8.991o-7 6.631o
77 82 8.851o 3.381o

331 324 9.321o 2.441o-7

ms(3) ms(6)- ms(3) rs es

2 2 5.261o 3.291o-lO
3 3 8.261o 4.791o
5 4 3.421o 8.951o
7 5 7.311o 2.681o

10 9 9.861o 1.141o
[31] [23] 8.861o 1.12

11 8 8.151o 3.921o-7
[34] [45] 6.331o 1.60

mE(3) mE(6)- mE(3) rE ez

3 3 2.351o 2.681o-8
5 5 3.32xo 8.131o-8
8 8 8.671o 2.581o

12 11 8.481o 2.981o-
19 18 8.221o 1.141o
[59] [46] 9.151o 1.12

20 17 9.441o 4.901o-7
[oo] 1.91

of iterations actually needed to satisfy the discrete Theodorsen equation to within a
maximum error of 10-t with the JOR (m), the SOR (ms), or the Euler iteration (m).
Here, yo =0 throughout. Brackets [. indicate that the resulting vector 0,,/1 :=t +
y,/+ does not satisfy (1.3). We also list the residual r r(m (6)) generally defined by

(2.5) r(m):=

(So, r(m(l))<= 10-t by definition.) Finally, e e(m(6)+ 1) is the actual error

(2.6) e(m) := Ily Y(t)l[
of the next iterate. (Since the evaluation of needed in (2.4) adds to the cost, one
is inclined to finish the (m (l)+ 1)st step that is in progress.)

Table 2.1 shows that the differences between e and A(J), between to* and toopt,
and between tr* and tr

pt are small and cannot affect the convergence essentially.
Comparing m (3) in Table 2.2 with 3i*, we note that at the beginning the JOR iteration
is more effective, while the SOR iteration is slightly less effective than suggested by
the corresponding asymptotic rate. Nevertheless, SOR is faster than JOR and Euler
even at the beginning, and even in the case of small e. Later its superiority is out of
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the question" as predicted by the theory, it then converges twice as ast as Euler,
which is itself much faster than JOR.

Surprisingly, for tx- .1 (e =4.950) the JOR method still yields a reasonable
solution with ej(629) "- 8.99 10-7, while both SOR and Euler converge to a solution
violating (1.3) and with an error of about 1.12. Since the difference between r and e
shows that the discretization error becomes important when tx <- .3, one might hopemat
least if the JOR result were not knownmthat replacing N 32 by N 128 would
lead to a better solution. However, while ej, es, and eE become in fact essentially
smaller for a .2, the SOR iteration still converges for c .1 to a useless solution,
and the Euler iteration does not converge at all. An inspection of the Euler data
reveals that the odd indexed and the even indexed iterates converge to different limits.
So, we actually get a solution of system (5.12) in [12],

(2.7) y)= O(y2)), y2)= O(y)),
which has double size. As we noted there, Euler’s iteration is equivalent to an SOR
iteration for (2.7); and (2.7) may have solutions yl) y2) that do not satisfy y (y).
In fact, here rE(00)"-- 1.91.

We also note that in the three cases where 0,l violates (1.3), the convergence
is definitely slower than predicted by i*. So, the eigenvalues of Jlee are probably no
longer purely imaginary. At least, this is motivated by

LEMMA 1. Suppose that either assumption (D’) or assumption (SD’) holds except
that p may be nonmonotone. Assume further that J or Jse, respectively, has purely
imaginary eigenvalues, and that the iterates y, created by the nonlinear SOR method
converge to y*. Finally, let o’:=o’s*(A(jS)) or o’s*(A(jSlse)), respectively, where
trs* (A):= A2/[1 + (1 + A2)1/2]2 (cf. [12, Thin. 5.1]). Then in any norm

(2.8a)
liy -y*ll

_->lim sup Ilylim sup Ily,.-

(2.8b) lim sup IlY + -Y II > lim sup y,l]/’ r.

1/2The same relations hold for the nonlinear Euler iteration if o" is replaced by t
Proof. The inequality in (2.8a) is lust [23, Statement 9.3.1]. The equality at right

is established as [23, Statement 10.1.4]; additionally, one has to take into account
that all eigenvalues of ]s have moduli tr- A(]S). In case of assumption (SD’), only
the restrictions to must be considered [12]. A further inspection of the proofs in
[23] shows that (2.8b) also holds, since is is a strong F-derivative if p is continuously
differentiable [23]. For Euler’s iteration, ()2 ]s [12].

Example 2.2. Let F consist of the right half of the reflected ellipse (2.1) and of
the left half of the ellipse

(2.9) p(z) [1 -(1 -a 2) cos2

with semiaxes a and 1. Assumption (SD’) is nearly satisfied with v 1 except that
is not monotone. The question is whether this affects the asymptotic rate of conver-
gence. As an indicator we determine

(2.10) q(/) := [11 ]]y,,-y,,ll2 ]l,[m(l,--m(,--l)]Ym(/-1)+l Y m(/-1)ll2
A Ewhich may be considered as an approximate upper bound for A(J]) or (J]),

respectively, if J[ has purely imaginary eigenvalues. ((2.8b) suggests that one compute
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Ily+x-y.ll/ instead, which usually turns out to be larger than q(1), however.) From
our experiments with N 128 and yo 0, we list, on the top three lines of Table 2.3,
qs(6), q(6), and qSE3 (6), where the superscripts T and $3 denote trigonometric and
cubic spline interpolation [13, Ex. 5.1], respectively. Note that q is close to the
corresponding tr* except for a 0.2 (e 2.4), where the SOR solution and the Euler
solution with trigonometric interpolation (E/T) yield a solution 0 satisfying (1.3) but
having nonmonotone components indicated by braces {. }. In contrast, third degree
spline interpolation (E/S3) leads to a more useful solution.

TABLE 2.3
Convergence in case of a symmetric region with nonmonotone p (Ex. 2.2) and in case of an asymmetric

region (Ex. 2.3).

Ex. t

2.2 .8
.4
.2

2.3 .8
.4
.2

cry’ ms(6) qs(6)

.01235 4 .01235

.18367 9 .18742

.44444 {24} .48569

.01235 4 .01282

.18367 10 .18580

.44444 23 .54849

o- m(6) q(6) mS3 (6) q3 (6)

.11111 6 .11114 6 .11113

.42857 18 .42897 18 .41575

.66667 {47} .70880 39 .68274

.11111 6 .11377 6 .11377

.42857 19 .42618 20 .42057

.66667 44 .70252 43 .66878

Example 2.3. Let F consist of the left half of the unit circle, of the part of the
reflected ellipse (2.1) in the first quadrant, and of the part of the ellipse (2.9) in the
fourth quadrant. So, F is again a piecewise analytic curve with straight angles, but
now it is asymmetric. Nevertheless, we use to to*(e) as defined for symmetric curves.
Results are listed on the lower three lines of Table 2.3. (N 128 and yo 0 again.)
Here, the components of 0m(6) are always monotone, and only qs(6) in the case a .2
indicates a slower convergence. Yet, qvE(6) turns out to be close to trE*, although the
iterates tend to the same solution as with the SOR method. On the other hand,
qs(9) "-.38048, and an experiment with an alternate starting point than y0 0 yields
qs(6) ’-.49168, qs(9)-" .38513. We must conclude that in some examples q(l) is not
a reliable estimate of A(Jo,).

Example 2.4. A square with the center at the origin satisfies assumption (SD’).
As we will see in 7 trigonometric interpolation of log (t + y*) leads to an approximate
mapping function gr for which gu(OD) has ripples. We use this example to demonstrate
other approximation techniques. In addition to the trigonometric interpolation (T),
we consider Cesro (C) and Lanczos (L) smoothing [13, Ex. 6.1], interpolation by a
first degree spline [13, Ex. 5.1], and smoothing by a first degree and by a cubic spline,
both with smoothing parameter t 104 ($1/104 and $3/104) [13, Ex. 6.2]. See Table
2.4. Surprisingly, the data m (6), r(m (6)), and q(m (6)) are nearly the same in all cases
except for trigonometric interpolation, where it takes one iteration more to satisfy

TABLE 2.4
Convergence of iterates based on various types of approximation (Ex. 2.4).

m(6)
r(m (6)) x 106
qE(6)

T C L S1 S1/10’ S3/104

15 14 14 14 14 14
.51198 .42876 .43405 .43412 .43353 .43272
.41854 .41404 .41416 .41418 .41420 .41331
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the stopping criterion r(m(6))-< 10-6 and where r(m(6)) is nevertheless larger than
for the other five.

To enable the reader to estimate the computing time of any of the examples we
list in Table 2.5--as a function of N--the time (in seconds) for one JOR or Euler
iteration step with the boundary function 0(z)= exp (c cos/-). For comparison we
measured this time also when Kx was computed by multiplication with Wittich’s
matrix--as suggested in earlier texts--instead of by applying the FFT. In both cases
it is possible to take advantage of symmetries, cf. [11]. The last two columns show
the time for one step with axial symmetry.

TABLE 2.5
Computing time for one JOR or one Euler iteration step (seconds on

CDC 6400/6500).

N

16
32
64
128
256
512

1,024
2,048

no symmetry
Wittich FFT

.03

.09

.30
1.04
3.72

14.06
54.41

.04

.08

.15

.31

.64
1.34
2.79
6.02

axial symmetry
Wittich FFT

.02

.05

.16

.55
2.08
8.04

31.05

.02

.04

.08

.16

.34

.69
1.46
3.00

(These execution times have been measured on the CDC 6400/6500 at Eidgen.
Tech. Hochschule, Zurich, where an addition or subtraction takes 1.1/xsec and a
multiplication or division, 5.7 sec. The FFT program used here was a general purpose
ALGOL60 implementation of the radix-2 algorithm and thus not most efficient for
conjugation, where permutation of data to reverse binary order could be omitted.
Most of our other experiments were done instead with a hand-optimized version of
Singleton’s FORTRAN mixed radix FFT program [24], which proved to be essentially
faster in case N is a large power of 2.)

These execution times are hardly affected if K is replaced by a more general
conjugation process Kx, but the preparations may cause some overhead (cf. [13]).

The computing time for one SOR iteration is essentially the same too if the
program published in [11] is used for the conjugation; however, one cannot capitalize
on axial symmetry easily.

3. Continuation methods. There is strong experimental evidence that even for
quite simple boundaries F and a suitable N, the discrete Theodorsen equation (1.1)
may have more than one solution. In this section we state conditions assuring the
existence of a unique special solution, which is also the only reasonable one. This
solution is obtained from the unique solution for F 0D (viz., y* 0) by a homotopy.
Practically, it can therefore be computed by means of a continuation method [23, pp.
230-234]. For the theory we either need assumption (D’) or assumption (SD’).

Under assumption (D’) we consider the following initial value problem:

(3.1a) y’(r/) [I- r/’(y(r/))]-ltl)(y(r/)),

(3. lb) y(O) =0.
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If we assume that I- ri’(y(ri)) remains regular for 0 <= ri < ri0, it is easy to conclude
that the solution of (3.1) exists there, is continuously differentiable and satisfies

(3.2a)
i.e.,

(3.b)

Y(n n(Y(ri )),

y(n) K: log p n (t + Y(n)),

cf. [23, p. 233]. (In fact, (3.1a) is obtained by differentiating (3.2a).) So, y(ri) is the
solution of the discrete Theodorsen equation corresponding to the boundary Fn with
the polar coordinates z, p’(z). In particular, if ri0> 1, y(1) is a solution of the given
equation (1.1).

By [12, Thm. 3.1], we know that y(ri) is the only solution of (3.2) as long as

ri [0, I/e). Along the path ri -y(ri) this solution can be continued uniquely until
I- ri’(y(ri)) becomes singular. This does not exclude the existence of other solutions
in case 1/e <-ri < rl0, nor does it guarantee the monotonicity of the components of
0(n) := t +y(n).

Under assumption (SD’), (S)c 6 (cf. [12, App. 2]). If y 5 satisfies (1.3) and
if Ks K, the eigenvalues of ’(y)l are purely imaginary [12, Thm. 3.4], and hence
the restricted operator

(3.3) [I ri’(y)][ee
is regular and defines an automorphism of . Consequently, y(ri) , 0-< ri < ri0, and
the path ri -> y(ri) is well defined as long as y(ri) satisfies (1.3).

In this case of symmetry, H/ibner [16] proposed to replace p by

(3.4a) i
(0) if ’r _--< O,

fi(’r) := (’r) if 0 < "r < zr/u,
(zr/u) if "r >-- zr/u,

when p(tk + yk), k =0,..., N/u, is evaluated, while the other components of t(t +y)
are determined by symmetry. We let

(3.4b) (y) :=K log t(t + y) (Vy e 6).

By [12, App. 2, Lemma 2] ’(y)l has purely iaginary eigenvalues. By the general
Theorem 5.3.9 in [23], the mapping y--y-ri(y) is a homeomorphism of 6 (for
fixed ri); thus, exactly one point y (ri) is mapped onto 0. This is an alternate proof
of

TI-IrOREM 2 (Hiibner [16]). The equation y=ri(y) has exactly one
solution (ri). If it satisfies (1.3), it is also a solution of (3.2); otherwise, (3.2) has
no solution satisfying (1.3).

Hfibner’s original proof is based on the above-mentioned Lemma 2 and Brouwer’s
fixed point theorem; it only requires that t be absolutely continuous, while we need

t continuously differentiable in the above proof.
Of course, (ri) satisfies (3.1) with replaced by . So, (1) could be computed

by any standard numerical method for solving initial value problems. However,
evaluating ’ would require calculating ’ (i.e. p’), and we do not consider such
methods in this paper. Likewise, y(1) could be computed through solving (3.1) if
I- ri’(y(ri)) is regular for 0<-ri =< 1.

The following continuation method [23, 10.4], which does not require evaluating
p’, is another simple means for computing y(1) or (1)" Let

(3.5) 0 ri0 < ri < ri2 < < rit 1
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be a partition of [0, 1]. Denote by .,,n the iteration function defining one step of
either the JOR, the SOR, or the Euler iteration applied to the fixed point equation
y r/(y) (i.e., to the boundary Fn). Then, define the iterates yi,, by

(3.6)

Yl,O :’- O,

Yi+I,O ’- Yi,mi+l, 1,... ,I-1,

Yi,,+I

m =0, 1,2,....

If (SD’) holds, a variant 2 of this algorithm may be defined by our replacing p by t
and Ks by K, i.e., @ by t. A general theorem by Avila [23, 10.4.1] and the theory
in [12] yield

THEOREM 3. Under assumptions (SD’) and (D’), there exist a partition (3.5) and
integers m, , mt_x such that the variant 2 of algorithm (3.6) yields a sequence {yt.,,}
converging to the fixed point (1) of .

Of course, if (r/) satisfies (1.3) for 0-<_ r/<-1, we may as well use variant 1.
Moreover, variant 1 proved practically useful even for asymmetric boundaries F. In
any case one has to choose the partition (3.5) and the integers m somehow. A risky
choice may lead to no solution or the wrong one; a too cautious choice is expensive.

Our experiments have been done with the following values, which depend on
two parameters I0 and 10:

(3.7)
I := LIoe + 1, ri := i/I,

m := mi(lo):=inf {m" liYi,--Tli(Yi,m)[Ioo <- lO-t}, i=1,...,I-1.

Example 3.1. In Example 2.1 (cf. Table 2.2), we always obtain the unique fixed
point of except when a =. 1, in which case SOR and Euler iteration applied to (1.1)
converge to another fixed point of , while the JOR method still yields the common
fixed point of and t. However, we can compute this fixed point now more efficiently
with the continuation method (3.6) (variant 1 or 2) based on SOR or Euler. Table
3.1 shows for the SOR method with N 128, variant 1 of (3.6), and the two problems
with a .1 and a .05, respectively, the total number

I-1

(3.8) Mp:= Y [m(/0)+l]
i=1

Number of ste

Io lo

.5 1

TABLE 3.1
pS required by the continuation method (Ex. 3.1" reflected ellipse).

a .1 (e 4.950)

I Mp Mp + ms(6)

3 [11] 46

.05 (e 9.975)

I Mp Mp + ms(6)

.5 2

.5 3
1 1
1 2
1 3
2
2 2
2 3

3 16 51
3 22 57
5 [17] 50
5 28 61
5 38 71
10 [27] 58
10 53 84
10 80 111

5
5
10 [45] [124]
10 97 159
10 149 211
20 [65] 126
20 168 228
20 275 336
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of evaluations of required to determine the starting point yt.0 of the last secondary
iteration in (3.6), and the total number Mp + ms(6) of steps done until yz.,, satisfies
(2.4) with 6. For a .1 we always end up with the correct solution, although yt.0

violates (1.3) if/0 1. However, if a =.05 and I0=.5, the path y(r/) is always left,
and this still happens for a =.05, I0 1, /0 1. On the other hand, in case of
convergence to the correct solution, the number of steps required varies strongly.

Example 3.2. Theorem 2 does not apply to Example 2.2, and so there could
exist another solution with monotone 0 in the case a .2 (cf. Table 2.3). However,
our experiments with the continuation method have always delivered the same solution.
Moreover, N 512 and yo 0 immediately lead to a monotone 0 (see Ex. 7.2).

These two examples show that further investigations on the appropriate choice
of N,/, the partition {r/i} and the numbers mi of secondary iterations are worthwhile.
Ultimately one needs a programmable strategy containing feedback loops for the
determination of these parameters.

4. The behavior of the boundary correspondence function at a corner of a
piecewise analytic boundary. While many other constructive methods for conformal
mappings [4] require that the boundary F be ditterentiable or need to be modified to
allow for corners, Theodorsen’s method is less restrictive (cf. [12, Thms. 4.3, 7.3]).
To be sure, for some results on local convergence, we had to assume in [12] that p’
exists (except at points on a symmetry axis). But as we pointed out, differentiability
seems not to be crucial for the local convergence in practice. However, if the approxi-
mation of log p(O(t)) is done by trigonometric interpolation, corners strongly infect
the accuracy of the resulting approximate values of the boundary correspondence
function 0. In order to select a more appropriate class of approximants, we cite some
results on the behavior of 0. We restrict ourselves to the most important case, namely
to a piecewise analytic boundary F.

Assume first that A is a Jordan region with 0 A and a piecewise analytic boundary
F. Let g" D A be the continuous extension of a conformal map with g(0) 0, g’(0) > 0
of the unit disk D onto A. Denote by sr := g(wj), 1, , J, the corners (or, rather,
the breakpoints), which are assumed to be regular points of the analytic arcs meeting
there under the inner angles raj, where 0<a.-<_2. Let ’0 g(wo) be any of these
corners, rra the corresponding angle, and set h := w w0. Then, according to a theorem
by Lehman [19] generalizing earlier work of Lichtenstein, Kellog, Warschawski, and
Lewy, the following asymptotic expansion holds for h 0 if arg h remains bounded
for some continuous branch of the argument"

(4.1)

g(wo+h)--’o+ ., at,t,,,h’+t(logh)

’o "+" aoloh + alh
a+o,

log h + a xxoh +’ + O(h2),
where a010 # 0, and the sum runs over

k>_-0, l>_-l, m=0 if a is irrational,

k M
k->0, l<-l-<L, 0<-m-< ifa=--isrational.

(M and L have no common divisor, and coefficients aklm not needed are set at 0.) The
terms in (4.1) are supposed to be arranged in appropriate order, which may deviate
from the one shown explicitly. The expansion for g’ is obtained by termwise differenti-
ation and subsequent reordering [19]. For a simple deduction of the dominant term
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in (4.1) see Warschawski [27], who, however, discusses the inverse map also covered
by Lehman [19]. In case of a straight angle, i.e., c 1, (4.1) reduces to Lewy’s
expansion [20].

As in the usual deduction of Theodorsen’s integral equation [4, p. 64], we note
that there exists a continuous branch of log [g(w)/w] in D which takes the real value
log g’(0) at 0. Consequently, the real continuous 2r-periodic functions X and Y
defined by

(4.2) X(t) + iY(t):= log [e-"g(e")] (ft e R)

are conjugate periodic functions: Y KX.
In particular, if we now assume that F is starlike with respect to 0 and given by

its polar coordinate -, p(z), then O(t):= Y(t)+t is the boundary correspondence
function satisfying g(ei’)=p(O(t))e i(. Moreover, logp(O(t))=X(t), and Y=KX
becomes Theodorsen’s integral equation (1.7).

Whenever 0’ exists, (4.2) yields

ie"g’(e i’) ei’g’(e i’)
(4.3) O’(t) =Im g(e") =Re g(e,
If we let w e", Wo e" and insert (4.1) and the termwise differentiated series into
(4.3), we get for to in view of h =e"-e"= i(t-to)wo+O(lt-to]2) and by choosing
arg [i (t- to)W0] arg (e i’- e ’t) + O(It- tolZ),
(4.4) O’(t) Re {bolo[(t to)iwo]’-} O(It
where boo := taoowo/g(wo) # 0, and similarly

(4.5) O"(t) O(It- tol-2).
If a # 1 and a # 2, then Re {...} # 0, and the order stated is actually attained. In case
c 1 we get

(4.6) O’(t) Re boo, O"(t) O(log It tol),

while for ct 2 we have Re {booh-1} O(It tol=), since F is starlike, so that even

O’(t) O(It tol2 log It tol),

(4.7) O"(t) O(It- tol log It- tol),

O’"(t) O(log It- tol).
By making use of K(H")cH [13, Lemma 9.1] and the fact that KY equals

-X up to a constant, we finally conclude:

0, Y are absolutely continuous,

(4.8)

0’, Y’ are absolutely continuous iff czj >- 1 (’q/’),

X, Y eH if[ czj > 1/2 (V/’),
X, Y eHz iff ai > or ai 1 (V/’),

X, Y H3 iff ai 2 (V/’).

As we have shown in [13], the function KS conjugate to the interpolating spline of
degree 2m 1 is in a certain sense an optimal approximation for KX if only the values
X(tk) and the intormation X H are given. (4.8) allows us to choose the appropriate
degree of the spline. In particular, we conclude that interpolating splines are not
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appropriate if aj =< 1/2 at some corner. However, smoothing splines and other smoothing
approximants proved quite successful in our experiments, which are partly described
in 7. In case aj >- 1 (/) one might also try quadratic spline interpolation (with knots
halfway between the data points).

5. Elimination of corners by preliminary maps. Under the initial assumptions
of 4, the mapping

(5.:) o," :=o[:-(:-/o)/]
offers itself as a means for eliminating the corner with interior angle arr(0<a---2)
at ro. Of course, a continuous argument of 1- ’/’0 has to be chosen in A\{’o} for the
definition of :o,=, and we require that it be 0 at " 0. Then

1
(5.2) /o, (0) =0, r:o.(o =-->0.

Moreover, /Co, (ro)= ’o and, if 7:o,=(A) is placed on a Riemann surface,

(5.3) /o,1/ /Co,(r) " V" E A.

If the projection of /Co, (A) on C is not injective (as it may happen if a < 1), a
preliminary map ,c.,1/ with a suitably chosen ’* usually enables us to avoid this
situation. One could also replace 7Co, by a single but more complicated KArmAn-
Trefftz transformation,

(5.4)

_
-, - L .. /" A

in this case, which occurs in practice less often than one would expect (cf. [36]). So,
by a composition of conformal maps of the type (5.1), it is very often possible to
eliminate all corners of F and to end up with a region A* with boundary F* in the
plane. Yet, F* is piecewise analytic only in a weaker sense, since its breakpoints are
in general singular points of the analytic arcs joining there.

For particular applications the map (5.1), and many other preliminary conformal
maps such as the Joukowski and the Kirmn-Trefftz transformation, have been used
for a long time (see [4, p. 257], [17], [26], [29]). For example, the success of
Theodorsen’s method in airfoil design would have been impossible without them [6].
But we would like to point out that one can nowadays develop a general and fairly
reliable computer program for the successive elimination of all corners of many
piecewise analytic curves. The main programming problem is choosing the correct
argument of 1 r/’o. Another approach requiring the evaluation of indefinite integrals
was described by Landweber and Miloh [18], but the composition of maps (5.1) is
much simpler, its range of application is wider, and the inverse map is of the same
type. It does not take care of axial symmetry, but the Ktrmin-Trefftz transformation
could be applied instead of (5.1) to eliminate two symmetric corners at once. At the
end, it is often profitable to apply additionally a Moebius transform T that keeps the
origin fixed and maps the smallest circle containing A* onto the unit disk. (A corre-
sponding algorithm is described in [9].)

If the resulting region T(A*) is not suitable for Theodorsen’s method (e.g., because
either it is not starlike or eo is too large) one could apply further auxiliary conformal
maps such as those proposed by Koebe, Ringleb, Heinhold, and Albrecht for osculation
methods (see [2], [4], [14], [26] and references given there). Grassmann [8] has
reported on a recent computer implementation of such an osculation method. Our
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examples given below (and many others) do not require such further preparatory
maps, but it might be worthwhile to apply a few of them. The main handicap put by
preliminary maps on the subsequent use of Theodorsen’s method is that the boundary
F* [or T(F*)] is no longer given in polar coordinates. So, one has to map a sufficient
number of boundary points first, say the points srj,k, k 0,’’’, kj, on the arc from

sr sr,o to ’+1 ’1+1,0 ],ki, ] 1,. ., J (where srj+l := ’1). We denote the image
points by ’,j, and define arg ’* continuously on F* (assumed to be starlike with
respect to 0) such that arg sr <_-arg st* _-< arg sr + 2zr. Then, we propose to interpolate
the data (arg *j,k, log k 0,. .,/’k, by a cubic spline si with double knots at the
end points arg r and arg ri+l (i.e. s interpolates there the derivative too). The global
interpolation function

(5.5) s(’) := sj(r) if arg ’j <- <= arg i+l (j 1," ", J)

replaces the function log p(z) in (1.1). Note that the 2N evaluations of s required
afterwards in each iteration step for solving (1.1) are very cheap since the coefficients
of s are computed only once.

One would like the abscissae arg ’k*,i roughly equidistant, but unfortunately the
maps (5.1) cause strong distortions in arc length. When choosing ’j.k, k 1, , ki- 1,
it is at least possible to take the distortions at the two nearby breakpoints ’ and
srf/l approximately into account. In fact, ’i,k can be chosen in such a way that the
points *’i,k, k 0,’’ ", ki, would be equidistant if the arc from ’j to sri/l were straight
and these two corners were the only ones.

Of great importance to Theodorsen’s method is the effect of the mapping (5.1)
on the behavior of the boundary correspondence 0 at some corner st0. From (4.1) we
get

(Wo+ h):= ’0{1 -[1 g(wo + h)/’o]1/}
1/o

(5.6) ’o + (-’o)-1/" [ akl,,h k+la-ot (log h)"]
k. l, _l

o + (-o)l-1/hr 1/,,
taolo + O(h + O(h log h)},

(5.7)

(5.8)

,’(Wo + h) (-o)-l/’*a 1/ ’)olo + 0(h + O(h log h ),

,"(wo+h)=O(h-’)+O(logh) ash 0.

If c is irrational, log h can be replaced by 1 here.
If we eliminate all corners of F by preliminary maps of the type (5.1) and

end up with a region A* whose boundary F* is starlike with respect to the origin,
then--by the arguments used in 4--the boundary correspondence function 0* of a
conformal map g* :D A* with g*(0) 0 and the related functions Y*(t):= O*(t)- t,
X*(t) := log O*(0*(t)) satisfy in analogy to (4.8)

dO*/dt, dY*/dt are absolutely continuous,

(5.9) X*, Y* H,
X*, Y* eH2 if a > 1/2 (/j).

So, approximating X* by a cubic spline is appropriate if c 1/2 at every breakpoint of
the piecewise analytic boundary F; otherwise, one may use a broken line interpolant,
a slightly smoothed cubic spline approximant [13], a smoothed trigonometric inter-
polant, or, maybe, a quadratic spline interpolant.
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Example 5.1. To the Swiss cross we first apply the map ’-- .4 to account for
the fourfold rotational symmetry. The resulting domain in Fig. 5. l(a) has three corners,
which are removed by a composition of three maps of type (5.1) (see Fig. 5.1(b)-(d)).
(The scale in these figures is not constant. The small squares mark removed corners.)
An additional Moebius transform yields a boundary T(F*)cD having three points in
common with OD (cf. Fig. 5.1 (e)). Its point (marked by a square) nearest to 0 has
modulus/x "-.903, and e is obviously small, so that a high accuracy approximation
of D T(A*) is easily computed by Theodorsen’s method.

Example 5.2. The L-shape of Fig. 5.2(a) has six corners to eliminate (cf.
Fig. 5.2(b)-(g)). After the Moebius transform, "-.593 (see Fig. 5.2(h)). Twelve
steps with Grassmann’s osculation method program would lead to a boundary with
/x’-.981, but the inverse image of the unit circle under the corresponding
composition of elementary transforms still deviates considerably from the given

FIG. 5.1. Elimination of the corners of a Swiss cross preliminarily mapped by 4. The three corners
in (a) are removed one after another, cf. (b)-(d), then a Moebius transform is used to ]it the region into the
unit disk. The squares mark removed corners and, in (e), the point nearest to 0, respectively.
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FIG. 5.2. Elimination of the corners of an L-shape.

L-shape. See Fig. 5.3, where the inverse image of 1,000 equidistant points on
the unit circle is plotted. So, one still has to apply a more accurate method
afterwards, such as e.g., Theodorsen’s one, which can also be applied to the domain
of Fig. 5.2(h) directly.

6. The evaluation of the mapping function and its derivative. Assume that y is
a solution of the (original or modified) discrete Theodorsen equation (1.1). Then the
components of 0:=t+y are approximate values of the boundary correspondence
function 0. But how can we compute an approximate value of the conformal map
g"D A at an arbitrary point w D?
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FIG. 5.3. Inverse of the conformal mapping composed of six eliminations of corners, a Moebius transform,
and twelve osculation maps.

Again, denote by P" IIn2NM the operator upon which our discrete equation is
based, and by "r (zk) 11, its attenuation factors [13]. Let

x := log p (t+ y), c := 2Nx,
(6.1)

Xv := Px, C := Xr,

so that Ck ZCk ’-k- C-k (Vk 7/) and

Xr(t)= Y Cke kt, XN(t)+i(KXN)(t)=2 Y Cke t,
k k =0

where the prime indicates that the term with index 0 has weight 1/2. We conclude that

(6.2) pN(W):=2 ’. C’kW
k (W D)

k=0

is analytic in D, continuous in D, and satisfies

Re pr(e") Xu(t), Im pv(e ’) (KXu)(t), Im pr(0) 0.

Due to the discrete Theodorsen equation (1.1),

(6.3) (KXu)(t) (KPx)(t) K.x y.

If we define

(6.4) gu(w) := w exp (ply(W)),

we obtain

(6.5) gu (exp (it)) exp [(ex)(t) + iy + it].

Consequently, if P is interpolatory, i.e., (Px)(t)= x,

(6.6) gr (exp (itk)) p(tk + y) exp (itk + iyk) F, k O, , 2N 1.

So, gN "D C is a function that is analytic in D and has 2N image points gu(exp (its))
lying on F (if P is interpolatory). We may therefore hope that gu is a reasonable
approximation of g. However, in general we cannot guarantee this. For example,
may not be conformal due to loops of gr(OD) (see Example 7.4). Error bounds for
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gN -g have only been given in case P stands for trigonometric interpolation and e < 1
(see Gaier [4, pp. 92 tt.]).

For evaluating gr at a single arbitrary point w D we might approximate p by
a partial sum, which can be evaluated, e.g., by Horner’s algorithm. However, we
would like to point out a special formula in case w is of the form

(6.7) w --/’e 2uN (0<r-<_l, u7/, u >0, l= 1,..., 2uN)

where e2N :-" exp (iTr/uN). Moreover, if r and u are fixed, we can evaluate (or at least
approximate) gr simultaneously on the 2uN points of this type by using one FFT

-12,. We think that in practice this property is an important advantage of Theodorsen’s
method. Also, an additional FFT yields the corresponding values of gv, and we might
proceed to compute higher derivatives.

Since 21
ezN 1 (l Z), CI-I2NCl-I2vN, and "I’2IN--O for/S0 [13, Eq. (2.5)], we

obtain by inserting (6.7) into (6.2):

2vN-1

(6.8) pN(r eN) 2 Y CkXk) (r)e kl
2, 1," , 2N,

where

k+2vNj(6.9) X (k) (r) := Y k+2Njr (0 <= k < 2vN).
j=0

Similarly, if (k’rk)o=_ 11 or r < 1, differentiation of (6.2) yields

2vN-1

(6.10) reEup(re2u)=2 2 CkX(kl)(r)eklz, l= 1," ", 2uN,
k=l

where

k +2uNj(6.11) X(kl)(r): , (k +2uNj)’rk+2Nir (INk <2uN).
/=0

The sums in (6.8) or (6.10) can be evaluated simultaneously at all 2uN points by
2u. Afterwards, (6.4) andapplying -1

(6.12) g’(w) [1 + wp’(w)] exp (pu(w)) [1 + wp’(w)]
gu(w)
W

yield the values of gu and gv, respectively, at these points. There remains the problem
of summing up (6.9) and (6.11). We discuss two cases:

Example 6.1. Assume ’k 0 for all k >N as for trigonometric interpolation [13,
Ex. 5.1], Cesitro smoothing or Lanczos smoothing [13, Ex. 6.1]. Then trivially

(6 13) X k) (r) ’kr
k k1) (r) k’kr k

Example 6.2. If r < 1 and 2uN is sufficiently large, we may always approximate
the series (6.9) and (6.11) by their first terms, i.e.,

(6.14) Xk)(r)=’krk Xkl)(r)=kzkrk ifr<l
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On the other hand, if r 1 and P correspond to interpolation by a spline function S
of degree 2m 1 (m >- 1) [13, Ex. 5.2], we can sum up explicitly and obtain

(6 15) x( (1) k
r 1+ 12m-1 21N

(6.16) (1) k- 1 + 4,.-
2vN

ifk =0,

if 0<k <2vN,

ifO<k <2vN and m >-2,

where the are functions introduced in [13] and closely related to the polygamma
functions O(t [1, 6.3]" - (] z )

+ (-1)’+’

g,(z):= X._- +z l!
zt+ll[l (t) (Z I

(z e C\{0,-1,-2,.." }, 1, 2,...). Evaluating 01 is also discussed in [13, Ex. 5.2].
The formulas (6.14)-(6.16) also hold for smoothing by spline functions if we

modify either Ck in (6.8) and (6.10) or rk in (6.14)-(6.16), cf. [13, 6].

7. Numerical experiments on the accuracy of the approximate mapping
function. As we have seen in the last section (cf. (6.6)), the 2N points gr(exp (itk))
lie exactly on F if P is interpolatory and y is a solution of (1.1). So, for t

(7.1) ,(t) := log Ig (e")l- log p (arg gN(e"))

should be 0, and thus, in addition to the residual defined by (2.5),

(7.2) 8g.o := max
k

is another measure for the accuracy of y. For estimating the relative discretization error

(7.3) max [1 gN(e")/g(e")l,

we also compute

(7.4) 8g. := mkax [Sg(t + t/2)l.

This estimate does not allow a direct comparison with the discretization error

(7.5) max I -If,,(ff)ll
F

of approximationsf to the inverse mapping f gt-1.], which is the aim of many other
numerical mapping techniques [4], [5], [25]. But since

we may consider

Ig(e")l
(7.6) 8r(t) :-igr(e,)l (t).

(7.7) 8,o :- rnax lSr(t)l. 8r.x := rnax I,r(t / tl/2)l
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as estimates comparable to (7.5). They take into account that it is difficult to make
8g,1 small if Iwgv(w)1-1, the field strength o the potential field

(7.8) Wr(’):= log Ig71a (’)1
becomes small on gu(OD).

Yet another crude accuracy test consists in plotting gr(OD) to compare it with
F. In addition, one can easily plot equipotential lines N(’) log r const since many
points on them can be computed with one FFT (cf. (6.8)). The corresponding field
lines are crudely approximated by broken lines in the following plots, however.

Comparing 8g,o or the residual with 6g,1 allows one to judge whether the discretiz-
ation error is small enough, i.e., whether N is large enough. The quantities

(7.9) Vmin := min
gr(eU)
g(e it) Vmax:= maxt

(where usually only {tk, tk-t-to/2, k 0,..., 2N-1} in our tests) indicate whether
the mapping problem is difficult to solve. Finally, 8r,o and 8r, show whether 0 =y +t
can serve as an accurate basis for determining the boundary correspondence function
t(O) of the inverse map by inverse interpolation. However, we must be aware that
/3min and Vmax may deviate essentially from the corresponding quantities for the exact
mapping function g since gr may be an unsatisfactory approximation of g’. For the
same reason, 8fo and 8ft may be poor estimates for (7.5).

Example 7.1. Results on the accuracy of the mapping function gr corresponding
to the SOR iterate y,,t+ for the inverse ellipse are given in Table 7.1. (For a .1
and a .05 the continuation method has been used.) If a is large (i.e., e is small),
8g,O and 8g, are of the same order, and they mainly depend on l, i.e., on the stopping
criterion for the iteration (cf. (2.4)). If a is small, a reduction of the error 8g,1 requires
a larger N. The quantities )min and/)max have also been computed. At least five digits
coincide with the correct values )min a, /)max l/a, except if a .05, where we obtain
/3rain’--.050010, /)max--22.036 (for N 128), which indicates an error of at least 10%
in g’. Plots of equipotential lines (’)= log (k/8), k 1,..., 8, are shown in Fig.
7.1 for a .2, .1, and, partly, but five times magnified, for a .05.

TABLE 7.1
Accuracy of g ]’or reflected ellipses (Ex. 7.1).

.8

.6

.4

.3

.2

.1

.05

N =32, 1=6

8g,O tg,1

5.511o-ll 4.421o-ll
1.901o 1.791o
4.551o-8 1.651o
2.871o-7 8.031o-6
8.501o-7 5.431o-4
1.521o-6 5.411o-2
[3.591o 3.551o

N 128, 6

tg,0 g,1

6.311o-ll 5.251o-ll
2.431o 2.091o-9
7.281o-8 7.071o-8
3.121o-7 3.361o-7
7.941o 9.181o-7
1.361o 6.591o-7
2.781o 2.411o-3

N 128, 12

8g,O 8g,1

1.871o-14 1.601o-14
3.9110-14 3.5510-4
1.241o-13 1.391o-1
1.991o-1 2.101o-1
5.761o-1
3.541o-12 9.931o-7
1.651o 2.401o-

Examples 7.2 and 7.3 correspond to Examples 2.2 and 2.3, respectively. As
shown in Table 7.2, 8g, is roughly of the same magnitude in the cases of trigonometric
(T) and cubic spline interpolation ($3). The advantage of $3 becomes evident by
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FIG. 7.1. Conformal maps on reflected ellipses (a .2, .1, and .05).

inspection of gv. While v Train /3 S3min, /3 Tmax "*-/3 maxS3 for c .4, .8, we obtain for a .2,
N=512 in

Ex. 2.1" vT T =29.86,min .037, /)max

Ex. 2.2" vT T
i .093, V =4.29.
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TABLE 7.2
Accuracy ofgand gSN3 in case of a symmetric and in case of an asymmetric piecewise analytic boundary

(Exs. 7.2 and 7.3).

Ex.

7.2 .8
.4
.2

7.3 .8
.4
.2

N= 128

2.521o 1.8910-6
1.781o-3 1.471o-3
{1.021o-1} 1.0510-1
6.371o 7.2710-6
5.171o 6.4310-4
2.181o-2 1.7510-2

N=512

$3 T $3 $3 S3tgT,1 tg,1 f,1 f,l /)min /)max

3.091o 3.481o 2.401o 2.71 lO .774 1.25
7.971o 1.021o 1.851o 2.341o .204 2.38
9.781o 7.691o 2.271o 3.921o .049 5.02

4.301o 3.861o 3.851o 3.451o .847 1.27
3.061o 3.151o 1.21 lO 1.241o .343 2.37
3.351o 2.761o 4.311o-4 3.141o .096 4.04

The plots for these two examples are hardly distinguishable from the corresponding
ones with $3 approximation shown in Fig. 7.2. However, the difference between T
and $3 becomes visible if we reduce N to 128 as in Fig. 7.3. Here, gv is very inaccurate
for both T and $3, of course.

Example 7.4. Results for the square and ten types of approximation (cf.
Ex. 2.4) are compiled in Table 7.3. They have been computed by Euler iteration
with yo=0, =6, N 1,024 (actually, 256 variables are involved). The smallest
error g,max :=max {Sg.o, 8g,1} is obtained for S1/105, the first degree smoothing spline
with damping parameter t5 105. Unfortunately, in general gv has singularities on
OD at the breakpoints e irk of the first degree spline. The best result among the

FIG. 7.2. Examples 7.2 and 7.3" cubic spline interpolation with N 512.
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FIG. 7.3. Example 7.2: trigonometric (left) and cubic spline (right) interpolation.

TABLE 7.3
Accuracy of mapping functions based on various types of approximation (Ex. 7.4: square, N 1,024).

8g,0
6g,1
f,o

Dmin
1)max

8g,0

T C L $3/ 108 $3/101 $3/1012

5.62lO 1.92lO 1.291o 1.641o 1.981o 6.81 lO-5
1.651o 5.81 lO 2.141o 5.651o 1.371o 1.561o
6.361o-8 2.031o-3 1.231o-3 1.631o-3 1.821o 6.17 lo

2.69lo 6.32lO 2.681o 7.03 lO 1.301o 1.481o
.0928 .1058 .0956 .0996 .0921 .0922

1.3587 1.3374 1.3482 1.3281 1.3603 1.3604

S1 S1/104 S1/105 $1/106

3.001o-5 1.591o-2 3.701o-3 4.651o
9.33 lO 5.51 lO 6.181o 8.97 lo

differentiable approximations considered is found for Lanczos smoothing. This has
also been observed for some other regions, with salient corners. Plots of the first
quadrant are shown in Fig. 7.4. The one with trigonometric interpolation is magnified
and based on 2,048 points of gN(0D) in this quadrant; 2N/4= 512 of these points
should lie on F. This plot reveals that gN(OD) has loops. The other plots, for which
only half as many points have been computed, exhibit that smoothing involves rounding
off salient corners. The plot of $3/108, which is not shown, looks very similar to the
one for L, and is therefore superior to the case $3/101, showing already a few ripples
typical for $3.
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FIG. 7.4. Conformal maps--based on various types of approximation--on a square.

The behavior of X(t) := log p(O(t)) in case of a piecewise analytic boundary (with
eo < oo, cf. 4) suggests the conjecture that the loops in case of trigonometric interpola-
tion can be avoided by choosing N large enough if aj > 1/2 at all corners. (In fact, there
are no loops if O’s(t) Y(t)+ 1 > 0 (’’t). Since O’ L2[0, 2zr] is piecewise continuous
and positive except at corners with aj > 1, where O’(t) O(It- tl’-l), one may expect
that 0v is nonnegative and vanishes at most at these t. if N is sufficiently large. As
yet, a proof has not been given.)

In practice loops are a problem not only near corners with a <-_ . While theoreti-
cally no loops occur if F is analytic andN is sufficiently large, there are simple examples
where it is in practice nearly impossible to avoid these loops"

Example 7.5. It is easy to map the disk fairly accurately onto an ellipse with
semiaxes 1 and a .4. Yet, for a .2 we obtain the disappointing results listed in
Table 7.4 and displayed in Fig. 7.5. Note that tf, 1--max {d;,o, t/,1} is much smaller
than 8g, := max {;g,o, g,1} here. There is a marked similarity with the results for the
square (and boundaries with acute corners). The best results are obtained by Lanczos
smoothing and appropriately smoothed splines. Here, $3/10 is nearly as accurate
as S1/10 (which is not ditterentiable). To obtain better results, one might try two
preliminary Kirmin-Trefftz transformations (cf. 5 and [8]).



26 MARTIN H. GUTKNECHT

TABLE 7.4
Accuracy of mapping functions based on various types of approximation (Ex. 7.5: ellipse with t .2).

N

512

1024

N

512

1024

g,max
f,max
/)rain

V

g,max

T C L $3 $3/106 S3/108 $3/101

{.4348} .2182 .1836 {.4165} .3400 .2187 {.3487}

{.3235} .1673 .1385 {.3086} .3400 .2240 .1170
.0571 .0677 .0303 .0187 .0189 .0054 .0019
.0167 .0179 .0167 .0165 .0555 .0242 .0163

1.8248 1.7476 1.8066 1.8350 1.5497 1.5552 1.8402

S1 S1/104 S1/105 S1/106

{.2705} .1912 (.1824} {.2600}

{.1876} .2159 .0975 {.1563}

C Sl

L 1110s

$3 $3/10o

_t

FIG. 7.5. Seven types, of approximate conformal maps on an ellipse.

Example 7.6. Results for the Swiss cross, which is an example with a reentrant
corner, are compiled in Table 7.5 (N 2,048). The two examples in the top part of
Fig. 7.6 demonstrate that N 512 (i.e., 128 variables) is enough for a rough but
reasonable approximation. All six other solutions in Fig. 7.6 are done with N 2,048.

Example 7.7. In Fig. 7.7 we display the Lanczos type solution with N 512 for
an asymmetric L-shape. It confirms that the method also works for asymmetric regions.

So far, we have done no tests on the accuracy of the conformal mapping defined
by composition of g, optional inverse osculation maps, and the maps inverse to those
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TABLE 7.5
Accuracy of mapping functions based on various types of approximation (Ex. 7.6: Swiss cross, N 2,048).

g,max
f,
/)rain

/)max

g,

T C L S3/10s $3/101 S3/1012

7.661o 2.301o 2.02lO 2.801o 2.101o 6.79lO

2.861o 1.27lO 9.281o 1.691o 9.401o 1.481o
.0442 .0464 .0459 .0602 .0448 .0443

54.43 27.08 39.53 26.10 47.47 64.58

S1 S1/105 S1/106 S1/107 $1/108

1.59lO 2.05 lo 1.881o-2 1.62lO-2 1.601o

L

N 512

$1/10

N:512

L $11106

N = 2048 N 2048

S31101 $31101=

FIG. 7.6. Eight types of approximate conformal maps on a Swiss cross. (Inaccuracies on the symmetry
axes are due to inaccurate plotting and gluing.)

used for corner elimination (cf. 5). However, the following should be kept in mind:
If 8g(to) is the error of gN at a point to, where a corner with angle azr has been
eliminated, then the inverse transformation, which contains a map of type TCo.1/,

yields an error proportional to [Sg(to)]. So, if c is small, much of the accuracy of
Theodorsen’s method (or any other one) gets lost.
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Fit3 7.7. Conformal map (with Lanczos smoothing) on an L-shape.

8. Conclusions. The nonlinear SOR iteration and the nonlinear second order
Euler iteration proposed in [12] are efficient means for solving the classical or the
modified discrete Theodorsen equation, respectively, for most regions that are starlike
with respect to the origin. If eo > 1, one may have to apply the continuation method
of 3 as an outer iteration. But then, in all of our tests convergence was achieved if
N and the parameters Io and l0 of the continuation method were large enough.

However, the classical discretization based on trigonometric interpolation may
yield approximate mapping functions gN which are useless since they are not one-to-
one. Not only does this happen for boundaries with acute corners, but in practice
even for certain simple analytic boundaries where the mapping problem is ill-condi-
tioned, such as, e.g., flat ellipses. Discretizations based on other types of approximation
involving some smoothing yield much better results in these cases. Smoothing has the
(in practice often negligible) effect of rounding off salient corners and other salient
parts of the region, where the Green’s function nearly vanishes. In particular, Cesaro
and Lanczos smoothing proved very useful. (For similar smoothing techniques not
tested here, see [32], [37], [38].) Smoothing splines, which are more difficult to
implement but nearly as efficient in execution, may yield even better results if the
smoothing parameter is chosen appropriately (which was done by trial and error in
our tests). First degree splines are not suitable if gv is requested too.

If we cannot allow salient corners to be rounded off, we can usually eliminate
these corners by preliminary conformal maps, which have also been implemented in
a general program. Additional preliminary osculation maps could be used to deal with
regions that are not starlike or that present other difficulties. More tests in this direction
are certainly worthwhile.
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EXTRAPOLATED ADAPTIVE QUADRATURE*

D. KAHANERt AND J. STOER

Abstract. In this paper we consider algorithms for numerical quadrature in one dimension which
combine global adaption and extrapolation. We analyze the convergence of one specific algorithm in terms
of the amount of work as a function of the input accuracy request. The main result is that asymptotically
the expected amount of work is unaffected by the adaption. This is illustrated by numerical examples. An
alternative algorithm is also suggested.

Key words, automatic quadrature, mathematical software, adaptive quadrature, extrapolation,
Romberg, Wynn’s e-algorithm

1. Introduction. Extrapolation in Romberg’s method has long been an elegant
algorithm for the numerical evaluation of definite integrals [1, p. 45]. Early investiga-
tions centered on the rate of convergence for smooth integrands [2], numerical stability
of the mesh sequences [2], [3], [4], stopping criteria [5], and new asymptotic expansions
for nonsmooth integrands [6]. In more than one dimension many of these same ideas
carry over, but crucial adjustments must be made for the specific region of interest,
singularity structure of the integrand, zero coefficients in the asymptotic expansion,
etc. [7]. A number of subroutines have been written for automatic quadrature based
upon (usually) the trapezoidal rule in one dimension [1, p. 376]. For general smooth
functions these algorithms have extremely rapid convergence. However, when imple-
mented as programs several persistent problems remained.

a) The usual process of halving the mesh lengths at each level led to very rapid
increase in the number of evaluation points used. Fewer function values can be required
if the mesh lengths do not decrease so rapidly [9], but in practice the improvement
is very modest. This "surcharge" feature is common to all automatic quadrature
routines [8] but is extremely costly for extrapolation codes.

b) The familiar Euler-MacLaurin formula, which is the asymptotic error
expansion for the trapezoidal rule, only applies to smooth integrands. The practical
use of a code based on such an expansion for an integrand with a singularity results
in essentially no improvement from the extrapolation. If the nature and position of
the singularity is known (this is the case in most problems), the correct expansion can
be used, and some programs do alter the expansion to account for this situation. This
can be done either by requiring the user to describe the singularity explicitly or by
deducing it from numerical evidence [10]. An alternative technique uses a nonlinear
extrapolation procedure, the e-algorithm, to handle more general expansions
automatically at the cost of an even higher surcharge [11].

Concurrent with the development of extrapolation procedures was the growth in
popularity of adaptive quadrature algorithms [12]. These share many of the same
surcharge and other problems inherent to any automatic quadrature routine [8].
Nevertheless, the best of them can successfully integrate smooth and nonsmooth
integrands. Furthermore, the nonuniform distribution of function values which the
typical algorithms generate is satisfying to many users. In the popularity contest, at
least, adaptive algorithms have clearly "won".

* Received by the editors March 9, 1982.
t Center for Applied Mathematics, National Bureau of Standards, Washington, DC 20234.
Institut fiir Angewandte Mathematik und Statistik der Universitit Wurzburg Am Hubland, D-8700
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In the quest for even better methods several attempts have been made to combine
extrapolation and adaptation [10], [13], [14]. The most recent of these [14] attempts
to get the outstanding convergence rates associated with extrapolation along with the
nonuniform mesh associated with adaptation. The resulting codes appear to be among
the best available today.

Our goal in this paper is to provide an analysis of one specific model adaptive
extrapolation algorithm, which we name GAX. This algorithm shares many features
with some existing programs, albeit in rather simplified form. In particular we leave
out all questions relating to finite word computer arithmetic, even though these issues
are of vital importance in any real implementation. Additionally, we make numerous
simplifying assumptions about the local estimates that are used even though the success
of most adaptive quadratures depends heavily upon these estimates. In 2 we define
the terms we need to associate with extrapolation. Section 3 describes what we mean
by adaptive quadrature and gives the algorithm GAX. A convergence theorem,
Theorem 4.2, is given in 4. Some numerical examples and implementation details
are in 5. Finally we present a modified algorithm, GAXI, which we believe to be
an improvement.

2. Extrapolation. We consider the problem of the approximation of
b

(2.1) ff:=ffr:= Ia f(x)dx, -o<a <b <o

by use of the Romberg T-table [2]. Let I denote a generic interval [a,/3 ], and

(2.2) Tr (I):=/8 a [f(c +f(/8)],
2

i.e., the primitive trapezoidal rule for I. When [a,/] is uniformly subdivided into
subintervals of length h, the compound trapezoidal rule for I is

(2.3) T(h;I):=h[+f(a +h)+ +f(-h)+f-()].
Instead of T(h [a, b ]) we write briefly T(h).

Thus

(2.4) Tr ([a, b ]) T(b a):= To,o.

Romberg’s method to calculate T starts with the computation of (2.3) for subdivisions
of the full interval into 1, 2, 4, 8,.. equal parts. We use the notation

b-a
(2.5) Tk,o := T(hk), hk := 2-----.
These values are arranged vertically and completed to a triangular array

T0,0

T1,0 T2,2
T2,1

(2.6) T2.o T,,,

Tm,2

Tm,o
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which is usually called the T-table, with

(2.7) Tm,k := 4kTm.k-1 Tm-.-4k--1
k>0.

The elements Tm,k with m->k, k, fixed, form the kth column of (2.6). Then we
have [2]

k

(2.8) T,,,k Y’. c,jT-k+j, o
i=0

with

(2.9)

= h2i-h i= 1-4-’
i#j

E cj 1,
i=O

Ic k,l I 1 + 4-l

i=o = 1 ---:r <- 1.969 < 2 for all k >_-0.

It has been shown [2] that for f E C2k+2 [a, b ]
b

(2.10) T,, ], f(x) dx O(4-"(k+)), m oo,

and also that if f is complex analytic in an open domain containing [a, b] then any
diagonal of (2.6) converges superlinearly, i.e., asymptotically faster than any geometric
series.

In a practical program for Romberg quadrature the T-table (2.6) is generated in
a stepwise manner--a new T,.o element is computed by direct function evaluation
and then T,., T,.2, , Tin.,, are computed in turn by (2.7). The process produces
as output in addition a number

(2.11) IT.,. T.,,._I + IT.,. T._, ,._x

which represents a conservative estimate of the error in T,.,.. The amount of work
necessary to compute T,.,k measured in evaluations of f(x) is 2"+ 1. Thus (2.10) may
be restated to show that n units of work achieve an error e in the kth column of the
T-table which is

(2.12) e O(F/-2k-2).

Most programs have an upper limit on the number of columns which can be computed.

3. GAX--Global adaptive extrapolation algorithm. Our adaptive algorithm
begins with the initial interval [a, b l, the integrand function and absolute accuracy
requirement e and generates a, generally, nonuniform partition when it finally termin-
ates. By an LQM (local quadrature module) we mean a rule which associates a pair
of numbers LQE (local quadrature estimate for f(x)dx) and LEE (local error
estimate for ILQE(I)-x f(x) dx I) with a given function f and interval L To be specific
we take an LQM which uses

(3.1) LQE := Tr (I).
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Since

Tr (I) [(x) dx -"(), I

if f C(I) (lII length of I), we take as LEE any rule, which is asymptotically
consistent with this error expression in the following sense.

DEFINITION 3.2. A LEE is said to be asymptotically consistent with the trapezoid
rule if wheneverf e C[a, b ], there exist constants c, e0 > 0 such that for all subintervals
I[a,b]

(1) 0-<_LEE (I)<-citl3;
and

(2) for all 0 < e < eo, if LEE (I) -<_ e,

then

1)(3.2) T ; f(x)dx <---, n=l,2,....
n

This says, roughly, that the LEE we use will have the same qualitative behavior as
the actual error in Tr (I).

By a CELL we mean an interval, more specifically the data defining the interval
such as its endpoints or an endpoint and length, and at least the two numbers LQE,
LEE. (Either LQE(I) or LQEI are used for readability.)

(3.3) CELL := {[a,/3 ], LQE[,.0], LEE[.0a}.

A practical implementation may include other information such as the level of the cell,

(3.4) LEVELt. := log
3 c

These data are combined to give certain global estimates

(3.5) TEE:= E LEE,
CELLS

(3.6) Q:= E LQE,
CELLS

the total error and quadrature estimates respectively.
These values change as the calculation progressesnew cells are created and old

ones destroyed. We may then consider the following model calculation GAQ for
global adaptive quadrature.

GAQ (global adaptive quadrature algorithm)
Inlmt: f, [a, b ], e, MAXLEV
Initialize: [a, b ]--> CELL

Q- LQEt,ITEE LEE
LEVEL LEVEL t,a := 0

While: TEE > e and LEVEL<MAXLEV:
SUBDIVIDE WORST CELL IN HALF
UPDATE Q, TEE, LEVEL

RETURN Q, TEE, LEVEL
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Here we have augmented the input to include MAXLEV which functions as a
bound on the individual LEVEL,I and prevents subdivision beyond acceptable
limits. Usually this can be calculated internally since it is related to machine precision
but we include it as input for a subsequent algorithm, GAXI, which is introduced in

5. The global parameter LEVEL is of course

(3.7) LEVEL := max {LEVELt,3}.

The initialization step forms a cell from the initial interval and sets Q, TEE and
LEVEL to the corresponding cell values. In an actual implementation there would
be no need to have a single interval as input. Allowing more than one would permit
a user to isolate singularities at endpoints and generalize "restarting" schemes which
are already well known [15].

The iteration loop continues until TEE is driven below e (success) or the maximum
level is reached (failure). In this latter case we choose to terminate although practical
implementation might accept the estimates on these small cells and continue. The
subdivision step finds the cell with largest LEE, bisects it, and forms cells of each
half, i.e., computes LQE and LEE for each subcell. The update amounts to reducing
Q and TEE by the contribution due to the parent and adding in the contributions
due to the two new cells. The larger cell is then destroyed.

Programs like GAQ are easy to write [16], [17]. In the absence of rounding error
(on an infinite precision machine) their properties have been analyzed in detail [19].
The essential result for one-dimensional integrals is that the work required to obtain
an estimate Q to absolute accuracy e >_-TEE is proportional to 1/x/ using (3.1) as
our LQM. Since work is usually measured in number of evaluations of the integrand,
n, we have

(3.8) e < Kr__--
n

where Kr is a constant independent of n.
This is the same order estimate that one would get using (2.3) with h (b -a)/n,

although the constant Kr in (3.8) is much better, a fact borne out in practice. One of
the most interesting results of [19], however, is that (3.8) holds for a very wide class
of functions including those with algebraic and branch point singularities. The error
in (2.3), on the other hand, is well known to be of the form (3.8) only if f C2[a, b ].
In this paper we are only interested in smooth integrands. In fact we assume that [
is sufficiently differentiable so that all derivatives appearing in expressions are con-
tinuous on [a, b unless otherwise specified. (For less smooth functions (3.8) must be
replaced by more slowly decreasing expressions [6].) This combination of good error
coefficient for smooth functions and convergence for poorly behaved functions
accounts to a major extent for the popularity o the methods.

Compared to the results (2.10) this convergence is rather slow. Attempting to
combine the adaptive features of GAQ with the convergence properties of Romberg
quadrature suggests the following modifications.

At any point during the calculation a cell, x, is said to be SMALL if no other
cell is smaller,

(3.9) CELL x SMALL, LEVELx >_- max {LEVELy}.
CELL

Any cell which is not SMALL is BIG. Thus after the initialization step the cell [a, b ]
is SMALL. Figure I illustrates the concept by listing the cells and their level at one
specific point in the course of a calculation.
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LEVEL 4 4

aS S
M M
A A
L L
L L

3 2 1

BIG BIG BIG b

FIG. 1. Big and small cells.

We now define big cell error estimate (BEE) and extrapolated error estimate
(EXE)’

(3.10) BEE:= LEE, EXE:=lT",,.-If(x)dx 1.BIG
CELLS

In practice EXE is not computable. A realistic program might actually use (2.11)
as an approximate value for EXE, The GAX algorithm terminates whenever either
TEE (3.5) or EXE falls below the input e.

The basic goal in GAX is to somehow reduce the number of integrand evaluations
which are normally required to compute the elements of the first column of the
Romberg table, {T",o}. This is done by replacing these numbers by approximations
to them, denoted {T,.,o }. T",o estimates by summing 2" uniform trapezoidal rules,
requiring 2"+ 1 integrand evaluations in total. We will define ",o to also estimate
ff but now by a sum of nonuniform trapezoidal rules using (in general) a subset of
the 2" + 1 evaluation points. Thus T",o ",o will be given by a sum over the intervals
used by 2P",o, which we have termed the BIG cells in (3.9). To decide if the ’",o is
a good enough approximation to T",o it will only be necessary to ask if the BIG
intervals have been calculated accurately enough. If they appear to be sufficiently
accurate we use T",o rather than T",o as the element in the first Romberg column.
In GAX we define "accurately enough" to be "BEE_-< e". If the BEE is too large
we try to reduce it by doing an adaptive quadrature on the BIG cells. Ultimately
BEE< e. This is guaranteed because the number of BIG cells eventually decreases
as the subdivision progresses. In fact if we go far enough the only cells are SMALL
and T",o T",o. In that case there is no reduction in the number of function
evaluations.

An exact description of the algorithm is given below.

GAX (global adaptive extrapolation algorithm)
Input: f, [a, b ], e, MAXLEV, K
Initialize: In, b ] --> CELL

Q LQEta,bl, TEE LEEa,b

LEVEL LEVELt,b 0, m 0
BEE *- 0, EXE TEE, To,o Q

While TEE > e and EXE> e and LEVEL<MAXLEV:
Subdivide worst CELL in half
Update Q, TEE, BEE, LEVEL
If a new LEVEL introduced"
While BEE> e and TEE > e"

Subdivide worst BIG CELL in half
Update Q, TEE, BEE

mm +1, T",o Q
Compute the diagonal {lP",k 1 <-- k -<_/},/ := min (K, m) of T- table.
Find an estimate EXE for I", -J f(x)dxl
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I| TEE>EXE" Return LEVEL, T,,,, EXE
Else: Return LEVEL, Q, TEE
End

Note that since the higher level subdivide step creates new cells and destroys an
old one it may create cells smaller than any seen before. In that case all the remaining
cells become BIG. That is, the concepts of BIG/SMALL are not inherent to the cell
but change during the algorithm.

The parameter K of GAX limits the number of columns that can be computed
by GAX. Usually K <MAXLEV.

Our hope with this algorithm is that where f doesn’t change much, a few function
values will suffice for that part of the contribution to T,,o but that the high rate of
convergence of the T-table will be retained. The FORTRAN subroutine QAGS by
deDoncker et al. [14] motivated much of our work. GAX is similar in spirit (we hope)
to QAGS but as the latter is a library quality program, a great many important
differences exist.

The following simple example may be helpful. The initial interval [a, b is input.
It is SMALL and its LQE is exactly T0,0. (See Step (i) in Fig. 2). If LEE (-TEE)> e
we subdivide (step (ii)), enabling us to compute Tl,o and TI,. Suppose the right half
has the larger LEE. Hence we subdivide it (iii). The left half is now BIG, but supposing
its LEE < e we compute T2,o, pretend it is equivalent to WE,0 and use it to compute
’2, and #2,2. The worst cell is now the right quarter interval leading to (iv). Now if
the two BIG cells have BEE> e we adapt on them, choosing the worst to subdivide
(v), at which point BEE< e and we compute 3,o ’3,3.

(i) S
To,o

a b

(ii) S S

(iii)

(iv)

(v)

TI,oTI,1

B S S

B B S S
’3,o not accurate enough

B S S S S

FIG. 2.

As a final remark note that when [(a + b)/2, (a + 3b)/4] is subdivided we could
go back and update 2,o, ’2,1, #2,2. GAX does not do this.

Several other possibilities exist in addition to the test "BEE > e ?" Among these
are

(3.11)
"BEE > ce ?", 0 < c =< 1,

"BEE > e.
Sum of lengths of BIG intervals

9

Using either of these means that we are more likely to subdivide the BIG cells.
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4. Convergence of GAX. Here we consider the effect of using GAX with a fixed
smooth function as e , 0. In addition to (3.1), (3.2) we also assume that GAX uses
the exact error of T,,g as EXE"

(4.1) EXE := m,g lf f(x dx

and that the test BEE> e of GAX is replaced by the slightly sharper test BEE> cze,
with 0<ix _-<1/4.

In particular we examine the finiteness of GAX and the amount of work (measured
in terms of f evaluations) needed up to termination.

THEOREM 4.2. Let MAXLEV:= o0, f C2N+2 [a, b ], N >= O and let K <-N be the
maximum number of columns GAX is allowed to compute. Then

1. ]’or all e >0 GAX terminates with an approximation to b f(x)dx whose error
is at most e. The total number n offunction evaluations needed by GAX until termination
is related to e by

(1)(4.3) e =O .n2K2

2. If in addition f"(x does not vanish in [a, b ], then for all sufficiently small e > 0
the T-tableau generated by GAX is equal to the Romberg T-tableau, T,,.o T,,o for
all m >-_ O.

Theorem 4.2 has a positive and a negative aspect: Part I says that GAX is at
least as efficient as Romberg’s method for all sufficiently smooth functions; but
according to part 2, it is not better than Romberg’s method for a broad subclass of
these functions, if e > 0 is sufficiently small.

Proof. Let MAXLEV:= oo and f cEX+2[a,b], O<-K <-_N and e >0. Denote by
M(e) the maximal cell level constructed by GAX. Since by (3.1), (3.2) and (3.5)

LEE (I)= O(1II3), TEE ’. LEEx,
CELL

it follows that the condition TEE<_-e is eventually satisfied, if by the successive
subdivisions of the worst cells the size II1 of these cells has become sufficiently small,
III= O(x/). Hence for any e >0, M(e) is finite; in particular,

(4.4) 2() 0(1/4),

and the program terminates. Clearly, because of (3.1), (4.1), GAX computes the exact
b

integral a f(x) dx up to an absolute error e.
Since the number n n(e) of function evaluations needed until termination is

related to M(e) by

n -< 2M()+,

equation (4.4) implies the crude relation

e =O(1/n:).

In order to prove the better estimate (4.3), we have to study the behavior of GAX
more closely. Consider the state of GAX at the point in time t,,, at which LEVEL m
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and .,o has just been computed and let

I := {BIG intervals at time t.,},

IS := {SMALL intervals at time t,.},

(4.5)

J:=xIx f(x)dx’ J := ts It f(x) dx"

Then by definition of ,.,o
(4.6) ,.o Y. Tr(I)+ Y Tr(I),

whereas the corresponding element T.,o of the Romberg tableau (4.6) is given by
(see 2.3)

(4.7) T,,.,,o=T(hm) E T(h,.;I)+ E Tr(I).
IIm ll Sm

We now estimate the difference F,. := ,..o T..o. Since for each I IB

LEE (I) < BEE LEE (I’) < ce <
e

and LEE is asymptotically consistent (3.2), it follows for sufficiently small e and all
II that

T(h I)- f(x) dx <LEE(I) <-
4

and therefore

(4.8)

[F,.I I.,.o T.,o [, (Tr (l)- t))

,Tr(I)-Js + ,(T(h...I)_ f(x)dx)

<_- BEE + Y’. LEE (1)/4
I elam

_-< 1/4. BEE <_-e < 0.3e.

Because of (2.8), , Z Cki’,.-k+,o, T,.,k Z ckiT,.-k+,o,
/=0 /=0

so that by (2.9), (4.8) the error A, of, satisfies

k

A,.k := ,.,k 5". CkjF._+j + T,.,k ,
j=0

(4.9)
la . l =<0.6e + IT,.,k -’l.
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Now for fe c2N+2[a, b] and fixed k <_-N, the error Tm,k --ff" Of Tm,k satisfies a bound
of the form ([2])

T,.k l <- C-----L--k
(4re)k+ for all m->k,

with certain constants Ck; hence by (4.9)

(4.10) [A,I --< 0.6e +c/4(k +1", m =>k.

GAX will terminate as soon as IA,,.kl--< e, so that by (4.10) the terminating level M(e)
of GAX satisfies M(e)<= m (e), where m (e) is the smallest integer m => 0 with

(4.11) 2 >-- (Ck/(O.4E )) 1/(2K+2).

Since the number of function evaluations needed for the construction of level M(e)
is n n(e) 2M(+ 1, it follows from (4.11) that

e =O(1/n2:+),

which proves (4.3) and the first part of Theorem 4.2. In order to prove the second
part, assume that if(x) does not vanish in [a, b]. We will show that for sufficiently
small e, there are no BIG cells up to termination, I Q5 for all m <-_M(e), so that
T,.o ,.o.

We assume 0 < e <-c/0.4 and e -<_ o (3.2). Then by definition of re(e)

1/(2K+2)

(4.12) .4 ->-2"(

Suppose that there is a level m <-_M(e)<-_m(e) such that I # 3. Then for any II
by (3.2) and (4.12)

e-->_ BEE >LEE (I) > Tr (I)- I f(x) dx

I’1 (12 /z:= min
j[a, b

12

_>
(b a)3 1 0.4 3/(2r+2)

12 "/’ ’e

for small enough e. This contradiction showsI for all m <-M(e), which completes
the proof of the theorem. [’1

5. Numerical results. We have programmed a version of GAX in FORTRAN
double precision for the Univac 1108. The actual implementation required use of a
LEE and EXE different from (3.2) and (3.10). Rather, we used (2.11) for EXE and
a consistent, locally third order estimate for LEE. Our simplified model program
made no attempt to save and reuse/" values. Additionally we used heap subroutines
[17] to maintain the cells as it was easy to write the programs with them. In our tests
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we considered two smooth problems:

(5.1 Io
(5.2/ I0 e

+25x 2’

5x dx.

We attempted to integrate these for a sequence of e’s. In Table 1 we list the results
of the calculation for e 1.E-09. The computer output is provided when each new
extrapolation takes place, that is, after BEE< e. We list the total number o cells,
Iff-EXEI and TEE. In both cases the number of cells at the ruth level is 2" as predicted
by Theorem 4.2.

For comparison we also integrated 3 nonsmooth functions

Io 4 dx,(5.3)

(5.4) x/-’

(5.5) J0 x In x dx.

For these TEE and EXE go to zero at roughly the same rate. In fact TEE should
decrease faster, but apparently we are not yet in the asymptotic region. For these
functions we have also that, almost, 2" cells exist at the ruth level.

The rather negative result of Theorem 4.2 seems to fly in the face of user
experience with programs such as [14]" a substantial body of users have concluded
that these programs are very efficient for solving their problems. To try and glean
some insight into these matters, we conducted two additional experiments with suitably
modified versions of GAX, closer in spirit to these production programs.

First we replaced the trapezoidal rule LQM with one of much higher polynomial
order. In particular we used QUARUL [14], an LQM often used in production
software. Its LQE is "exact" for polynomials through degree 19 [18]. As a result the
smooth integrands (5.1) and (5.2) are essentially done exactly, in one step. Thus, no
extrapolation is necessary. The singular functions (5.3)-(5.5) are also done more
accurately than with the trapezoidal rule but there is no improvement via the Romberg
extrapolation because ot Difficulty b) in 1.

The second alteration to GAX involved replacing the linear Romberg extrapola-
tion by the nonlinear e-algorithm as was also used in [14]. This method is known to
be useful for extrapolating sequences of quadrature estimates of singular functions in
much the same way that Romberg is useful for extrapolating estimates of smooth
functions. The combination of a high order LQM and the e-algorithm make the
modified program much closer to those described in [14], and Table 2 illustrates the
results on the integrands (5.3)-(5.5). (Integrands (5.1), (5.2) are still done almost
exactly at the first step.) We see there a very dramatic improvement---a rapid decrease
in the error due to the extrapolation on the nonuniform mesh. Notice that each
subdivision produces a new level. What happens is this: for any cell that does not
include the point x 0, the LQM produces a very accurate LQE and a small LEE.
Thus BEE< e, the only adaptation is done by subdividing the interval with the origin
as its left boundary, and each such subdivision produces a new level and allows an
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TABLE 1

Level Subintervals I3"-EXEI

EXE
Romberg
error est.

TEE
Total

error est.

1./(1. + 25"X*’2)

2
4
8

16
32
64

.129-01

.575-03

.9O6-04

.102-05

.595-08

.451-10

.835-01

.131-01

.676-03

.919-04

.101-05

.600-08

.167-01

.327-02

.213-02

.524-03

.130-03

.326-04

EXP (5.*X)

2
4
8

16
32

.336+00

.306-02

.745 -05

.458 -08

.708-12

.170+02

.353+00

.310-02

.747-05

.459-08

.340+01

.929+00

.237 + 00

.598-01

.149-01

DSQRT (X)

2.
3.
4.
5.
6.
7.
8.
9.

2
4
8
16
32
64
128
253
483

.101-01

.315-02

.108-02

.379-03

.133-03

.473-04

.167-04

.592-05

.210-05

.662-01

.742-02

.210-02

.704-03

.245-03

.866-04

.306-04

.108-04

.382-05

.132-01

.494-02

.181-02

.659-03

.237-03

.849-04

.302-04

.107-04

.383-05

1./DSQRT (X)

2
4
8

16
32
64
128
255
502

.629+00

.432+00

.303 +00

.214+00

.151+00

.107 +00

.758-01

.536-01

.379-01

.516+00

.208+00

.130+00

.897-01

.629-01

.444-01

.314-01

.222-01

.157-01

.112+00

.804-01

.571-01

.404-01

.286-01

.202-01

.143-01

.101-01

.716-02

X’LOG (X)

2
4
8

16
32
64
128
255
505

.479-02

.962-03

.229-03

.566-04

.141-04

.352-05

.881-06

.231-06

.610-07

.899-01

.406-02

.744-03

.173-03

.425-04

.105-04

.264-05

.650-06

.170-06

.179-01

.539-02

.157-02

.449-03

.126-03

.351-04

.967-05

.264-05

.721-06
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TABLE 2

Level

EXE TEE
Romberg total

Subintervals [ff-EXEI error est. error est.

DSQRT (X)

1. 2 .169-05 .200+01 .175-02
2. 3 .598-06 .133 +01 .618-03
3. 4 .346-17 .666+00 .218-03
4. 5 .173-17 .229-05 .773-04
5. 6 .173-17 .598-06 .273-04
6. 7 .260-17 .578-17 .966-05

1./DSQRT (X)

1. 2 .229-01 .593 +01 .673 +00
2. 3 .162-01 .397+01 .476+00
3. 4 .173-16 .203 +01 .336+00
4. 5 .242-16 .391-01 .238+00
5. 6 .346-17 .162-01 .168+00
6. 7 .346-17 .485-16 .119+00

X’LOG (X)

1. 2 .906-07 .750+00 .173-03
2. 3 .226-07 .500+00 .296-04
3. 4 .130-17 .250+00 .594-05
4. 5 .173-17 .113-06 .127-05
5. 6 .173-17 .226-07 .283-06
6. 7 .130-17 .216-17 .643-07

immediate extrapolation. Of course, if e were small enough, BEE would be _>-e and
additional subdivision would then take place.

Theorem 4.2 cannot be expected to apply to either of these modifications or
to production software. But these numerical and theoretical results together do suggest
the following hypotheses:

HI. The outstanding performance of production extrapolated adaptive quad-
rature programs is due largely to the very high order LQM used therein.

H2. For small enough e these programs will exhibit behavior similar to that
predicted by Theorem 4.2 (level m - 2" cells).

H3. No fixed order LQM will alter the asymptotic results of Theorem 4.2, but
the higher the order the smaller will e have to be before these results appear
in practice.

Examination of the innermost "WHILE" loop in GAX will easily show that this
is just GAQ applied to the BIG cells. The convergence rate of the LQM governs the
rate of convergence of GAQ [16], [19]. This rate is slower than that of the Romberg
algorithm and will limit the performance of the code. Thus, to effect an overall
asymptotic improvement, we ought to replace GAQ with something having Romberg-
like convergence, for example GAX. Thus we consider GAXI"
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GAXI (a modification of GAX)
replace

"Subdivide worst BIG CELL in half"
with
CALL GAXI with input:

f, worst BIG CELL, e, LEVEL-LEVEL(,ortCEt

H4. GAXI has improved asymptotic convergence.
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A NUMERICAL METHOD FOR SOLVING INVERSE REAL SYMMETRIC
EIGENVALUE PROBLEMS*

J. Y. WANG- AND B. S. GARBOW"

Abstract. We present a method using Newton iteration and least squares techniques to solve inverse
real symmetric eigenvalue problems. A matching algorithm is provided for cases where the number of
prescribed eigenvalues is less than the dimension of the matrix. We consider the convergence of the method
and present some numerical examples.

Key words, eigenvalue, inverse, least squares, symmetric

1. Introduction. Inverse eigenvalue problems for real symmetric tridiagonal
matrices have been studied extensively [2], [3], [5], [9]. Among these works, [5]
provides a direct method that is also shown to be stable. These methods require an
additional set of specified eigenvalues associated with a corresponding principal
subrnatrix so that certain three-term recurrence relations can be applied. Similar ideas
have been extended in [2] to solve inverse eigenvalue problems for band matrices. In
this report we formulate the inverse eigenvalue problem as one of nonlinear optimiza-
tion, whereby general real symmetric matrices can be handled.

We consider the following inverse problem. Determine parameters p*, 1,
2, .., m, such that the composite matrix A, expressible as

(1) A=Ao+ Z p.*,A,,
i=1

has a prescribed set of eigenvalues A, j 1, 2, ..., m 1, where Ai are prescribed
real symmetric n n matrices, p * are real numbers, and m -< rn 1 -< n.

This problem arises frequently in applied physics. For instance [16], the Ai may
be energy matrices and the eigenvalues of A energy levels obtained by conducting
some physical experiments. Some special cases of this problem have been discussed
in [6], [13] and [19].

There are situations where only certain eigenvalues are obtainable; others are
either too expensive to determine or are mixed together with no easy way to separate
them. In this report we also consider the case where the number of prescribed
eigenvalues is less than the dimension of the matrix. We develop an algorithm for
matching the computed eigenvalues with the prescribed eigenvalues. A Fortran pro-
gram for numerical computation has been written and is available upon request.

2. General properties. In [1], Z. Bohte proved that a simple eigenvalue Ak of A
defined by (1) can be expressed as a convergent power series of pl, ’", p, in some
neighborhood of pl p, 0. Moreover, if/zk is the corresponding simple eigen-
value of A0 with associated normalized eigenvector yk and

(2) M= max IIA,II,
l_i<--_m

* Received by the editors August 2, 1979, and in revised form August 12, 1981. This work was

supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy
Research of the U.S. Department of Energy under contract W-31-109-Eng-38.

t Applied Mathematics Division, Argonne National Laboratory, Argonne, Illinois 60439.
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he showed that if [Pi[-<-- 1/(4mMd), then

(3) hk =la,k + yAiykpi+Gt,(pl, ,p,.,.,),
i=1

where Gk contains only nonlinear terms in Pl, ’, P,,, and further that

(Ak’() T(4) -p// Y kAiYk

and

k 1,2, , n,

(9) /(pl,""", p,,), /’ 1,..., m 1,

where

f/(pl,’’" ,p,,)=hi-A, h x’Axi,

and xi is the normalized eigenvector of A associated with the computed eigenvalue hi.
3. Numerical methods. In the case where m m 1 n, we use the general Newton

method on (6) and arrive at the following linear system:

(10) , bki Api X --X(kv), k 1,..., n,
i=1

where

(11) bki Ai xk

I((5) \OPiOPi/ <2"ME’d=L,= i,]=l,...,m, k=l,...,n.

In this paper we assume that the eigenvectors are normalized (/2 norm) and that the
eigenvalues are stored in nonincreasing order.

If the number of prescribed eigenvalues is equal to the dimension of A and m n,
formulate the inverse eigenvalue problem as a system of nonlinear equations

(6) fk (P x, ",P,,) 0, k 1, , n,

where
T(7) fk(P, ,pm)-"Xk--A, A.k’-XkAXk,

Ak is an eigenvalue of A, and x is the normalized eigenvector o A associated with
In the case where the number of prescribed eigenvalues is less than the dimension

of A, we formulate the problem as follows. Let {A}={A >... >Aa} be the
prescribed eigenvalues and {Ak} {A ... A,} be the computed eigenvalues of A,
where m m 1 < n. Let

(8) H ={hx... ha}

be the subset of {Ak} that matches the set {A} in the sense that

ml

X (A? h)2

i=1

is no greater than the corresponding sum for any other subset of {A}. We formulate
the inverse eigenvalue problem to minimize the system of nonlinear equations
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and {X (k), X (k) } is an eigenpair of the matrix

()A(12) A() =A0+ Y p .
i--1

Here {h ()} are arranged in nonincreasing order.
The new approximation to the parameters is then defined by

()(13) pl+)=p +Ap, i=l,...,m,

where Ap is obtained by solving linear system (10). This procedure is repeated until
either the Ap become sufficiently small or the number of iterations exceeds a preset
maximum.

If m <m 1 n, we consider the problem of finding P*= (p*, ..., p*), which
minimizes

If, (p)l:,
i=1

where f(p) is defined in (7). By using the Gauss-Newton method on (6), we obtain
the following linear system:

(14) b()b Pi b ), 1,... m,
k k=l

where b is defined in (11). The new approximation to the parameters is then defined
by (13).

If m m I < n, we use the matching algorithm given in 5 to determine the subset
H in (8) and then use the Gauss-Newton method to obtain the following linear system:

E ()(X-h()(15) b)b Pi b i=1, ,m,
=1 k=l k=l

() )where b i is defined in (11) and (h ), x is an eigenpair of A (). The new approxima-
tion to the parameters is then defined by (13).

It is possible that during the iterative procedure two of the computed eigenvalues
(v) (v)may be exactly identical, e.g., h, h,+. In this case, we merely use one of the

two associated eigenvectors and hope that the iteration will move away from this
situation.

4. Convergence ot the metho. If we express system (6) as

(6) F() 0,

where P (p, , p,), then the derivative of F is represented by the Jacobian matrix
defined in (11). Define the natural norm of a matrix A, denoted by [[A[[, as

(17) IIAI[ max {llAxll; Ilxll 1},

where x is a vector. We make use of the following lemma.
LEMMA 1. Assume &at conditions (2), (3) hoM. Then &ere exist T, 8 such

(x8) ]’(x)-F’(y)ll2 llx yll2

for all x, y e Eo, where Eo {z e R IIz p()ll < },
Proof. It follows from (5) that

(0)IIF"(P())ll n, L and lie (P)11 m, L,
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Since IIF"(P  )zllz m .n. L we have

IIF"(e  )ll= <- n. Z.

Then by [17, p. 78], the proof of the lemma is completed. U
Using the Newton-Kantorovich theorem stated in [17], we next prove the follow-

ing theorem.
THEOREM 1. Assume that the conditions of Lemma 1 hold. Define B (b (o)ki as

in (11) with IIB-ll= N. Then if
(19) N2. y. l=<1/2,
the Newton iteration procedure (10) converges quadratically to a solution in Eo, where

(0) (0)Eo, y are defined in Lemma 1, and g-n-. maxi Ih *- hi where hi are the eigen-
values ofA().

Proof. From the conditions of the theorem,

and
IIF’(P())-aIIz N,

IIF’(P())-F(P())[Iz <-IIF’(P())-I[z. IIF(P())IIz <-N. I.

The proof then follows by using a theorem in [17, p. 421]. U
In the case m < m 1 n, the problem is solved in the least-squares sense. As an

application of the theorems in [4], the following theorem is true.
THEOREM 2. Assume that the conditions of Lemma 1 hoM. ff ]’or some P* Eo,

jr. F(P*)= 0 and Y’ IIF(P*)II2 is a strict lower bound for the spectrum of jT j, then
the procedure (14) converges locally to P* and the convergence is of order at least one,
where J is the Jacobian ofF evaluated at the point P* and y, Eo are defined in Lemma
1. Moreover, ifF(P*)= O, i.e., P* is a zero ofF, then (14) converges quadratically.

The above theorems demonstrate that the domain of convergence may be very
small if A is close to Ak for s # k. However, in practice, the process converges from
much poorer initial approximations.

In the case m 1 < n, a matching algorithm should be used. Since such an algorithm
is a discrete mapping, the error analysis is difficult; but our numerical experience
indicates that if the initial guess is sufficiently close to a solution, then procedure (15)
converges to the solution. In general F(P*)# O, in which case the convergence rate
is less than quadratic.

5. A matching algorithm. In the case where the number of prescribed eigenvalues
is less than the dimension of matrix A, we have to match the computed eigenvalues
to the prescribed eigenvalues. A matching algorithm is necessary for the procedure
to ensure that the right-hand side of (15) approaches zero.

Matching problem. Given two sets of nonincreasing real numbers
(20) C (cl,""", c,1), D (dx, .., d,),
where n >_-m 1, determine a subset D’ of D,

D’={dl, ,d’
such that

ml

(21) X (c-d;)2

i=1
is minimal.

It follows from [17, p. 108] that, if m 1 =n, then the set D’ with d’. =d, ]
1,...,n, is a minimizer of (21). If m l <n, it takes at most ,C, tries to find
minimizer of (21) by exhaustion.
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In our case the matching problem occurs in an iterative procedure. We propose
a relatively fast matching algorithm to gradually reduce the right-hand side of (15)
to zero.

Matching algorithm. Let C, D be the two ordered sequences of (20). Let J and
K be the pointers for the sequences C and D, respectively.

Step 1: (Initialization) K 1, J - 1;
Step 2: If (N-K) .EQ. (M1-J), match C(J) with D(K) and go to Step 7;
Step 3: If D(K) .LE. C(J), match C(J) with D(K) and go to Step 7;
Step 4: If D(K + 1) .GE. C(J), then (advance) K ,-K + 1 and go to Step 2;
Step 5: Compute A1-D(K)-C(J) and A2 C(J)-D(K + 1).
Step 6: If A1 .LE. A2, then match C(J) with D(K); otherwise (advance) K

K + 1 and go to Step 2;
Step 7: (Advance) K K + 1, J J + 1;
Step 8: If J is greater than M1, then STOP; otherwise go to Step 2.

6. Numerical examples. The method described in this report has been applied
to a number of problems. To demonstrate that the method works properly, numerical
examples were selected where the exact solutions are known. Let ei IP* -Pi be
the difference between the true solution and the computed solution at the yth iteration.
A termwise, a posteriori numerical estimate of the order of convergence is given by

(22) EOC()i log (elV)/e(+1.).

The computations were done in double precision on the IBM System 370 Model
195 computer at Argonne National Laboratory. In each iteration, the approximate
eigensystem was computed by the QL method (EISPACK; see [15]). The resulting
linear systems were solved using Gaussian elimination with partial pivoting
(LINPACK; see [7]).

Example 1. Consider the inverse eigenvalue problem defined in (1) with sym-
metric matrices A whose lower triangular parts are given in Table 1.

TABLE

0.39427
0.79289 0.47550

Ao: 0.29431 0.39107 0.64510
1.00517 0.37370 0.96357 0.27282
0.98080 0.31333 0.33449 1.04439 0.40766

0.870
0.327 0.593

AI: 0.145 0.931 0.743
0.437 0.201 0.808 0.986
0.451 0.037 0.300 0.882 0.926

0.733
0.823 0.142

A2: 0.109 0.564 0.768
0.905 0.414 0.562 0.736
0.114 0.852 0.639 0.342 0.788

0.212
0.634 0.891

A3: 0.421 0.456 0.720
0.542 0.577 0.812 0.345
0.882 0.123 0.420 0.786 0.743
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This problem is of order five with all eigenvalues prescribed and three parameters
to be determined. The prescribed eigenvalues are A * 4.0216090, A * 0.61568326,
A 3* 0.42495309, A4* -0.65946669, A 5* -1.0619386. For this problem, a solution
is p* =0.1, p* 0.11, p3* 0.12.

With the initial guess

(23) p(O) =p(2o) =p(3o) =0,
the computed eigenvalues agree with the prescribed eigenvalues to seven digits after

() and the convergence rates EOCI)three iterations. In Table 2, we list the errors e
of the parameters pi.

TABLE 2
Errors in computed parameters Pi for m n 5, m 3 with initial guess (23).

y e(1v) EOC? e("/’ EOC(2v) eT’ EOC7

1 4.86D-3 3.53D-3 2.92D-3
2 1.36D- 5 2.6 1.70D- 5 2.3 1.38D- 6 3.3
3 3.23D 8 2.6 1.85D- 8 2.9 1.47D- 8 1.9

Next, with the same matrices we let m 1 4, i.e., only A *, A 2*, A 3*, A * are given. Using
the initial guess (23), the rate of convergence is again quadratic. A similar result
obtains for m 1 3. We list the errors in the computed eigenvalues in Table 3. For
m 1 5 or 4, it takes four iterations to obtain the results; for m 1 3, it takes five
iterations.

TABLE 3
Errors in computed eigenvalues ofExample for m 1 5, 4, 3.

5 1.4D 9 6.5D 9 4.7D 9 3.0D 9 1.6D 8

4 9.1D-10 7.1D-9 8.5D-10 1.1D-9 1.7D-8

3 9.9D 11 1.9D 9 6.0D 10 6.5D 8 1.0D 8

Example 2. Consider the inverse eigenvalue problem [8] for m 1 n 6, m 3
with Ao (aik), ajk =] + k 1 for /" # k, all a22 a33 0, a44 37.841526, ass
66.072172, a66 =91.024067. Ai, 1, 2, 3, are zero matrices except for a 1 in the
ith diagonal position. The prescribed eigenvalues are 100, 64, 36, 16, 4, 0. For this
problem, a solution is p* 1.198616, p2* 5.810801, p3* 18.052819. Using the
procedures described in this paper with initial guess pl 1, p2 5, p3 20, it takes
four iterations to get seven-digit accuracy in the computed solution. We have rerun
the problem, reducing m 1 successively to 5, 4 and 3. We list the errors in the computed
eigenvalues in Table 4.

TABLE 4
Errors in computed eigenvalues ofExample 2 for m 6, 5, 4, 3.

m Ih 1" A 11 IA A2I IA 3* A31 IA 4" A4I IA A51 IA

6 1.8D- 7 6.7D- 7 3.1D- 7 2.0D- 8 7.3D- 9 3.9D- 9
5 2.1D-7 5.7D-7 1.1D-7 2.0D-9 2.0D-9 5.2D-5
4 9.1D-8 5.5D-7 1.1D-7 8.6D-10 1.1D-4 1.3D-4
3 1.2D-11 5.4D- 12 3.0D- 11 3.8D-4 3.3D-3 4.0D-3
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SOME GENERAL BIFURCATION TECHNIQUES*

RALPH BAKER KEARFOTT"

Abstract. The problem H(y)= H(x, A)= 0, where H "+1-" is considered. Numerical techniques
for locating bifurcation points and for following arcs leading from are presented. These techniques
are valid for primary and secondary bifurcation points, and at multiple bifurcation points, regardless of
whether there is a change in the sign of the determinant or the Jacobi matrix Hx at 7; they can also
possibly be used when arcs intersect tangentially. The techniques do not require computation of second
partial derivatives, although Jacobi matrices are computed using finite differences in neighborhoods of
bifurcation points.

Details for incorporation into a derivative-free arc-following method, developed in a previous work,
are given. Computational results for five test examples appear. Directions for further investigations and
improvements are listed.

The stepsize control and Jacobi matrix update techniques may be improved for large, sparse problems,
when first partial derivatives are easy to compute, or in the absence of bifurcation points.

Key words, arc-following method, bifurcation, numerical method, rank-1 updates, steplength
algorithms

1. Introduction. We desire to quantitatively describe the solution set of

(1) H(y)=H(x,A)=O,

where H Rn x R " and y (x, h) " x R.
Solution sets of (1) usually consist of intersecting sets of codimension-1 manifolds

in ,/1. Under sufficient smoothness and regularity assumptions, the solution set
within the region {(x, h), Ilxll<-_M, 0-<_ h-<_ 1} consists of a finite number of smooth
intersecting arcs. In that situation, the numerical problem can be resolved into the
following components: (i) following the individual solution arcs of (1) accurately and
efficiently; (ii) finding the bifurcation points (points where the arcs intersect); and (iii)
successfully following one or more arcs away from a bifurcation point.

Much work on these problems has been done by H. B. Keller, W. C. Rheinboldt,
and others. For a survey of arc-following techniques, see e.g. [2]. For a survey of
techniques for bifurcation problems, see e.g. [16]. The reader may also consult [17],
where application of simplicial methods to these problems is treated. Each of these
surveys contains lists of further references.

Despite the richness of techniques and methods, further research is desirable.
Improvements and further evaluation of both arc-following and bifurcation techniques
are possible. Also, bifurcation techniques are of an ad hoc nature; primary, secondary
and multiple bifurcation points are treated separately (cf. [16]); little work has been
done in detecting "even order" bifurcation points (where an odd number of arcs
intersect); and continuation away from a bifurcation point may fail when the arcs
intersect tangentially. Other undesirable characteristics include the need for higher
order derivatives or double iteration processes.

The purpose of this paper is to present some new and more general techniques
for handling bifurcation problems. We implement the techniques with a derivative-free
predictor-corrector-type arc-following method, which we review in 2. We base

* Received by the editors February 4, 1981 and in revised form March 29, 1982.
f Department of Mathematics and Statistics, The University of Southwestern Louisiana, Lafayette,

Louisiana 70504.
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detection of each bifurcation point on analysis of the singular values of an approxi-
mate Jacobi matrix H’(); details are given in 3.

We obtain directions for arcs emanating from by locating minima of I[H(y)112
for y on the boundary of a small ball in the affine space containing 37 and defined
by the null space of an approximate H’(37). This technique is most similar to that of
H. B. Keller [14] in that direction vectors at the bifurcation point are given explicitly;
it differs in the method of obtaining those directions. Also, Keller’s directions are
tangent to the arcs at ], whereas our directions are approximately secant to the
projections of the arcs onto the above affine space. Our approach and its implementa-
tion are detailed in 4 below.

Results and analyses of computer runs are given in 5. A summary, conclusions
and directions for improvements are given in 6.

2. The are-following method. Since the basic arc-following method is explained
in [1 1], only a general outline will be given here.

We assume that solution arcs of (1) can be parametrized with respect to arclength
s, and we suppose y0 " is such that H(y0) 0. Then:

(2) H’(y(s))y’(s) O, Ily’(s)ll 1, y(O) y(O)

may be integrated to find an arc y(s) with H(y(s))= 0, where H’ is the n by n + 1
Jacobi matrix of H, and y’(s) is the componentwise derivative of y e+ relative to s.

Our method is based on "predictor-corrector" techniques (cf. e.g. [1], [6], [15]).
The predictor step corresponds to an implicit Euler step for (2) and is defined by:

(3) z k+) y()+ 8kb (k)

where 8k e is suitably small, H(y (k)) 0, and b (k), ]b (k)[ 1 is approximately tangent
to y(s) at y(k). The next iterate y(+x) is then obtained by solving:

(4) G(z)= b(k)(Z_zk.)
with a generalized secant method.

In [11] a derivative-free predictor-corrector method for (2) is given. There, H’
is computed by updating with a least-change secant (Broyden) technique. Such tech-
niques allow computation of a new approximate derivative matrix H’ each time a
new value of H is obtained, without any additional function or derivative evaluations.
To assure that H’ is approximately crect, Powell’s idea of special correction updates
is used ([19] and [11]); the effect is to supply a matrix H’ which reflects, as a linear
transformation, the action of the true H’ in a region containing the past 2n + 3 points
z) and y(). (Powell corrections require, on the average, less than one additional
function evaluation per step).

Stepsize algorithms for adaptively choosing 8k are also given in [11], in addition
to publications of several other researchers. In the absence of bifurcation points, such
stepsize controls are usually based on keeping the number of corrector iterations
required to solve (4) within bounds, or upon keeping the cosine 9f the angle between
successive approximate tangent directions b () and b (k+x) within bounds; to do this,
8k+X is set to 8k, 28k, or Sk as appropriate.

Numerical tests in [11] indicate that the predictor-corrector technique, combined
with Broyden updates of H’, is competitive with general algorithms such as the
Chow-Yorke algorithm in [25], provided one assumes evaluation of a Jacobi matrix
from scratch would require n function evaluations. This fact has also been verified
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by Kurt Georg [8], who independently investigated a similar predictor-corrector
scheme with Broyden updates.

Our basic idea for handling bifurcation points, in addition to a framework for its
implementation, are also given in [11]. Below, we expand, in refined form, these
ideas; we then present the results of numerical tests and outline possible improvements.

3. Detection of the bifurcation points. If 7 is a bifurcation point of (1), then
the dimension of the null space N() of H’(y) must be greater than 1 (cf. [20]). In
particular, the determinant det (Hx(x, ,)) must vanish at the point 7 (x*, A,) with

=n+lcorresponding arclength s,. Let {’i(s)}g be the eigenvalues of the Jacobi matrix
G’(y (s)), where G is as in (4). Then two or more zi(s) must vanish at s s*.

If an odd number of -(s) cross the axis z =0 at s s*, then det (G’(y(s)) must
change sign at s s*. Some techniques for locating bifurcation points are based on
detection of such sign changes (see the references in the surveys) or on detection of
changes in a topological degree (cf. e.g. [10]). Here, we deal with the more difficult
problem of detecting all bifurcation points.

In general, any quantity q(s) which is a continuous function of arclength s and
which equals zero at values of s for which H’(y(s)) is rank deficient may be used to
detect bifurcation points. In the initial experiments presented here, we elect to examine
the reciprocal of the condition number of H’ relative to the 2-norm, expressed as the
ratio of the smallest nonzero singular value trn (s) to the largest nonzero singular value
trl(s) of H’(y (s)). To obtain this quantity, we actually did a singular value decomposi-
tion of the approximate H’(yk)); though not optimal from the point of view of
overhead, this stable technique gave us valuable additional information concerning
the behavior of our algorithms and test functions.

Bifurcation points are found by detecting minima of o’,,(s)/o-(s) (or, more
generally, minima of Iq(s)l). Besides having the properties listed in 2 of this paper,
our predictor stepsize control should decrease 8k before etacountering a bifurcation
point, in such a manner that the position of each bifurcation point may be efficiently
bracketed and refined. If exact derivative matrices H’(y )) are assumed, linear conver-
gence to a bifurcation point can be achieved by allowing Iq (s/x)l- Iq (s)l > -q(s),
for some 0 < a < 1, until Iq(s)l reaches some threshold value, after which the step 8k
is unchanged until a minimum of Iq(s)l is bracketed.

As was mentioned in 2, the matrices H,, and hence the q(Sk), formed from
Broyden updates with Powell correction steps are not exact Jacobi matrices at yk,
but depend upon the action of the exact linear transformations H’(y) in a region
containing the past 2n + 3 corrector iterates and points y t. In our experiments, we
handled this problem by setting 8k/1 to be a small fraction of 8 whenever the average
decrease in Iq(s)l over the past 2n + 3 points yt exceeded a Iq(s)l; d;/ was not
allowed to be greater than 8k except after a cycle of 2n + 3 predictor steps over which
8k was not decreased due to q (s).

The above step control in the neighborhood of bifurcation points is inefficient
when n is large, since 2n + 3 times as many points yk are computed as in the case
where "exact" H’ are available. A possible improvement, in later computations, would
be to discard the Powell update procedure, use Broyden (or other quasi-Newton)
updates only for the corrector steps, and compute H’ using finite differences at each
yk. The H’ could then be considered exact, with the step control threshold set
according to the accuracy of the differencing scheme. (Of course, exact H’ would be
even better, if they are easy to obtain).

If we assume H, H’(y) is an exact Jacobi matrix, minima of q(s) are bracketed
whenever Iq(s-)l<lq(s-a)l and Iq(s-Ol<lq(s)l. If n, is the result of applying
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quasi-Newton updates and Powell correction steps, the computed q(Sk) will vary
irregularly near a minimum of the actual q(s). In our experiments, we handled this
by comparing average values of Iq (Sk)l over the first third, middle third, and last third
of the past 2n + 5 iterates. As in stepsize control, this method is cumbersome and
undesirable for large n, but worked reliably in our experiments.

Once the minimum has been bracketed, it may be refined using successive
quadratic or linear interpolation, etc. Standard techniques may be used, but linear
combinations of previous approximate singular points 7 are taken to produce new

y(g); in this process, each new 37 is corrected via formula (4) in order to lie on
an arc H(y(s))- 0, until the condition of H’ renders this inadvisable. In our experi-
ments, relatively exact H’ obtained from finite differences were used during such a
"line search" (over arclength).

In our experiments, the smallest singular value trn (s) typically had an absolute-
value-type singularity in its derivative at points g where trn (g)- 0. Since we imple-
mented a hybrid quadratic interpolation, linear interpolation line search, refinement
of the point 7 typically consisted of successive linear interpolation.

Occasionally, minima of Iq(s)l not corresponding to q(s)= 0 are computed. This
must occur since we do not assume q(s) changes sign at singular points y(g).
These may be eliminated in the stepsize control (setting of ;k), in the line search, or
after each 37 is located. In our experiments, we chose the conservative method of
analyzing the null space of each H’(37) once has been refined.

It is desirable to compute the singular points accurately. This is because minima
of IIHII over a low-dimensional manifold are computed to obtain tangent directions
leading from , and distinct minima are relatively close together when ] is given
inaccurately. (See the discussion in the next section and Fig. 1.) Thus, the tolerance
in the line search is set according to the accuracy to which q (s) is being computed.

4. Determining arc directions at a bifurcation point. The ansatz and basic struc-
ture of the algorithm employed appear in the introduction and in [11, 4]. Here, we
give a summary, more details, and improvements.

We assume that the component arcs y(s)cH-1(O) are smooth functions of
arclength s; then any such arcs passing through a bifurcation point )7 must have
tangent vectors at y in the null space of H’(). Suppose {v(1), v(k)} is an
orthonormal basis for this null space, and let H be the afline space given by H
{y+j___

k
CjV )[c R}. Let c H be a small region containing in its interior, and

(q)let {m),m 2), ., m } be the locations of the minima of IIHIIIO. Then direction
vectors for arcs intersecting at 7 are given by a subset of {(m i)_ )/[irn._ 111 1 <-

i<-q}.
To proceed, three tasks must be undertaken: (i) determination of an orthonormal

basis for the null space of H’(); (ii) choice of a size and shape for the region ;
and (iii) choice of and execution of a method for finding the minima m () of IIHIll 0.

In the experiments reported here, we form a basis for the null space of H’(])
from the right singular vectors of H’() corresponding to singular values equal to
zero. Less general techniques and exploitation of special structure in H’ can improve
the efficiency of this computation.

The region was chosen here to be a k-ball S of radius ; centered at 3, so
that is without boundary and an unconstrained minimizer can be used. We
parametrize OS in terms of the standard spherical angular coordinates"
{(b,..., b-2, )]-zr/2<-b <_-r/2, 1-<_i <=k-2 and zr _-< 4, -< zr }. The region
[-7r/2, r/2]-2x[-zr, r] was divided into (2p)k- subregions, defined by dividing
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each of the spherical..coordinate intervals into 2p subintervals. The unconstrained
minimizer was then applied (2p)k-1 times, with starts in each subregion.

Choice of the radius 8 requires some thought for numerically difficult problems.
If y(J)= is a bifurcation point, then approximations z. (j/l) to the next iterate y(i/l
will be given by:

z (+) m () y (i) + (m(- y

for some i, 1 <-_i <-_q. Thus, it is important that H’(m (i) be of rank n to within the
computational precision of H’. Define:

:g {y e " [0, ]l,(y) 0}

for 1 _-< ] <-n, where tri(y) is the/’th singular value of H’(y). Then, under appropriate
regularity conditions, /ti is a finite collection of codimension- 1 manifolds in R" [0, 1],
and //i, n-k + l<-f <=n. Also, if there are q’ arcs in H-(0) intersecting at ,
define i,, 1-<]’-< q’, to be the projection of the/’th such arc onto the affine space II
corresponding to the null space of H’()7). Then H’(m (i)) can be made nonsingular
by increasing 8 provided the 4, and the j intersect sufficiently transversally at .

In our experiments, the following test was used to decide nonsingularity of H’.
Suppose the machine can represent m decimal digits, and suppose H is computed by
differences with relative stepsize equal to 10-s, so that H is accurate to approximately
m-s digits. Then, if H’ is computed with forward differences with optimal stepsize,
H’ will be accurate to approximately (m-s)/2 decimal digits. Let/ be the number
of decimal digits accuracy in tr,, where trj is the/’th singular value of H’, 1 <-/" <-n.
then, since IIH’II.--rx, we have

[3 "- (m s /2 logx0 (trx/tr, (m s /2 L t,

where L logx0 or1 and =-log0 tr, (cf. e.g. [22, p. 321]). Since H’ is singular when
tr, 0, H’ will be singular to within the computational precision whenever >-/. Thus,
H’ is considered singular whenever:

(5) l>=(m-s)/4-L/2.

As an additional consideration in choosing 8 large, all arcs emanating from 7
can be detected only when 7 is in the interior of S; this will not be the case if is
given only approximately and 8 is too small; numerically, 7 relatively near OS will
make distinct arcs more difficult to detect (see Fig. 1).

m’3

FIG. 1. Minima of IIHIll aSs are easier to distinguish when the center of Ss is near the bifurcation point.
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On the other hand, i 8 is chosen too large, the arcs intersecting at do not lie
approximately in H. This can cause the surface of IIHII to be "flatter" near the mi

and can also cause corrector iterations starting with rn i to fail. In view of this, the
smallest d; consistent with easy detection of the mi and with H’(m) being nonsingular
should be used.

In our experiments, we initially set 8 equal to the maximum of the minimum
allowable predictor stepsize and n + 1 times er, where er is the relative accuracy to
which has been located. As the m were computed, inequality (5) was checked;
i (5) was false or any i, was replaced by the minimum of M and the maximum
allowable predictor stepsize. After increasing 8, the minimization process was restarted
with 1. We mention that (5) and this process are very conservative, and improve-
ments in eciency are possible.

We have found the simplex method of Nelder and Mead [18] suitable for direct
location of the m. A descent method similar to the method of steepest descent, the
simplex method of Nelder and Mead begins with a starting simplex; this simplex is
then changed one vertex at a time by "reflection", "expansion", and "contraction".
The iteration ceases when the diameter of the resulting simplex has become smaller
than some tolerance ea.

The values of the minimization search accuracy ea which are reasonable to demand
depend upon which 8 is selected, and both ea and 8 depend on the machine accuracy
e and the order of accuracy in the values of H. It can be shown that a tolerance of
ea in the (k- 1)-dimensional parameter space corresponds roughly to a distance of
k-lSea in +. Since the relative accuracy of coordinates of m ")+ cannot
exceed the machine epsilon e, it is prudent to have:

(6) ea >k 1"
In practice, ee is chosen somewhat larger than the right-hand side of (6), since the
computational precision is somewhat larger than e and also since the minimization
is less costly with larger stopping tolerances. In particular, e in (6) may be replaced
by a fraction of the arc-following tolerance. In the tests, ee was automatically doubled
every time a location m( was found such that the scaled magnitude of ]lH(m ()11 was
less than .1 times the corresponding tolerance in the arc-following method, and was
decreased proportionally whenever was increased.

5. Numerical experiments. Here, we present results from several test examples;
our goal is to demonstrate feasibility of the techniques as alternative approaches, to
give an idea of their versatility, to describe the algorithms’ behavior and to point out
possible difficulties.

Five examples were treated. All involve special H of the form

(7) H(x, A) Ag(x) + (1 A)g)(x),
where g :R" - R" and g(0 , R". The continuation method was begun at (0, 0), and
continuation along each individual arc was halted when either the h 1 hyperplane
or h 0 hyperplane was reencountered. The goal of the algorithms was to detect all
bifurcation points and follow all arcs.

In the first four examples,
(8) g(x)=Ax -f(x),

where A is the matrix corresponding to discretization of the boundary value problem

(9) -u" 0; u(0) u(1) 0,
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with central differences and n internal meshpoints, and the ith component ot is
given by

f,(x) x

(x) -x,,Examples 1, 2 and 3 correspond to g(x) as in (8), with g0) defined by: gi
and with n 2, 4 and 7, respectively. In Example 4, we took n 3 and we took g as
in (8), but with g)(x)=-Ax. In the final example, we took n 2, we took g0) to
be the identity function, and we took the components of g to be

g(x) 2x(xx +x)-.Sx, g.(x)=x:(x +x)-.Sx.
(A variant of this appears in [23] in an example of a multiple bifurcation point.)

For the first three examples, it has been shown in [10] that there are exactly n
primary bifurcation points, occurring at

(10) hi 1 rail(1 + mi), 1, 2,. ., n.

Here, mi is the ith eigenvalue of the matrix A and is given by

(11) mi 2(n + 1)211 +cos (izr/(n + 1))]

(cf. [9]). In these examples, the primary bifurcation points are all simple, and the arcs
intersect transversally. Furthermore, it can be shown that tr,(s) is exactly linear
immediately to the left and immediately to the right of each primary bifurcation point,
where s is arclength. Thus, the successive linear interpolation scheme (cf. 3) for
refinement of 7 will give, in theory, exact bifurcation points )7, without necessity of
line searches. However, the primary bifurcation points are spaced unevenly and are
very close together for n large (cf. formulas (10) and (11)). Thus, the stepsize control
scheme near bifurcation points is tested.

Example no.

1.I

0.7

0.6

0.3

0.2

0.1

norm

FIG. 2. Example 1.
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In the fourth example, a single multiple bifurcation point occurs at A 1/2 (cf. [10]),
where H’ equals the zero matrix, and four arcs intersect. Thus, it poses a test for the
direction-finding algorithm in 4.

In the fifth example, the unique primary bifurcation point for A [0, 1] occurs at
A 32-. There, H’ is the zero matrix and three arcs intersect.

The actual computations for Example 1 were straightforward, with no encountered
difficulties. The norm and first coordinate of actual iterates are plotted with respect
to A in Figs. 2 and 3, respectively. Note that the step size on the arcs intersecting at
A 2 becomes small; this is because tr, (s) is decreasing and H’ is singular on these arcs
atA =1.

1.1

0.9

0.7

0.6

0.4

0.3

0.2

Eampl no.

-6 -4 -2 0 2 4 6
xCI)

FIG. 3. Example 1.

The algorithms also performed satisfactorily for Example 2. However, secondary
bifurcations occurred on the arcs intersecting at h2. Also, minima of tr, (s) not corre-
sponding to bifurcation points were detected on the arcs intersecting at h3. See Figs.
4, 5 and 6 for graphs of the iterates.

Example 3 was straightforward, but the algorithms performed a sizable amount
of computation. Numerous minima of tr, not corresponding to bifurcation points were
found.

The fourth example was by far the most difficult. The matrix H’ was nearly
singular in a large region, so proper automatic selection of the radius 8 for S was
important. The hypersurface IIHII(y) seemed, in addition, to have numerous "wrinkles"
near the bifurcation point; though actual tangent directions were computed accurately,
the minimization gave numerous m" not corresponding to arcs Ilnll-0. These
"imposters" were promptly detected when corrector iteration in the arc-following
method failed, but a fine grid (i.e. p large and a large number of starts in the
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EXamlal no. 2
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FZG. 4. Example 2.
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FIG. 5. Example 2.
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FIG. 6. Example 2.
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Example no. 4
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FIG. 8. Example 4.

minimization process) was required. With p 3 (216 minimizations in 3-space), all 7
arcs proceeding away from the bifurcation point were found, but 14 false directions
were also given: Plots are given in Figs. 7, 8 and 9.

The fifth example was perhaps the most straightforward. Here, there is no change
in sign of the determinant of Hx at the bifurcation point on the trivial branch, since
both eigenvalues pass from positive to negative; thus, the special capabilities of the
stepsize control and bifurcation point refinement algorithms mentioned in 3 are
demonstrated (Figs. 10, 11).

As was indicated, the examples reveal behavior ot the following facets of the
algorithms: (i) the efficiency and reliability of deceleration and the "line search" when
the arc-following method approaches and refines the bifurcation point; (ii) the
efficiency and reliability with which directions for arcs intersecting at bifurcation points
are computed, (iii) efficiency and reliability of the acceleration/deceleration scheme
between and past bifurcation points. Performance data with regard to these qualities
is given tor Examples 1 through 5 in Tables 1 through 5, respectively.

The first part of.. each table deals with quality (iii): In the first column, the
coordinates of the intersection of the arc in question with the A 1 hyperplane are
given, while the coordinates of the last bifurcation point on this arc are given in the
second column (BP). The total number of function evaluations required to follow the
arc between these two points is given in the third column (FE). We note that this
phase of the algorithms is extremely reliable; the discussion in [11] is for the most
part valid, although the steps are increased somewhat more slowly here to assure that
biturcation points are not missed.
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FIG. 9. Example 4.
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FIG. 10. Example 5.
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FIG. 11. Example 5.

The second part of each table deals with qualities (i) and (ii). The first and second
columns (labeled BP and PBP, respectively) list the coordinates of the located bifurca-
tion point and the coordinates of the previous bifurcation point (or origin), respectively.
The third and fourth columns (FEP and PITL) give the total number of function
evaluations required to obtain the bifurcation point from the previous one and the
corresponding number of predictor steps, respectively. The final column (FEB) gives
the number of function evaluations required by the minimization process to locate
the m i). Finally, the total number of function evaluations for the entire example, the
total number of arcs intersecting at A 1 and the average number of function evalu-
ations per arc are listed.

In all cases, the arc-following tolerance (ey in [11, Algorithm 2.1]) was set to
10-a, and 8max was set equal to 1. In Examples 1, 2 and 3, p 6 (cf. 4) was adequate;
p 3 was adequate in Examples 4 and 5. The initial predictor step size (80 in [11,
Algorithm 2.1]) at (0, 0) was in all cases set to the minimum 8mino In Examples 1, 2,
4 and 5, 8mi was set to 10-5; in example 6, 8min was set to 10-6. (The minimum
stepsize 8min was judged small enough if it was less than the minimum distance between
bifurcation points divided by 10(2n / 3).) The tolerance ed in the simplex method of
Nelder and Mead was set to max (11711, 1)ey/(108) where 8 is the radius of the ball
S. All other tolerances were set as in [11].

The Fortran programs were run on a Honeywell Multics 68/80 system. The
Fortran programs are in experimental torm, and there were some unnecessary redun-
dant function evaluations, included for convenience in I/O, etc. Thus, the values in
Tables 1 through 5 should be considered somewhat large.
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TABLE 1 (a)

root BP FE

1 (0,0,1) (0, O, .1) 158
2 (3, 3, 1) 556*
3 (-3,-3,1) 556*
4 (-5.2, 5.2, 1) (0, 0, .0357) 385
5 (5.2,-5.2, 1) 377

* H’ was singular at A 1 on these arcs.

TABLE 1 (b)

# BP PBP FEP PITL FEB

1 (0, 0, .0357) (0, 0, 0) 340 219 675
2 (0, 0, .1) (0, 0, .0357) 315 180 180

Total number of function evaluations, 4033. Total number of predictor steps, 1144.
Number of function evaluations per arc, 806.

TABLE 2(a)

root BP FE

1 (0, 0, 0, 0, 1) (0, 0, 0, 0, .0948)
2 (1.83, 3.41, 3.41, 1.83, 1)
3 (- 1.83, -3.41, -3.41, 1.83, 1)
4 (-6.41, -2.3, 2.3, 6.41, 1) (0, 0, 0, 0, .0281)
5 (6.41, 2.3, -2.3, -6.41, 1)
6 (-8.47, 7.34, 7.34,-8.47, 1) (-4.83, 3.62, 3.62,-4.83, .0216)
7 (-8.65, 8.56, .67, -7.23, 1)
8 (-7.23, .67, 8.56, -8.65, 1)
9 (8.47,-7.34,-7.34, 8.47, 1) (4.83,-3.62,-3.62, 4.83, .0216)
10 (7.23, -.67, -8.56, 8.65, 1)
11 (8.65, -8.56, -.67, 7.23, 1)
12 (-8.83, 9.87,-9.87, 8.83, 1) (0, 0, 0, 0, .0109)
13 (8.83,-9.87, 9.87,-8.83, 1)

223
581
588
1706"
1706"
381
475
5O3
408
490
471
745
738

* Local minima of o-, not corresponding to a singular H’ were located on these arcs.

TABLE 2(b)

# BP PBP FEP PITL FEB

1 (0, 0, 0, 0, .0109) (0, 0, 0, 0, 0) 500 303 724
2 (0, 0, 0, 0, .0150) (0, 0, 0, 0, .0109) 265 112 701
3 (0, 0, 0, 0, .0281) (0, 0, 0, 0, .0150) 373 253 643
4 (0, 0, 0, 0, .0948) (0, 0, 0, 0, .0281) 475 262 691
5 (-4.83, 3.61, 3.61, -4.83, .0216) (0, 0, 0, 0, .0150) 1168 198 1186"
6 (4.83, -3.61,-3.61, 4.83, .0216) 1165 198 1192"

Total number of function evaluations, 18,188. Total number of predictor iterations, 3341. Number of
function evaluations per arc, 1399.

* These are secondary bifurcation points.
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TABLE 3(a)

root BP FE

1 (0, 0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 0, .0931) 302
2 (-1.19,-2.34,-3.3,-3.7,-3.3,-2.34,-1.19, 1) 903
3 (1.19, 2.34, 3.3, 3.7, 3.3, 2.34, 1.19, 1) 830
4 (-4.26,-7.31,-4.26, 0, 4.26, 7.31, 4.26, 1) (0, 0, 0, 0, 0, 0, 0, .0260) 1037
5 (4.26, 7.31, 4.26, 0,-4.26,-7.31,-4.26, 1) 1043
6 (-10.1, -4.2, 2.82, 9.49, 2.82, -4.2, -10.1, 1) (0, 0, 0, 0, 0, 0, 0, .0125) 2989*
7 (10.1, 4.2, -2.82, -9.49, -2.82, 4.2, 10.1, 1) 2946*
8 (11.3, 0,-11.3, 0,-11.3, 0, 11.3, 1) (0, 0, 0, 0, 0, 0, 0, .00775) 2265*
9 (-11.3, 0, 11.3, 0,-11.3, 0, 11.3, 0) 1367"
10 (-13.8, 13.7, .0977,-11.8, .0977, 13.7,-13.8, 1) (0, 0, 0, 0, 0,0, 0, .00562) 2969"
11 (13.8, 13.7,-.0977, 11.8,-.0977,-13.7, 13.8, 1) 2947
12 (-14.1, 15.6,-14.1, 0, 14.1, 15.6,-14.1, 1) (0, 0, 0, 0, 0, 0, 0, 00456) 4577"
13 (14.1,-15.6, 14.1, 0,-14.1, 15.6,-14.1, 1) 4577
14 (14.1,-15.8, 15.9,-16, 15.9,-15.8, 14.1, 1) (0, 0, 0, 0, 0, 0, 0, .00404) 2006"
15 (-14, 15.8,-15.9, 16,-15.9, 15.8,-14.1, 1) 1986

* Local minima not corresponding to singular H’ were found on these arcs.
f Due to a too-large tolerance, local minima not corresponding to a singular H’ were identified as

bifurcation points on these arcs’ the minimization process correctly gave only one direction.

TABLE 3(b)

# BP PBP FEP PITL FEB

1 (0, 0, 0, 0, 0, 0, 0, .00404) (0, 0, 0, 0, 0, 0, 0, 0) 878 531 643
2 (0, 0, 0, 0, 0, 0, 0, .00455) (0, 0, 0, 0, 0, 0, 0, .00404) 450 197 617
3 (0, 0, 0, 0, 0, 0, 0, .00561) (0, 0, 0, 0, 0, 0, 0, .00455) 567 278 605
4 (0, 0, 0, 0, 0, 0, 0, .00775) (0, 0, 0, 0, 0, 0, 0, .00561) 611 250 632
5 (0, 0, 0, 0, 0, 0, 0, .0125) (0, 0, 0, 0, 0, 0, 0, .00775) 681 336 649
6 (0, 0, 0, 0, 0, 0, 0, .0260) (0, 0, 0, 0, 0, 0, 0, .0125) 704 365 701
7 (0, 0, 0, 0, 0, 0, 0, .0931) (0, 0, 0, 0, 0, 0, 0, .0260) 768 419 721

Total number of function evaluations 40,467. Total number of predictor steps 8,358. Number of
function evaluations per arc: 809.

TABLE 4(a)

root BP FE

(0, 0, 0, 1) (0, 0, 0, .5) 16
2 (7.05, -7.8, 7.05, 1) 161
3 (2.13, 3.66, 2.13, 1) 156
4 (-7.05, 7.8, 2.13, 1) 161
5 (5.66, 0,-5.66, 1) 160
6 (-5.66, 0, 5.66, 1) 157
7 (-2.13,-3.66,-2.13, 1) 132



GENERAL BIFURCATION TECHNIQUES 67

TABLE 4(b)

# BP PBP FEP PITL FEB

1 (0, 0, 0, .5) (0, 0, 0, 0) 662 437 235,732

Total number of function evaluations, 240,624. (Some function evaluations
occurred while rejecting false directions at the bifurcation point.) Total number of
predictor iterations, 1194. Number of function evaluations per branch, 34,374.

TABLE 5(a)

root BP FE

1 (0, 0, 1) (0, 0, .667) 57
2 (0, .707, 1) 205
3 (.5, 0, 1) 193
4 (0, -.707, 1) 204
5 (-.5, o, 1) 185

TABLE 5(b)

# BP PBP FEP PITL FEB

(0, 0, .667) (0, 0, 0) 468 315 54,492

Total number of function evaluations, 55,804. Total number of predictor steps,
535. Number of function evaluations per arc, 11,160.

6. Summary, conclusions and possible improvements. We have explained various
techniques for locating general bifurcation points and for following all arcs intersecting
at such bifurcation points. These techniques were tried on five test examples.

The test results indicate the acceleration/deceleration scheme ( 3) reliably finds
bifurcation points, regardless of whether there is a change in the determinant of Hx,
yet does not force excessive computation to be done where it is unnecessary. The
efficiency can undoubtedly be further improved with a better choice of multiplication
parameters for increasing and decreasing 8, etc.

The direction-finding algorithm (explained in 4) seemed to work well on simple
bifurcation points (where only two arcs intersect), but comparison with other methods
would be desirable. Larger numbers of function evaluations were required when the
dimension of the null space of H’(37) was greater than 2, but arc directions were
given very accurately, and restarting the arc following method caused no problems.
Perhaps the technique of adjusting the radius of S will allow computation of arc
directions when the arcs intersect tangentially; this needs more investigation.

The excessive numbers of function evaluations in finding the rn i when the
dimension of the null space of H’ is greater than 2 are due partially to the small
tolerance ea used in the minimization routine; additional experiments are necessary
to determine the effects of choosing ea larger. Perhaps a better way of finding all
minima of a function of a small number of variables could be implemented.

There was an intrinsic difficulty in Example 4" numerous minima of IIHII not
corresponding to arcs occurred on OS. This phenomenon needs further study.

As presented above, each predictor-corrector step of the arc-following method
will run in o(n 3) algebraic operations; this is because solution of the system in formula



68 RALPH BAKER KEARFOTT

(4) and a singular value decomposition are both required. Appropriate use of matrix
factorization and updating techniques will allow solution of the system in o(n 2)
operations [24]. Also, it may be possible to find minima of determinants related to
this factorization in place of finding minima of tr,, so that only o(n 2) operations are
required overall in a predictor-corrector step. The special structure of the problem
can also be used to give more accurate H’ without additional computations [24]. This
will be reported on in the future.

Finally, we emphasize that the examples in 5 were meant merely as tests of the
techniques; not much can be said about the underlying differential equation when
using a discretization with n 7.
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Abstract. This paper presents an algorithm for solving linearly constrained, discrete, linear lo approxi-
mation problems which makes use of a penalty linear programming approach. An implementation for small,
dense problems has been prepared and tested against two other codes, one published and the other not.
Results of this testing are given. The paper is concluded with a short summary.
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1. Introduction and formulation. We wish to solve the following problem:
Given a vector c =[cl, c2,’", c,,], an m x n matrix A, an m xp matrix E, an

m q matrix G, a p-vector f and a q-vector h,

minimize

(1.1) subject to Ey f
and Gy >_- h,

where y [y 1, y2, , y,]T is a vector of unknown parameters. We will not be assuming
anything about the nonnegative integers n, m, p or q.

It is assumed that all vectors and matrices are real. None of the matrices A, E,
or G are required to be of full rank--indeed, E and/or G may be vacuous--nor is
it assumed that vectors y satisfying the constraints actually exist, so the problem as
posed is completely general.

Problem (1.1) can be formulated as the linear programming problem:

minimize e[y]
t_y

e A r c

(1.2) subject to E y0 _>_

-E Y

G

and y0=>0,

where yo is a variable representing I[c-Ay[]oo, el is the vector [1, 0]a of dimension
m + 1, i.e. the first unit vector, and e is the n-vector containing a 1 in all components.

Problem (1.2) can be converted to its dual linear programming form"

--t--

’_.3) maximize [ca -cT fa _f h 0 0a] w

Z

SO
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T T 0T 0T 0T 1e e
suujectU:, to

A -A E -E G 0

-t-

W =el0
Z

SO

_S

and t->_0, u->_0, v_>-0, w >_-0, z >_-0, s0>_-0, 0>-s >=0,

where and u are n-vectors, v and w are p-vectors, z is a q-vector, So is a slack
variable, s is an m-vector of artificial variables, and I is the order-m .identity matrix.
The artificial variables st, s2,’’’, s, are added to ensure that the matrix has full row
rank and to give an initial basis.

Recently Bartels [5] has described a penalty linear programming method using
reduced gradient, basis exchange techniques, which is a variant of the piecewise linear
penalty function approach of Conn [9]. In this paper, we describe an algorithm for
solving problem (1.1) by way of applying that approach to (1.3). In 2 we cover the
important issues of [5] with a view to solving (1.3). In 3 we present our algorithm.
In 4 we lay out some preliminary comparisons of this algorithm with one of several
from the literature (for reference) and with one which applies the method of [9]
directly to (1.2). In 5 we give brief comments relating some aspects of our approach
with those of two other methods in the recent literature.

2. The penalty linear programming method. In this section we review the penalty
linear programming method of [5] in a form useful to us. Let be a vector of the
form [c ’T 0T]T, where c’ is an n-vector and 0 is the zero vector of length rn. Let fi
have the form [A’I], where A’ is an m n matrix, and ! is the identity of order m.
Let b be an m-vector, and let x have the form Ix ’T x"T]T, where x’ and x" have n
and m components respectively. The components of x" play the role of artificial
variables. Consider the problem

maximize x
(2.1) subject to Ax b

and x’ -> 0, 0 -> x" ->_ 0.

We note that (1.3) is a special case of this problem.
The method given in [5] solves (2.1) by addressing the related problem:

maximize q(x) =/xgTx + min (0, x)+’ min (0,--xi),
]=

(2.2)
where/, > 0 is sufficiently small and x is restricted to satisfy Ax b.

Throughout this paper Y’ will indicate summations which are to be carried out
only in the range of the artificial variable indices" (n + 1<-i <-n +m). For >0
sufficiently small, an optimal solution x* of (2.2) is also an optimal solution of (2.1).

In [5], Bartels describes the penalty linear programming method for a problem
similar to (2.1), but with general upper and lower bounds on the variables. Since (2.1)
is simpler and we wish to expound upon some ideas involving degeneracy, we include
the following brief discussion for completeness.
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Let A, t, and x be partitioned such that

x =[B NIlXB] and #rx =[ TN][XB],(2.3)
I..JXN L lXN

where B is an m m nonsingular matrix. The columns of A may have to be permuted
to obtain such a submatrix, B, but we shall ignore this detail for the sake of clarity.
In the terminology of the simplex method, B is a basis matrix, and its columns (the
current basic columns of A) are a basis for A. The components ot xB are the basic
variables associated with B. The components of xN are the nonbasic variables, and
the columns of N are the nonbasic columns.

We define xn to be degenerate if it contains at least one variable with value zero,
and define xn to be infeasible if it contains at least one variable with value less than
zero or at least one artificial variable with value greater than zero. We will establish
the following conventions: Initially the basic variables are the rn artificial variables,
B =/, x b, and xN will be set to the zero vector at each step of the solution process.
Furthermore, whenever an artificial variable becomes nonbasic, we will drop it from
the problem. This means that the number of components in xr may change from step
to step during the solution process.

LetAx b andAv=[B oRN][oN] 0, where the vector v is an ascent direction for
p at the point x. Let gr =/x and gn be defined as follows:

/xg, if XBi 0 (any variable),

(2.4) gB,
C’, if x, > 0 (nonartificial variable),
/XtB, + 1 if X, < 0 (any variable),
/XB, 1 if XB, > 0 (artificial variable),

and let zr be the solution to B T
zr gB. It can be shown, for fl > 0 small enough, that

(X --flV)-"(X)’-fl(Slff’S2), where S=(g--’trTN)vV+nonbasiemin (0, Vr) and
$2 .,=o min (0, vn,) +,--o min (0, -vB,). We note that $2 --< 0 and $2 0 if xn is
nondegenerate.

An algorithm for solving (2.2) for a fixed value of tz, in which nondegeneracy is
not assumed, consists of a repetition of the following steps (starting with an initial x
which satisfies Ax b )"

(1) Find v 0 satisfying Av =0 such that qg(X)-l-Sl > (,p (x)(S1 >0) for/ >0
small enough. Optimality occurs if no such v exists.

(2.5) (2) Choose/3 >-0 so as to maximize q (x +/v) =p (x)+/ (Sl + S2) as a func-
tion of/3, or discover that is unbounded.

(3) Replace x by x +/v.

If optimality occurs and x is infeasible, or if it is discovered that is unbounded,
then/x is reduced, and steps 1-3 are repeated, assuming that/ is not negligibly small.
(In a computational sense we will say that/ is negligibly small, if the magnitude of
the computed value/zx is smaller than machine epsilon times the magnitude of the
computed value of (x).) Termination of the maximization process comes when
optimality occurs and xn is feasible (which indicates an optimal solution to (2.1)) or
/z is negligibly small (which indicates that the solution to (2.1) is infeasible or
unbounded).

The above three steps correspond to the following steps in the simplex method"
(1) the selection of a nonbasic column to enter the basis, (2) the selection of a basic
column to leave the basis and (3) the basis exchange step.
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As in the simplex method, it is suitable to restrict the consideration of VN in step
(1) of (2.5) to vectors having only one nonzero component. Let ZN gN-Nrzr be the
reduced cost vector. Suppose ZN is the most out of kilter reduced cost, that is, tr is
an index which provides the maximum"

(2.6) max {max (z), max (-z- 1)}.
ZNi>O ZN<--I

Following the results of [5]" if -1 --<--ZNj --<_0 for all ], then Sl <_-0 for all choices of VN,
and x is a maximizer of 0. Suppose zN. >0 or zN. <-1. Let vN. sgn (zN), vNj 0
for ] #or, and Vn =-VN.B-IN,, where N denotes column r of N. Then S
max {zN.,-zN.- 1} > 0, and the nonbasic vector N, is chosen to enter the basis.
There are two cases to be considered in step (2) of (2.5)"

(a) S + S2 > 0
(2.7) (b) S + S2 <_- 0

which means we can choose./3 > 0,
which means we must choose/3 0.

First suppose S + S2 > 0. Then 0 (x + By) is a piecewise linear function of B with
breakpoints given by the B values -xn,/vn,. The maximum of this piecewise linear
function will be found at one of the positive ratio values. Let k be the number of
these positive ratios. If k 0, then q9 is unbounded. Suppose k _-> 1 and let the positive
ratios be inspected in their nondecreasing numeric order (ties are broken arbitrarily):

0 < t3 () < t3 () <. </3((2.8)
where

for some index i. Let

(1) X (IB) XBi
V

(lB) VBi

(1) / 1 if x) is a nonartificial variable,
2 if x) is an artificial variable.

Then the slope of the piecewise linear function of/3 is ()= $1 + S2 on the interval
0<_-/3-<_/3 (1), and it is t(*)=t(t-a)-a(t)lv) on the interval /3(t)</3</3"+1)= for l=
1, 2,..., k, where/3(k+X) OO. If there exists an satisfying 1 <--l <-_k such that t(l)<=O
and t(/-1)>0, then (x +/3v) is maximized for/3 fl(t), and basic vector Bo is chosen
to leave the basis, where xnp and x are the same variable. If t(k)>0, then is
unbounded.

Now suppose Sx + Sz <_-0. This case can only occur if xn is degenerate. As in the
simplex method with a degenerate basic feasible solution, cycling can occur since
/3 0 and o(x) is not changed. We want to choose a basic variable xnp with value 0
to become nonbasic, where from the definition of Sz.

O J {][xnj 0 and Vn < 0 or artif, var. xn 0 and Vn < 0}.

Let r be the number of indices in J. Suppose the VB’S, where/’J, are ordered such that

Iv >l __> Iv )l __>... __> Iv I,
and variable Xn, =-x) is chosen to become nonbasic where satisfies

i-1

(2.9) S- X [v)l<=0 and $1- Y. [v)l>0.
/=1 /=1

This choice of Xn, is heuristic and does not guarantee that cycling will not occur, but
we have had no problems with this scheme on any loo problem which we have tried.
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We had been using an explicit perturbation method with randomly generated perturba-
tions to resolve degeneracies, but we have found method (2.9) to be easier to code
and to require less storage for record keeping.

The proposed choice of xB, to be used in the case of degeneracy is, in fact,
equivalent to a scheme which attempts to resolve degeneracies by a highly structured
sort of perturbation. Note that if, for/" J, xBj is perturbed by a small positive real
number e, so that xBj e if vn < 0 and xn < 0 and xB -e if vn > 0, then $2 would
become zero. Furthermore, the resulting positive ratios -xnj/vn satisfy

E E E

and these ratios could be inserted in front of those in (2.8). The process of choosing
a value of fl, given above by case (a) of (2.7) and the ensuing paragraph, reduces to
(2.9). Finally, if fl e/Iv )1 maximizes q (x +/3v), then o (x + fly) q (x) + e.

Let fl(-,+l) _lv)l for l= 1, 2,..., r. Then

By using (2.9), cases (a) and (b) of (2.7) can be combined to form the following
loop for choosing basic vector Bo to leave the basis:

(2.11)

:= Sl =-max {zN, -zr- 1}
/:=-r+l
while (t > 0 and -<_ k) do

begin
:= {index of basic variable associated with

if (x, nonzero artif, var.) then := t- lye,
if (t <_-O) then

begin fl := max(3 (, 0); p := end
/:=/+1

end

If no basic index p is found, then unboundedness is indicated. This loop also accommo-
dates the cases in which k 0 and/or r O.

3. A constrained l linear approximation algorithm. In this section, we describe
an algorithm for solving (1.3) using the penalty linear programming method described
in the previous section. Since problem (1.3) is a special case of problem (2.1), the
algorithm of [5] can be used for finding a solution. But, due to the special structure
of A, , and b e as they appear in (1.3), some modifications can be made for the
sake of efficiency.

First we make some definitions and observations, let the columns of A be indexed
(from left to right)"

(3.1)

I ton,
1 down to -n,

n + 1 to n +p,
-(n + 1) down to -(n +p),
n+p+l ton+p+q+m+l.
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Let the vectors 6, g, x, and z be indexed in the same way, where

if xj is basic and xj < 0,
if x is basic, artificial and x > 0,
if xi is nonbasic or xj is basic and xj 0,
or xi is basic, nonartificial and x > 0.

Let A, 6, g, and x be partitioned into

as in (2.3). Consistent with our use of zN in the last section, we define z g ’and regard this vector to be partitioned into

ZN

with z -g-Nzr as before, and with zB gB-Bzr. Let

Ai denote the/’th column of A, 1 <- I/’[ <-- n +p and n +p + 1 <_- ] _<- n +p + q + m + 1,
A denote the/’th column of A, 1 -</" -<_ n,
E denote the ]th column of E, 1 _-</" _-< p,
Gj denote the ]th column of G, 1 _-< ] _-< q.

We note the following facts"

6-i -G" for 1 lil n +p,

A +A_ 2e for 1 <_-i J]--< n,
Aj+A_ =0for n +1 <-[jl<-_n +p,

[]1 and A_ for 1 <_-/" <_- n,(3.2) Aj=
A. -Ai

A/. andA_,_j
-E

for 1 <-/" <-_p,

An+p+i for 1 _<--j _--<q.

r3 r, is an optimal solutionNote that the optimal variables zr* satisfy r* z Ly.j, where
of (1.2). Thus, it makes sense to define [o], as

where [yyo] is the vector of variables in (1.2). Since r a"

that
gB-1 and BxB el, we note

(3.3) T T Tr=r el=g,x=c,x,+ Y x,+ 2’ (-x,)=(x).
xi <z0 x :>0
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Finally, we define the vector r as follows:

ri =/zci-Afzr’ for 1 <_-] _-< n,

rn+j =/xf EfTr’ for 1 -<_] <_-p,
(3.4)

rn+o+ =/xh- GTr’ for 1 <_-] _<-q,

r_i -ri for 1 <- ] <_- n + p.

We will show that the computation of the reduced cost vector z can be simplified
for our problem. Assume, for now, that 0-<_ 7rl -<_ 0.5. Consider the computation of zi,
where xj is a nonbasic variable, and recall that xi may be considered for becoming
basic if zi >0 or zi <-1. Artificial variables are dropped from the problem as they
become nonbasic so they are not considered in the computation of z. Also, the slack
variable does not have to be considered when it becomes nonbasic, since zi--7rl or
-0.5 _-< zj <_-0 for ] n +p + q + 1. So the three cases to be considered are:

(a) 1 -<_ [Jl--< n (equations),
(b) n + 1 -<_ []1 <-- n +p (equality constraints),
(c) n +p + 1 <-/" <_-n +p + q (inequality constraints).

For nonbasic variable xi,

ifn +l<-_l][<-n +p orn +p + l <-] <-_n +p +q.

[We note that r is ri for basic variables xi with nonnegative values where 1 <= [i[ <= n
(refer to (3.4)).]

Case (a). First suppose xi and x_i are both nonbasic variables. Then zi ri-zrx
and z_j =-ri-zr using (3.4). Assume, without loss of generality, that ri >_-0 (since ]
may be positive or negative). Since 7]’1 0.5, it follows that zi _->-z_i- 1 if zj > 0, and

zi >- -0.5 and 0 >_- z_ >- 1 if z <= 0. If (2.6) is used to choose x to become basic, then
x_i will never be chosen. Therefore, we only have to consider xj to become basic if

z > 0 (r > zr).
Now suppose xi is nonbasic and x_i is basic. If x_i->_0, then z_i 0 and zj

-z_i 2rl -2zr or -1 <_-zi _-<0, so xi is not considered for becoming basic. If x_i < 0,
then z_j=r_i-fr+ 1 =0 and zi-2zrl-1 1-2fr_->0, so xi can be considered for
becoming basic.

Case (b). First suppose xi and x_j are both nonbasic variables. Then zi =ri and
z_i -zi. Assume, without loss of generality, that rj _-> 0. We note that zi >-z_.- 1
zi-1, so x_i is not considered for becoming basic, and xj can be considered for
becoming basic if ri > 0. Now suppose xi is nonbasic and x_i is basic. If x_i >_-0, then
z_j 0 and zi 0, so xi is not considered for becoming basic. If x_i < 0, then z_i

r_j + 1 0 and z =-r_i 1, so x. can be considered for becoming basic.
Case (c). Suppose xi is nonbasic. Then zj ri and xi can be considered for becoming

basic if ri > 0 or ri <- 1.
Summarizing these three cases, nonbasic variables xj satisfying one of the following

conditions can be considered for becoming basic"

(3.5)

(i) /’]- ?rl > 0,
(ii) ri:>O,n+l<-[][<=n+porn+p+l<-]<=n+p+q,

(iii) r/<-l, n +p +l<-]<=n +p +q,
(iv) x_i is basic and x_j < 0, 1 <_-]][-< n + p.
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We show that xj and x-i will never be simultaneously basic, assuming 0 -<_ 7r -< 0.5,
by proving the following statement:

(3 6)
If x is chosen to become basic due to (3.5,iv),
then x_j is chosen to become nonbasic using (2.11).

Assume, then, that xj has been chosen to become basic.
First suppose 1 -< I/’] --< n. Then zi 1 27rl > 0, vj 1, and Bvo -fii. Let

B,B2,’" ,B,,+ denote the columns of B and Bk =fi-i. Since 1/2fi,i+1/2f_i=e and
BXB el,

xoB1 +’" + XB.Bk +" + Xo.,+B,.+x-1/2(-

Therefore

and the positive ratios

vm 1 2x,, 1 2x_j
ifi#k,
if/=k,

xo__a, =( 1/2 if # k and x, O,

vo, I -x___ <1/2 ifi=k.
1 2x_

Using (2.11), zi-vz,,=(1-27r1)-(1-2x_)=2(x_-.rr)<O, so x_ is chosen to
become nonbasic.

Now suppose n + 1 -< lil--< n /p, Then zj 1, v 1, and BvB =-fi. Since
A+A_ =0,

0 if/Ck,
vB,= 1 ifi=kwhereBk=fi_j.

The only positive ratio is -x,/vs, =-x_. Using (2.11), z-vn,, =0, so x_ is chosen
to become nonbasic.

Our current algorithm considers only the first three conditions of (3.5) in choosing
a nonbasic variable to become basic, but (3.5,iv) can be added as a special case. If x
is chosen to become basic due to (3.5,iii), then inequality constra;.nt =/"- (n +p) is
satisfied (GSy >-hl), so it is not necessary for xj to become basic. In our algorithm, Ix
is reduced when this occurs to decrease the probability of another x chosen to become
basic due to (3.5,iii) and also to decrease the probability of cycling when xs is
degenerate. Our goal is to arrive at a solution to (1.3) as quickly as possible, not
merely to maximize q for a fixed choice of Ix.

We will now dispense with our assumption that 0-< 7r <-0.5. Since xo remains at
e until the slack variable becomes nonbasic, 7rl 0 if the slack variable is basic, and
zr >0 when the slack variable becomes nonbasic by (3.3). If Ix is too large, then r
may become greater than 0.5. In our algorithm, if zrx > 0.5 then Ix is reduced so that
when B T

zr go is re-solved for 7r, rx <_-0.5. By (3.3), 7rl is reduced when Ix is reduced,
and rl < 0 may result if xs is infeasible. Since zr =q (x) is being maximized, 7r will
increase past 0 again. We note that if 7rl < 0, then (3.6) may not hold for ] such that

As a result of the above discussion, a good initial choice of Ix is one satisfying
llcll--x, due to the computation of gs in (2.4) and since y <-Ilcll implies that
zrl Ixy0<-_ 1. Assuming this initial choice of Ix, decreasing Ix by 1/2 is sufficient whenever
tx has to be reduced.
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The magnitude of/z affects how infeasible xB becomes during the iterations of
the algorithm. Since gB, gN, and zr depend on tz, the magnitude of z in (2.6) depends
on tz. But vn =-vNB-1N, does not depend on/z, so the magnitude of/3 and the
number of basic variables skipped in (2.11) are affected by the magnitude of/z. These
variables become negative for nonartificial variables and nonzero for artificial variables
if/3 > 0. Therefore, if/x is too large unboundedness will occur, and if tz is sufficiently
small xn will not become infeasible.

For problem (1.3), the initial basic variables are the slack variable and the m
artificial variables, and initially xn e is degenerate. The basic solution xn remains
at e 1, although the basic variables change, until the slack variable becomes nonbasic,
since the slack variable is the only variable that has a nonzero value initially. Since
the artificial variables have value 0 initially, a slight modification is made to (2.10) to
allow the artificial variables to become nonbasic earlier, which usually results in fewer
iterations of the algorithm. During the first m iterations,

if xB, is not an artificial variable, x, 0 and v, < 0(3.7) then fl is set to 0 instead of -[v.,[.
The constrained lo linear approximation algorithm using the penalty linear

programming method is summarized below. Input to the algorithm are the matrix
[A E G], the vector [c a- fT h T]r, and the scalars m, n, p, q and

B:=I
XB := e
iter := 0
repeat
{Compute g as in (2.4)}
{Solve B rzr g for
if (zr > 0.5) then

begin/z :=//2; go to TEST end
iter := iter + 1
for/" := 1 until n do

if {xi and x_i are nonbasic} then zi := [g-Azr’l
for ] := n + 1 until n +p do

if {xi and x_i are nonbasic} then zi := [gi-Er_.zr’l
for/" := n +p + 1 until n +p + q do

if {xi is nonbasic} then zi := gi- G_._pzr’
{Find nonbasic index tr using (2.6)}
if {no tr found} then

(3.8) begin
if {xB is infeasible} then :=
go to TEST

end
if (tr <= n and g ATr < 0) or

(n + 1 -<_ cr <-_ n +p and g, Ef_.Tr’ < 0) then tr :=
if (tr > n +p and z. <-1) then/x :=/x/2
v, := sgn (z,)
{Solve Bvn =-vA, for vn}
{Compute the B’s as in (2.10)
with modification (3.7) if iter <- m }
{Execute (2.11) to find basic index p }
if {no p found} then
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begin/ ".=/./2; go to TEST end
{Set xB := xB +/JvB and x :=/v}
{Replace Ap in B by

TEST:
until {x is optimal for (1.3)} or {/ is too small}

If there exists a solution to (1.1), (1.2), (1.3) then this algorithm will find an
optimal solution [o.]= r*/ after a finite number of iterations (usually O(m) iter-
ations). If y o* 0, then termination should occur after at most m + 1 iterations. If the
matrix [A E G] has rank k < m, then m-k artificial variables will remain basic
with value 0, the corresponding m -k components of y will have value 0, and y* will
likely be a nonunique solution. If problem (1.3) does not have a solution, then this
algorithm will detect unboundedness or infeasibility (/. is negligibly small).

4. Numerical results. An experimental FORTRAN subroutine has been pre-
pared to implement the method described here for small, dense problems. To strive
for numerical stability, the code maintains the basis matrix B in LU-factored form
and updates this form using Gauss elimination with partial pivoting after each exchange
of a basic for a nonbasic variable.

This code was tested against the implementation given in [4] for the Barrodale-
Phillips algorithm [3] and against an unpublished code which had been written by
R. H. Bartels and A. R. Conn to investigate the applicability of using Conn’s linear
programming method, presented in [9], on the lv problem in form (1.2). The Bar-
rodale-Phillips code handles only the uncontrained version of (1.1), though nothing
would prevent it from being extended to handle constraints, and it uses a compressed
tableau version of the simplex method on a linear programming equivalent to (1.1)
which corresponds roughly to our (1.3). The Bartels-Conn code was not constructed
to handle equality constraints, though nothing would prevent its extension to this
case. It maintains a separate matrix of active equation/constraint data in QR-factored
form which it updates through the use of "slow" Givens transformations.

The method of this paper and the Bartels-Conn method represent the two most
straightforward approaches to solving (1.1) using piecewise linear exact penalty func-
tions joined with some linear programming formulation of the loo problem. It was of
interest to us to see which linear programming formulation would be most effective
for use with the penalty function approach, the "direct" formulation (1.2) or the
"dual" formulation (1.3). The algorithm by Barrodale and Phillips was included as a
reference, since it appears to be a reasonably effective general purpose method
appearing in the literature for small dense problems, and its code is easily accessible.
These computational results are only intended to be preliminary and to support the
overall impression that (a) the proposed method shows no obvious disadvantages to
the standard approaches, and (b) with respect to the two obvious penalty approaches
to solving (1.1)--namely via [5] applied to (1.3) or via [9] applied to (1.2)rathe
proposed method seems to be currently the more promising.

We have used the method described in [7] to generate random test problems
with known solutions for comparing the number of iterations and central processor
times used by these three programs. Some of the problems were purely random; that
is, the elements of the matrix A were drawn directly from a random number generator.
Others of the problems were randomly generated data fitting problems; that is, the
elements of the matrix A were derived from random evaluations of a Chebyshev
system of basis functions ql(x),’’’, q, (x). The types of random problems included
some which were unconstrained and of full rank, some which were unconstrained and
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rank deficient, some which had constraints and were full rank and some which were
constrained but of deficient rank. Finally, we included several nonrandom problems
which involved determining the best polynomial appoximations to various sets of
given data. Most of these last problems were taken from [3].

From now on, we refer to the three codes by their FORTRAN subroutine names.
Our algorithm is called CLINF, the algorithm by Barrodale and Phillips is called
CHEB, and the algorithm by Bartels and Corm is called CL8. The computations were
performed in double precision (18 decimal digits) on a Honeywell 66/60. For sub-
routines CLINF and CHEB, there is a tolerance parameter used to indicate zero
equivalence. This parameter was set to 10-17. The machine epsilon is 0.217 10-18.
For subroutine CL8, there is no tolerance parameter and the machine epsilon is used
to indicate zero equivalence.

The results from the random unconstrained problems are given in Table 4.1. The
elements of matrix A and loo solution [t,l are of magnitude O(1) An initial value of*_i

/z 1.0 was used for CLINF.

TABLE 4.1
Average number of iterations and average CPU time in milliseconds over 12 problems ]or each value

o]m (n 10m).

CLINF CHEB CL8
m rank iterations time iterations time iterations time

5 5 14.6 302 12.9 268 11.4 600
10 10 32.3 1617 31.1 1705 24.6 2627
15 15 56.3 5055 56.3 5791 41.9 7214
5 4 11.9 241 11.6 233 7.8 433
10 8 28.2 1369 23.6 1222 19.0 2095
15 12 43.0 3749 46.9 4382

For the full rank problems, the accuracy of the solutions obtained from the three
subroutines was comparable. For the rank deficient problems, less than 12 problems
were included in the average (m =5: 11 problems; m 10: 9 problems; m
15" 7 problems) since the subroutines did not obtain the correct solutions for some
of the problems. Specifically, CLINF did not obtain the correct solution for 1 problem
(for m 10), CHEB did not obtain the correct solutions for 9 problems (1 for m 5,
3 for rn 10, and 5 for m 15), and CL8 did not obtain the correct solutions for 11
problems (1 for m 10 and 10 for m 15). For these problems, the subroutines
determined the ranks to be larger than the correct ranks and the computed solutions
had elements of O(1016).

The results from the random constrained problems are given in Table 4.2. (Recall
that CHEB solves only unconstrained problems and CL8 solves constrained problems
with inequality constraints only.) The elements of [A G] and [y.j are of magnitude
O(1). An initial value of/x 1.0 was used for CLINF. For the rank deficient problems
with m 10, 8 problems were included in the average, since CL8 did not obtain the
correct solutions for 4 problems.

In Table 4.3, we show for m rank 10 that the number of iterations for CL8
depends upon the magnitude of y o*. The arrays A and y* in these problems are the
same as those from Table 4.1; only yo* has been changed. An initial value of tx 1.0
was used for CLINF.
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TABLE 4.2
Average number of iterations and average CPU time in milliseconds over

12 problems ]’or each value ofm (n 10m, p =0, q m)

CLINF CL8
m rank iterations time iterations time

5 5 15.4 339 13.3 699
10 10 38.3 2013 33.9 3667
15 15 65.2 6190 52.6 9313
5 3 10.3 214 9.3 527

10 7 20.9 1069 24.9 2777

TABLE 4.3
Average number of iterations and average CPU time in milliseconds over 12 problems for each

order of magnitude of y’ (m =rank 10)

CLINF CHEB CL8
y 0* iterations time iterations time iterations time

O(102) 32.5 1644 28.3 1545 11.1 1198
O 101) 30.2 1542 29.8 1637 15.7 1694
O(10) 32.3 1617 31.1 1705 24.6 2627
O(10-1) 37.3 1850 31.7 1731 29.5 3119
O 10-2) 37.6 1859 34.1 1855 33.9 3644

The number of iterations for CLINF varies with different initial values of/. The
variation follows no detectable pattern, but any reasonable initial value of/z will give
a correct solution. We have found no a priori way of selecting the initial value of tz
which leads to the fewest number of iterations.

The remainder of the tests we carried out were derived mainly from some data
fitting problems given in [3]. They require the best polynomial loo approximation of
degree m 1 to various functions sampled over a finite set of values tj. In each problem,
n 101 data points (tj, ci) were generated from some given function f(t), where c
represents f(ti), using 0(0.01)1. To test the behavior of the algorithms under study,
we perturbed ci f(ti) by random numbers in the interval I-a, a ]. That is, for 1 -</" <-
101 tj 0.01(]- 1) and cj=f(t)+rj where -a _-<r _-<a. By doing this we could adjust
the norm of y 0* to be O(c) in magnitude. The results are given in Tables 4.4 and 4.5.
The five functions f(t) used in Table 4.4 are x/1 + t, sin(zrt/2), exp t, log (1 +t), and
exp(-t2/2). The function used in Table 4.5, with five different sets of parameters
{a,b}, is

Ia fr 0-< t-<-a’
f(t) for a -< =< b,

[(1-t)/(1-b) forb <_-t_-<l.

For CLINF, an initial value of ix 1.0 was used for the problems from the first four
rows of Table 4.4, and Ix 0.0001 was used for the other problems. The same solutions
were obtained from the three subroutines for all problems.

Most of the problems in which an initial value of Ix --0.0001 was used for CLINF
were those in which the components of y* had magnitudes of O(103) or O(10n). If
an initial value of tz 1.0 is used for these problems, then the number of iterations
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TABLE 4.4
Average number of iterations and average CPU time in milliseconds over 5 problems ]’or each value of m

(n 101)

CLINF CHEB CL8
m c Y 0* iterations time iterations time iterations time

5 0 O(10-’) 13.6 415 11.4 480 14.8 1447
6 0 O(10-5 14.6 507 12.4 564 30.8 2900
7 0 O(10-6 19.0 734 13.8 652 29.4 2959
8 0 O(10-7 19.6 835 15.4 787 36.6 3781
8 0.01 O(10-2) 21.6 906 18.2 915 20.2 2079
8 0.1 O(10-1 19.8 835 17.4 876 16.2 1641

which CLINF takes is much greater. We observed in such cases that the slack variable
became nonbasic early while some artificial variables became nonzero and remained
basic until/x was reduced to about 10-3 or 10-4. In all events, IlY*II O(10k) implied
that/x -O(10-k) was needed by CLINF (at least for k 3 or 4). There is a reason
for this. The components of y* represent the optimal dual variables to problem (1.3),
which we are solving by use of the penalty function given in (2.2). The theory behind
this penalty approach (referred to in [9]) tells us that a suitable value of/x, one which
would not have to be changed by CLINF, would be

1= max, lY,*I

TABLE 4.5

Average number of iterations and average CPU time in milliseconds over 5 problems for each value o[ o
(m =8, n 101)

CLINF CHEB CL8
iterations time iterations time iterations time

0 O(10-1) 19.0 806 15.4 789 38.0 3892
0.01 0(10-1 17.2 729 14.8 763 23.2 2329
0.1 0(10) 21.2 898 18.8 943 18.8 1885

It is just this fact which is making its appearance in our observations.
The numerical results presented in this section show, for the test examples at

least, that the number of iterations and CPU time for CLINF, using a reasonable
initial choice of/x, is comparable to that for CHEB (the CPU time per iteration for
CLINF is slightly less than that for CHEB). The number of iterations for CL8 depends
upon the magnitude of the l error y0* and the "smoothness" of the vector c. This
dependence works very much to the detriment of CL8, and it was decidedly inferior
to CHEB and CLINF on many problems.

5. Summary and selected turther comparisons. The algorithm which has been
presented compares well, for unconstrained problems, with the one proposed by
Barrodale and Philips [3], [4]. It represents an extension in functionality over that
algorithm in that it has been constructed to handle linear constraints. The algorithm
of this paper represents one natural approach (via the "dual" linear programming
formulation, (1.3), to the l problem) for applying the material in [5], [9] to solve
(1.1). The other approach (via the "primal" formulation, (1.2)) is clearly inferior
without further developments, except possibly for large residual problems.
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We have looked at some other algorithms for linear l data fitting which appear
in the recent literature, comparing them from a mathemetical standpoint rather than
a computational one. Three of interest are [1], [2], [8], and we include some observa-
tions below.

Armstrong and Kung [2] propose an algorithm with much the flavor of the one
we have just described, though it is confined to the unconstrained case. Their discussion
takes place in "primal space", i.e., in terms of the variables y0, y (A and fl respectively
in their terminology). They consider problem (1.2)--with E, G vacuous--in an interval-
constraints format:

T" yo"minimize e,
(5.)

subjectto c-eyo <-Ay <-c /eyo,

and they deal with a basis of the form

(5.2) [1, ..., 1 1 ..., 1 ],ail air dit+l " aim+l

and with a corresponding reference subsystem. We would deal with the same reference
subsystem via the basis:

(5.3) [1, ..., 1 1 ..., 1 ],ail, ", ai, -ai,+l, ", --aim+l

and via the dual variables xa, , x,, x,+l, ",x.. In effect, this means that we work
with the dual to (5.1), having split interval constraints into their positive and negative
components.

TIf xij > 0(1 <_-] <_-l), then Armstrong and Kung would observe that y0- aijy-c,
i.e., that the ijth constraint of their reference subproblem is at its upper bound. If
x < 0(1-<_f <_-1), then the ijth constraint of the reference subproblem is at its lower
bound. The reverse (">0"-"<0" on "upper" and "lower") would be true for
l+l<=]<=m.

Armstrong and Kung choose a nonreference, violated constraint from (5.1) at
each step, while our criterion for selecting a nonbasic component of the problem is
that yo -> la[y -cl is violated, which amounts to the same thing. We proceed to change
x so as to bring a into our reference system (basis) at the expense of some a, which
will be removed. Implicitly our action will cause y0, y to change, though we do not
need to compute precisely how. Armstrong and Kung, on the other hand, determine
how to change yo, y, which implicitly causes a change in the dual variables x. Armstrong
and Kung do not need to compute precisely what this change in x will be. As we
change x, certain components of x may cross zero, which implicitly signals that an
interval constraint c- y0 -< aTY <= Cj + Y0 has gone from one bound to another in the
primal space. Armstrong and Kung account for this in the same manner as we do.
Consequently, our line search (2.11) bears the character of step 4 through step 7 of
their algorithm given in [2]. It is tempting to conjecture that our algorithm in the
unconstrained case is effectively the one given by Armstrong and Kung, but with
computations translated into the dual space. If this is so, our algorithm constitutes an
extension of theirs to the constrained linear l data fitting problem.

In [1] Abdelmalek considers the special case of (1.1) given by:

minimize IIc --ATylI
(5.4)

subject to h --< A Ty _< h2,
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that is,

(5.5)

where

minimize IIc -A rylloo
subject to Gry >= h,

G --AT and h
-h2

This is converted to a format equivalent to (1.3)"

maximize [c7" -c7" hiT h]x

[ eT 0T 0T ](5.6) subject to
-A A -A x=el

and x 0,

and this is then considered in the compressed format"

maximize trx
subject to fi, rx el

and x _<- 0.

Then, with respect to a suitable indexing scheme for A, Abdelmalek lays out relation-
ships and makes observations similar (but not identical) to those we have laid out
in3.

The discussion in 1] predates the work on penalty approaches to linear program-
ming [5], [9]; hence our formulas in 3 constitute the sort of generalization over the
material in [1, 2] that [5] constitutes over the classical simplex method. Similarly,
the algorithm given in [1] constitutes the classical simplex method adjusted to the
special structure of (5.6). Hence, Abdelmalek’s algorithm requires a separate phase
1 and phase 2, and it is restricted to vertex-to-adjacent-vertex transit. In contrast,
our algorithm (and that of [2]) are single-phase and make use of a line search to pass
several vertices at each step.

The method of Barrodale and Phillips, in fact, also proceeds from the formulation
of (1.1)mwithout constraintsmin the format of (1.3). It, too, applies classical simplex
techniques to the resulting linear program in a phase-1/phase-2 and vertex-to-vertex
fashion. The method of [2] is reported to be somewhat faster than that of [3], [4],
and we take heart at the similarities noted above between that approach and our own.

In [8] Cline proposes an algoithm for the unconstrained version of (1.1). A brief
development of Cline’s method is to be found in [6] .which begins with the analog
of (1.2):

minimize er[y]Y
(5.7)

subjectto [: _]_>-[_],
and compresses this linear problem into a piecewise linear problem of one lower
dimension by expressing the variable yo as a function of y. It is noted in [6] that
Cline’s method does not appear to be competitive with the method of [3]. The evidence
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is empirical, but the behavior of Cline’s method is reminiscent of that which we have
observed for CL8--it requires a great many more iterations on some data-fitting
problems than do "direct" (or "dual") approaches.
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A DIAGONAL MODIFICATION FOR THE DOWNDATING ALGORITHM*

ACHIYA DAX?

Abstract. Let U be an n x n upper-triangular matrix with unit diagonal, D an n x n diagonal positive-
definite matrix and z an n-vector. The downdating problem is to compute the new triangular factors of
the matrix Ua’DU-zzr. A common way to start the downdating process is to compute a vector y such
that UrDU-zzr= UT(D-yyT)U. Ify L y= l there are many suitable ways to carry out the downdating.
This paper is concerned with the case when, theoretically, UTDU-zzr should be positive (semi) definite
but, because of computer rounding errors, yTD-ly> 1. In this case the modified algorithm replaces D by
D + T where T diag {h, ",t,} solves the following problem:

minimize ti
i=1

subject to: ya,(D + T)-y 1 and ti _-> 0 for 1, , n.

The computation of T is simple and needs only a few operations. The elements of T satisfy Y’. t -<_ n IX
where A is the negative eigenvalue of D _yyr. This ensures that the correction is not much larger than
necessary. The case when U has fewer rows than columns is also discussed.

Key words, symmetric factorization, downdating algorithms

1. The downdating problem. Let U be an m n UTUD matrix and let D be an
m m DPD matrix. (UTUD stands for upper triangular with unit diagonal while DPD
stands for diagonal positive definite). Let z be an n-vector. The downdating problem
is to compute the new triangular factors of UTDU -zzT. In other words we are looking
for a new m x n UTUD matrix, U* say, and a new m m DPD matrix, D* say, such
that

(1.1) U*rD*U* UTDU-zzT.
In this paper we consider the case when UrDU- zzT has a negative eigenvalue. It is
assumed that with exact arithmetic uTDu-zzT would be positive (semi) definite and
that the negative eigenvalue is due to rounding errors in previous computations. This
problem arises in least squares calculations and also in some active set algorithms for
quadratic programming (see Powell (1980)). Our aim is, therefore, to construct a
factorization of the form

(1.2) U*TD*U*’- UTDU-zzT +E,
where IIEII, the Frobenius norm of the correction matrix, is as small as possible. Let
rl denote the negative eigenvalue of UrDU-zz" and let v, [Iv[12 1, denote the
corresponding eigenvector. Then the rank-one matrix E =-r/vv

T solves the following
problem: Minimize IIEII whereE is such that UrDU-zza +E is a positive semidefinite
matrix. In practice, however, the computation of r/ and v is usually too expensive.
Thus, instead of looking for the "minimal" correction, we only require that IIEII is
not much larger than 17 [.

Let e denote the relative precision of the computer arithmetic. The magnitude
of the rounding errors in the basic downdating process is expected to be about
elIUDUII. (See Stewart (1979).) Therefore there is no need to insist that IIEII will
be smaller than this quantity.

* Received by the editors September 18, 1981, and in revised form April 1, 1982.
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At first we shall consider the case when U has an equal number of rows and
columns, i.e., when m n. In this case it is possible to compute an n-vector y such that

(1.3) UTDU -1,1,
T UT(D --yyT) U.

If yrD-y<= 1 then there are many suitable ways to carry out the downdating. (See
Gill et al. (1974) and Fletcher and Powell (1974) for instance.) Difficulties arise when
yrD-y > 1, i.e., when UrDU-zz has a negative eigenvalue. Gill and Murray (1972)
suggested that in this case the algorithm can be modified in one of the following ways:

2yTD-ty1) y can be replaced by ay where a is a parameter such that a < 1, or:
2) The size of the diagonal elements of D can be increased.

The "composite t-method" of Fletcher and Powell (1974) follows the first approach
2yTD-yand sets a such that a 1-e. Later Powell (1978), (1981) observed that this

approach may make IIEIIF unnecessarily large. Instead he suggested computing the
triangular factors of uTDU--zzr +xxT, where XX

T is a small rank-one matrix that
makes it positive definite. (A brief description of Powell’s method is given in the last
section.)

The new algorithm follows the second approach of Gill and Murray. We replace
D by D + T, where T diag {t,. ., t,} solves the following problem:

minimize t
i=1

(1.4)
subject to: yT(D + T)-ly 1 and ti _-> 0 for 1,. , n.

A simple way to solve this problem is given in 3. It is shown there that the elements
of T satisfy

i=1

where h is the negative eigenvalue of D-yyr. Section 4 gives the details of the basic
downdating process. In 5 we show that

(1.6)

and that (1.5) together with (1.6) yield the bound

(1.7) IIuTTuII
In other words, if IIuIl IIu- ll is not much larger than one, then the norm of the
correction matrix is not much larger than its least value.

The case when U has fewer rows than columns, i.e., when m < n, is discussed in
6. Here it happens quite often, because of rounding errors, that the overdetermined

system

(1.8) uTy =Z

has no solution. We give a simple way to overcome this difficulty. Apart from this
point the other parts of the algorithm are almost unchanged. Thus in practice the two
cases are easily combined into one algorithm.

Solving (1.4) is not the only way to compute a diagonal matrix T such that
D + T-yyT is positive semidefinite. This and other aspects of the downdating problem
are briefly discussed in 7.



DIAGONAL MODIFICATION FOR DOWNDATING ALGORITHM 87. The modified algorithm. In this section we describe the algorithm when m n.
The algorithm is composed of the following steps"

Step A:
Step B"

Step C:

Solve the linear system UTy z.
Compute tr Y.n Y/2/di.i=1

If tr > 1 skip to step C; otherwise we have

U DU-zzr 0
where/ diag {dl,. ", d,, 1}, (y 1,. ., y,, o)r, P (1 or) a/z and
U is obtained from U by adding a row of zeros. Now the method of
4 is used to transform T(/ T) into U*TD*U*.

Solve (1.4), then use the method of 4 to transform UT(D + T-yyT)u
into U*TD*U*. (Here U* has only n- 1 rows.)

3. The minimization problem. In this section we give a simple method for solving
the following problem:

minimize ti
i=1

subject to" ti>-0 for i= 1,.. ,n and i-- Y/(di+ti) 1.

The parameters yi and di are given. It is assumed that di > 0 for 1, , n and

i/di>l.
i=1

Let t*=(t*,..., t,*)T denote the desired solution of (3.1). Then, since t* S0, the
gradients of the constraints which are active at t* are linearly independent. Hence
the necessary conditions for an optimal point imply that t* must satisfy

i=1,. .,n.

(0 and hi, 1,..., n, are the Lagrange multipliers corresponding to the equality
and inequality constraints of (3.1).) It follows therefore that if t* >0 then hi-0 and
oyE/(di / t/*)2= 1. This means that 0 >0. With the definition

=(1/0)1/2

the above relations imply that if ly, I/d, --< tz then t* 0, and if lYi[/di > Id, then lYi[/(di +
t/*) tz. Thus, the solution is straightforward once tz is known.

For simplicity we shall assume now that the variables are ordered so that lyx[/dl <-

<--ly.I/d.. Then, in order to compute/x, define
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With this notation it is easy to verify that if ’/’k >0 then tz <lYkl/dk, and if ’/’k 0 then
Ix >= lYkl/dk. This way one can easily find the index k for which lyl/d --<
This means that t/* 0 for 1, ., k and t* > 0 for k + 1, , n. Furthermore,
/x and t* must satisfy

fori=k+l,...,n,

and

Hence

which gives the value

trk +/Zpk 0,

The required solution is, therefore,

0t.*,=
lyil/tx-di

fori 1, , k,
for =k +1, , n.

(Further, if z >0 for 1,..., n-l, then t*i =]ylpo-di for 1,..., n.) We sum
up the results by presenting a complete algorithm for solving (3.1)"

a) Preliminary preparations’
1) Set : [yl/d for 1,..., n.
2) Interchange the variables so that n max {:j;/" 1, , n }.
3) Set pn 0 and tr, ,= ]yi]:- 1.

b) For k n 1, n -2,. , 1 do as follows"
1) Interchange the variables so that :k max {:j; ] 1,..., k}.
2) Set pk=lyk+l+Pk+l,

’k =trk + kPk.
3) If ’ --<_ 0 skip to d).

c) Set po=pl+lyl[, and t* lY,[po-d, for 1,..., n.
Reverse the effects of the interchanges and terminate.

d) Set t* =0 for 1,. ., k, u =--pk/trk and t* vlyi I-d, for k +1,.
Reverse the effects of the interchanges and terminate.

The above algorithm needs fewer than 1/2n 2 comparisons. The number of multiplica-
tions and divisions is fewer than 5n. Fortunately, when this algorithm is used by the
downdating algorithm then only a few of the numbers t*, t2*,’", t* are usually
nonzero (see Dax (1981)). In such a case the amount of work is, of course, much
smaller than the above figures.

We shall finish this section by giving upper and lower bounds on the elements
of t*. Let h denote the negative eigenvalue of D _yyT- where D =diag {dl,’’’, d,}



DIAGONAL MODIFICATION FOR DOWNDATING ALGORITHM 89

and y (yx, , y,)r. Let u denote the corresponding unit eigenvector, i.e., uru 1
and (D -yyT,)u A u. Then A and u also satisfy

u (D AI)-y(yT,u)
and

Ty (D AI)-ly 1.

In other words, A is the only negative root of the equation
2

Yi
i=1 d-A =1"

The last equality means that ([A I, [A I,""", [A I)7" is a feasible point of the minimization
problem (3.1). Hence it follows that

(3.2) . 11
i=1

and
1/2

(3.3) ( t/.2) _--< t/* <--nlA I.
i=1

In order to derive a lower bound note that
2

is a monotonic decreasing function in the interval [0, o). Hence the inequality
2 2 2

i=l dilA[ i=1 di’t i=1 di+tmax

where

implies that

tmax max {t/* li 1, , n }

(3.4) [AI t*max.
Therefore

(3.5) Ihl-<- ti <-nlAI.
i=1

4. The basic downdating process. Let U be an m x n UTUD matrix, D an m x m
DPD matrix, and y an m-vector such that yT,D-ly 1. In this section we describe one
of the basic ways to compute an (m- 1) n UTUD matrix, U* say, and an (m- 1)
(m 1) DPD matrix, D* say, that satisfy

UT, (D -yyT,)U U*rD*U*.

The method is due to Gill et al. (1974). It uses an m m orthogonal matrix, Q, such
that

QD-/2y e,..,
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where e. is the mth column of the m m unit matrix. Let V denote the (m- 1)x n
matrix which is composed of the first m- 1 rows of QD 1/2U. Then Q is constructed
such that V is an upper trapezoidal matrix. These properties of Q yield the relations

UT(D _yyT)u uTD1/aQT(I T-e.e)OD /2U-- vTv.
Hence U* and D* are given by the equality

D*I/Eu*= V.

In practice Q is a product of m-1 Givens rotations. At the th step, i-
ra 1, m 2, , 1, the ith and the m th rows of both D 1/2(D-y) and D/2U are
multiplied from the left by a Givens rotation which annihilates the th component of
D/2(D-ly).

The use of DI/2(D-y) instead of D-I/2y enables us to carry out the Givens
transformations without square roots (see Gentleman (1973)). This way the ith step
needs only 3(n- + 2) multiplications and divisions. The total number of multiplica-
tions and divisions is, therefore, m2 + 3m (n m) + O(m).

5. Error analysis. In this section we shall follow the notations of 2. If cr _-< 1
then the new algorithm coincides with the downdating algorithm studied by Stewart
(1979). (The only difference is that Stewart considers Givens transformations that use
square roots.) If cr > 1, the new algorithm replaces D by D + T and then continues
as before. The aim of this section is, therefore, to impose a bound on the size of the
correction matrix UTTU. The main tool of our analysis is the following lemma.

LEMMA. Let G be an m m symmetric matrix with eigenvalues 2’’",,_ >-,, O, ,-1 > 0 but ,, may be negative. Let R be an m n matrix and let S
denote the m m matrix which is composed of the first m columns of R. Assume that
S is an invertible matrix and let u >-u2 >-"" >= u, denote the nonzero eigenvalues of
R TGR. Then

Proof. First consider the following minimal correction problem" minimize IIEII,
where E is such that R TGR +E is a symmetric positive semidefinite matrix of rank
m 1. The optimal E is the rank-one matrix -u,yyr where y is a unit eigenvector of
R TGR that corresponds to u,. Since y is an eigenvector of R rGR there exists an
m-vector w such that

Hence

RTw=y.

w=S-T,
where is composed of the first m components of y. Note that the equality

R ’GR v.,yyT R r(G v.wwa’)R
implies that G- v.ww is a symmetric positive semidefinite matrix of rank m- 1.
Now let us look again on the above minimal correction problem but with G replacing
R TGR. The solution of the new problem is the rank-one matrix -e,.xxr where x is
a unit eigenvector of G which corresponds to :,.. This gives

so the lemma is proved. Q.E.D.
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Let us now derive a bound on IIUTTU[IF. As before let r/ denote the negative
eigenvalue of UTDU-zzr and let A denote the negative eigenvalue of D -yyr. From
the basic properties of matrix norms we know that

IIuTTuII IIUII=IITIIIIUII=.
In 3 we have proved that

while the last lemma implies that

This yields the bound

IITII -< n I1

IIuTTuII <= n IA [llull== n [, IIIullllu-ll==.

6. The case m < n. In this case the modified algorithm is carried out as follows"
Step A" Firstly solve the linear system

VTy =b
where the matrix V is composed of the first tn columns of U and the vector b is
composed of the first m components of z. Then compute the residual vector

r c WT

The matrix W is composed of the last n -m columns of U while c is composed from
the last n m components of z. The components of r are denoted as r,/" m + 1, , n.

Step B" Interchange columns, if necessary, so that

Ir.+l max ([rjl; ] m + 1,..., n}.

If Ir,+ll<=e max {di;i= 1,..., m}, which is unlikely because of the rounding errors,
we treat it as zero. In this case branch to step B of 2. (But use m instead of n.)
Otherwise we have the relation

uTDU--zzT OT(I --T)O
where/ diag {d1, , d,,, .0}, (y , , y,,, r,, / 1)L and is an (m + 1) x n UTUD
matrix. The first m rows of U are those of U while the last row is

(0, 0,..., O, 1, r//r,+, r,,+3/r,,+l, r,/rm+x).
2Step C" Define y,+ rm+x and d,+ r,,+. Then solve (3.1) where m + 1 replaces

n. The solution of (3.1) is denoted as "- diag {tx,.’’, tm+}. Finally use the method
of 4 to transform Or(/ +_T)O into the desired form of U*TD*U*.

The derivation of a bound on the correction matrix is done exactly as before.
This yields the inequality

(6.1) 110 7 011 -< (m +

where
Although the bounds (5.1) and (6.1) are similar, numerical experiments show

that for m < n the stability of the algorithm is slightly less satisfactory. It is possible,
however, to improve the algorithm by using an additional procedure that reduces the
norm of the correction matrix. This routine needs only O(n) operations and helps
greatly to slow down the build up of errors. (See Dax (1981).)
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7. Discussion. For m n the new algorithm is a simple extension of the standard
downdating scheme. The only difference is that if yaD-Xy> 1 then D is replaced by
D + T where T solves (1.4). Solving (1.4) is not the only suitable way to compute a
diagonal correction. Let uS, 1, , n, denote the ith row of U. Then the correction
matrix satisfies

F i=1 i=1

where

w,- I1 ,11=.
These relations imply that it is probably better to minimize i= tw 2 instead of Y,=I t.
Hence another way to compute T is to solve the following problem:

minimize Y, tiw
i=1

(7.1)
subject to: yT(D + T)-y 1 and t ->_ 0 for 1, , n.

The algorithm for solving (7.1) is almost identical to that for solving (1.4). The
solution of (7.1) satisfies

(7.2)
i=1 i=1

Therefore, since IIuIl< nlluIl, (7.2) is a better bound than (5.1). The price paid for
this advantage is the extra 1/2n 2 multiplications that are needed to compute the w’s.

Another way to reduce the bound on the correction matrix is to minimize IITII.
This way T solves the following problem:

minimize . t/2
i=1

(7.3)
subject to" yr(D + T)-Xy 1 and t >_- 0 or 1, , n.

An algorithm for solving (7.3) is given in Dax (1981). This algorithm is slightly
more complicated than the algorithm or solving (1.4). The solution o (7.3) satisfies

(7.4) IITIIF =< n 1/21A [.
Hence instead of (5.1) we have

(7.5) IIUTUII <-n/lxlllull <-nl/lnllluIlllu-il.
Powell (1981) suggested a different way to compute the correction matrix. His

algorithm computes a vector w such that wrD-Xw 1 and uses the method of 4 to
downdate the matrix

Ur(D-wwr)U.
Then it computes a pair of vectors, v and x say, such that

(Urw)(UT"w)r zzr vvr xxr and vrx 0.

(The second equality makes ]lxl]2 as small as possible.) Finally it updates the triangular
factors of

Ur(D wwr)U +vva".
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This updating needs the same number of operations as the downdating o UT(D
wwa)U. Our algorithm avoids the updating and therefore needs ewer operations.
The choice o w is made in a way which ensures that xxr, the correction matrix,
satisfies the bound

(7.6)

where R is an n x n UTUD matrix. The first m rows of R are those of U while the
last n-m rows are the last n-m rows of the n x n unit matrix. This bound is a little
better than the bounds on the diagonal corrections.
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NUMERICAL STUDY OF INCOMPRESSIBLE FLOW
ABOUT IMMERSED ELASTIC BOUNDARIES*
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Abstract. In this work we study the interaction between a two-dimensional, incompressible inviscid
fluid and a one-dimensional tense elastic boundary. The boundary exerts forces on the fluid but its motion
is determined from the motion of the fluid. The crux of our method lies in the representation of the
point-forces into which the boundary stresses are discretized using Peskin’s link formalism via a collection
of vortex pairs of appropriate opposite strengths (vortex dipoles). Euler’s equations are then integrated:
the vorticity at the boundary determines the fluid motion everywhere. The method is applied to follow the
oscillatory motion of an immersed tense circular boundary which at 0 has been deformed into an ellipse.

Key words, vortex dipole algorithm, point-forces, vortex pairs

1. Introduction. In this work we introduce a numerical technique designed to
calculate the interaction between a tense, one-dimensional elastic boundary and an
incompressible, inviscid two-dimensional fluid. The boundary exerts forces on the
fluid while the fluid’s motion determines the motion of the boundary.

The method of solution introduced here relies on previous work of Peskin [1],
[2] to derive the forces felt by the fluid from the position of the boundary. The crux
of our method consists of the representation of these boundary forces by a vortex
dipole layer of appropriate strength. (Because of this representation we call our method
the vortex dipole algorithm.) Euler’s equation, written in the vorticity transport form,
can then be integrated numerically to yield the fluid’s velocity everywhere. We assume
the initial configuration to be an ellipse with the fluid at rest and assume the equilibrium
configuration is a circle (of the same area). The ellipse overshoots the circular configur-
ation, however, and oscillates between being elongated horizontally and vertically.

The method of solution proposed in this work applies only to inviscid fluid
problems, although it can be modified and adapted to viscous flow problems. Indeed,
C. Peskin, A. Wolfe and M. McCracken have used a modified vortex dipole algorithm
as a component of a vortex scheme, based on Chorin’s vortex scheme, [3] in their
mitral flow [4] and aortic sinus flow [5], [6] calculations, all at high Reynolds number.
The vortex dipole algorithm as described here is a very efficient scheme: since no
tangential stresses can be applied to the fluid, the boundary forces must be along the
normal to the boundary; this implies that the vortex dipole layer used to represent
the boundary stresses must have dipole moment tangent to the boundary. An important
consequence of this is that the vortex dipoles (vortex pairs with opposite strengths),
representing the point forces into which the boundary forces are discretized, will travel
with the boundary. We shall show below that this implies that the total number of
dipoles remains constant throughout the calculation. Unfortunately, in the viscous
case studied by Peskin and his coworkers [4], [5], [6], the boundary forces need not
be normal to the boundary and the vortex dipoles need not be tangential to the
boundary. Thus the vortex pairs are swept into the fluid and the scheme’s efficiency
is lost since the number of dipoles needed will increase with time. (Peskin has
introduced in [6] a vortex merging technique in an attempt to handle this difficulty.)
We shall investigate in a future paper the application of the vortex dipole algorithm,
introduced here, to the oscillations of the aorta, i.e., to aortic sounds, and we shall

* Received by the editors March 17, 1981, and in revised form March 12, 1982.
t Naval Postgraduate School, Monterey, California 93940.
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assume this flow to be inviscid. A comparison with frequency estimates of this
oscillatory motion derived by Peskin in [7] is also planned, and a preliminary version
of this work has been presented in [8].

2. Equations of motion. The fluid is assumed to be two-dimensional, incompress-
ible and inviscid. The fluid’s equation of motion in nondimensional form is as follows:

(1) ,u + (u. V)u -Vp +F

where u u(, t) is the velocity of the fluid particle located at at time t, p= p(, t)
is the pressure and F F(, t) is the external force density; the symbol denotes
differentiation with respect to time. Since we seek a vortex approximation to (1), we
write this equation in the vorticity transport form (2), which is obtained by applying
the curl operator to both sides of (1) and where w V u is the vorticity function,
being a unit vector normal to the plane of the flow. Thus

(2) O,w + (u" V)w V x F.

The incompressibility of the fluid requires

(3) V.u=O.

The boundary may slip tangent to the fluid, but its normal motion must agree
with that of the fluid. Hence

(4) 0,x u(x, t)’l

where x x(s, t) denotes the position at time of the material boundary point which
was labelled with the parameter s at time 0, and 1 is the normal unit vector at
x(s, t). The notation x(., t) will be used to denote the position of the boundary at time
(we shall often refer to the boundary’s position simply as the boundary). Thus a

Lagrangian description will be used for the boundary while the fluid will be described
by using Eulerian coordinates.

To derive our next equation, we observe that the forces f(s, t) exerted by the
boundary at x(s, t) can be shown to depend solely on the boundary’s configuration
x(., t). This is a consequence of Newton’s second law and our zero-mass boundary
assumption (Peskin [7]). Thus we can write:

(5) (., t)= S(x(., t)),

where S is an operator describing the properties of the boundary to be investigated
presently. Define T(s, t), "t(s, t) and re(s) to be the tension, unit tangent vector and
boundary mass density at the boundary point x(s, t). Let us state Newton’s second
law for a segment x(s, t), s [a, b ] of the boundary:

(6) m(s)g--, ds T(s, t)"(s, t) l(s, t) ds,

(7) 0 -s (r(s, t)x(s, t)-[(s, t)) ds

the left-hand side in (7) is zero because of our zero-mass assumption. Thus:

[(s, t)= -A- (T(s, t)’t(s, t)),
(8)

f(s, t)= T(s, t) "t(s, t)+-z-(s, t)"t(s, t).
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Since the fluid is inviscid f(s, t) cannot have a component tangent to the boundary; thus

(9) OT(s, t) O,
Os

(10) f(s, t)= T(s, t)-s’r(s, t).

Thus, f(s, t) is normal to the boundary and T is a function f t alone; for a fixed
time the tension T is constant along the boundary. We shall see that (9) gives rise
to a numerical check on the calculation.

Our last equation of motion describes the force density per unit area, F(, t),
where is the location of a fluid particle. As mentioned above, F is a distribution
supported on the boundary x(., t) with kernel 8(-x(s, t))

(11) F(, t)= IB f(s, t)8(-x(s, t)) ds,
O

where Bo is the interval of s values used to describe x(., t). The plausibility of (11)
becomes evident by checking that the force F1 exerted by the boundary on a region
R of the fluid depends only on that part of the boundary contained within the
region R.

(12) F1 [F(, t)d= [_ d f f(s, t)8(-x(s, t))ds
.BO

(13) f(s, t)8( x(s, t)) ds.

Equation (13) might mistakenly be interpreted to mean that the forces act only locally.
To see that the forces are felt instantaneously throughout the fluid one should apply
the divergence operator to both sides of Euler’s equation (1) and observe that V. F
acts as a source for the pressure P in the resulting equation.

3. Discretization. We introduce in this section the discretization on which our
numerical methods are based.

At the outset we shall discretize the label s, used to parametrize the boundary,
{Xk}k= from theinto a collection of tags k 1, ,N and single out N points o r

continuum x(s, 0). The boundary x(s, 0) will be partitioned into N segments of equal
length and the collection {x}, k 1,..., N will be chosen to be the midpoints of
these N subdivisions. The time will march in steps of fixed length At. That is, we shall
be interested in approximate solutions to the system (1)-(4), (10) only a times nat,
n 1, 2, . These approximations at times n At will be denoted by means of the
superscript n, e.g., x denotes the approximate location of the kth boundary marker
at time n At. Approximations to the forces f(s, t) (10) applied at the points
will be denoted f and will be calculated from the boundary’s position {x,}r= by
using a system of rodlike elastic links introduced by Peskin in [1] and termed by him
the link formalism. Each link [k.k+ connects the pair of consecutive boundary points
x and x +; the tensions along these links will be approximated by functions TT, this
will be the subject of 4. In 5 we shall discuss how to apply the forces f, to the
fluid through vortex pairs of strengths +/-d, and locations x,, k 1,..., N; 1, 2,
thus discretizing the vorticity functions W into

N 2

w"()= E Y w,a(-x,).
k=l i=1
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We shall see in 6 that

]=O

The external force density F() (.., i(s, t) (t- x(s, t)) ds will be discretized into the
approximation F()= (y/N)=i(-xT,), where , is the length of the boundary
at 0. We shall set 1. Section 6 describes how, by using the accumulated vorticity
at the boundary, we approximately solve Euler’s equation.

4. Calculation of boundary forces. We have seen that the boundary forces t(s, t)
can be derived from the location of the boundary configuration via

(10) |(s, t)= T(t)-s(’t(s, t)),

where T(t) is the tension and ’r(s, t) is the tangent unit vector at x(s, t). As noted
above, the approximation to I(s, t) at the boundary markers x will be denoted t,. To
calculate f: we used Peskin’s link formalism. This technique will be described only as
it applies to the present test problem boundary, which we assume to be a simple
closed curve. As seen above, the collection of markers {x,}r= tracks the motion of
the boundary; we shall presently connect each consecutive pair x, x+; k 1, , N,
(xr+ x’) by means of a rodlike elastic link l,+x. Notice that because our boundary
is a simple closed curve, then each boundary pointx is connected only to two boundary
points, namely to its neighbors x_ and x+, by links l_, and l,+ respectively.
Since the location of the markers changes with time, tensions T will be induced
along the links l,+. We shall assume that the functions T, describe the elastic
properties of our links, which simulate those of a rubber band (our links resist stretching
but do not oppose bending). Thus"

c (r" r), rk,k+ > rk,k+l(14) T 0 otherwise,

where C is a constant we shall call the stiffness, r’.k/l I]X,--X/I]], II’][ denotes the
Euclidean norm and r denotes the length of the link Ik,k/ at 0. Each force t can
now be obtained as the resultant of the tensions acting along the links lk,k+l and Ik,k-1
ending at x k. Let now aij denote a unit vector in the direction of x -xi. Then

(15) k,k-1 ka k,k +

One can see that (15) is indeed an approximation to (10), as follows" Let k,k-1 "---’*
Then

0_[ 1 s+A/2

f(s, t) rx]  rx s-A/2

k,k+l (Tk s+
(16)

k,_l-(-Tk s-

5. The vortex d|pole algorithm. A spoon immersed in a cup of inviscid fluid
induces, when pushed by a force parallel to the cup’s surface, a vortex pair of opposite
strengths, i.e., a vortex dipole, which is visible on the surface of the fluid. This

and
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phenomenon renders intuitively plausible our representation of a point force via a
vortex dipole. We mention at the outset that the momentum change Ap fAt, where
k 1,. ., N, induced by a point force acting at x, can be imparted to the fluid by a
vortex dipole, i.e., by a pair of vortices of appropriate opposite strengths +d ,. Although
the total momentum of a point vortex is zero, that of a vortex dipole is nonzero and
its magnitude is directly proportional to the vortices’ strengths d, and to the distance
2h separating them. To establish this we proceed as follows: Assume temporarily, to
simplify the notation, that the vortices which make up the dipole have locations
(0, (-1)iyo) and strengths (-1)id, where yo>0, d >0 and 1, 2. Let q= (ql, q2) be
the total momentum associated with the dipole, i.e., q=n v(x, y)dx dy, where
v(x, y) (vl(x, y), v2(x, y)) is the velocity field induced at (x, y) by the dipole and II is
the plane. Thus, v w +w2, where w (w 1, w 2 is the velocity field due to the dipole’s
ith vortex, 1, 2. Because of symmetry, q is normal to the axis of the dipole, i.e.,
q2 0. Notice now that

Thus

(17)

[ -a(y yo) 1w ](x, y)
-x + (y 00)2j,

1 [ d(y+yo) ]y)=

d

w(x, y) dx
d
2’

Y >Yo,

Y <Y0,

d

w(x, y) dx
d
2’

y >-y0,

Y <-Yo,

and

Yo Y -Yo
ql Vl dx dy (w + w) dx dy

n n 1, y <y0 -1, y <-yo

2dy0.

Thus, the exchange of a point force for a vortex dipole will maintain the momentum
balanced as long as

(x 8) Ilap gll- Ill gllat 2dh.
The vortices in each dipole are located at

(19) Xki

with ,r, being a unit vector normal to |, and h being a numerical parameter. The
formal exchange between point forces and vortex dipoles can be established by
comparing the distributions associated with each; see [4].

Thus, the term AtV F. , approximated via

N

AtVxF "z =k--1
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can be represented by the distribution
N

(20) E d,[(-x,) (-x,)],
k=l

which is associated with the collection of vortex dipoles representing the point forces.

6. Numerical solution of Euler’s equation. Since the fluid is inviscid, vorticity
travels with material points. We shall assume that the motion of the two vortices in
each dipole will be close to the motion of the boundary marker which is initially at
the center of the dipole. Since vorticity is confined to the boundary and dipole moments
are tangential to the boundary, it follows that the motion of the vortices is the same
as that of the boundary (vorticity is a fluid marker in an inviscid fluid). The tangential
motion of vortex dipoles and boundary points is less clearly defined because the
tangential velocity is not continuous across the boundary. In the present work, we
have moved the boundary points as fluid markers in the computed velocity of the
vortices, and we have moved the vortex dipoles along the boundary points where they
were generated. One check on the validity of this procedure is that the tension around
the boundary remains fairly constant, since this is the condition that actually determines
the tangential motion of the material points of the boundary. (In future work we plan
to use this condition directly.)

Our assumption above permits us to move our vortex dipoles by displacing them
with the boundary point at their center, while maintaining the dipoles’ axes tangent
to the boundary. This approximation makes the vortex dipole algorithm a very efficient
scheme" only N vortex dipoles will be required at each time step to represent the
boundary stresses. Indeed, we shall not need to create a new dipole at x, to represent
’,; we shall solely update the strengths w ki of the vortices at xki, 1, 2. To accomplish
this we write Euler’s equation (1) in Lagrangian form:

(21) D,w (I7 x F). ,
whereD denotes the total derivative with respect to time. A first order approximation
yields

(22) w" w-+ At(’ x F" ).

Approximation (22) together with (18) reveals how to update the strengths of w?, of
each dipole’s vortices:

,71 idn(23) w=w +(-1) , i=1,2, k=l,..’,N,

where d, (At/2h)litll. This equation yields by induction

(24) w ,, (- 1)’ E d.
j=0

The fluid velocity u" (), a continuous variable, can now be computed by super-
imposing the fields ui(j), associated with each vortex, where

(25) u;,(tj)
2ll-x,,ll max {ll-x,ll, }’

with normal to the plane and (r a cutoff to be determined numerically; notice that
(25) renders the speed constant within (r (Chorin [3]). Thus

N 2

(26)
k=l i=1
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7. Summary of numerical methods. In this section we summarize the equations
that allow us to solve the system (1)-(4), (10). As mentioned above, the time marches
in steps; at the beginning of the n th time step, the locations of the boundary markers
x, are known, and in addition, so are the strengths w, 1, 2, of each of the vortices
centered about x. The locations xi of these vortex pairs will be determined presently.

We first derive the forces f at the boundary points x, via

(15) f T-lak.k-1 + Tkak,k+,

where the unit vectors k,k+l denote directions parallel to x+/--x, and the functions
T, T+x describe tensions along these links lk-l,k and lk,k+l.

Each force f is applied to the fluid by updating the strengths w i of the vortices
1) dk, 1, 2, where dk (At/2h)[l|:ll. From this it followsat each dipole by amounts (-

that

(23) wk w/-+(-1)dk, =1,2.

The location x:i of each vortex pair is then set by:

(19) Xki=Xk+(--1) hXk

where "rk is a unit vector satisfying "rk’ |k 0 (as noted above ’rk is nearly tangent to
the boundary at x).

The fluid’s velocity u" ([j) is then calculated by adding up the fields u([j) due to
the kith vortex, 1, 2 and k 1,..., N. Now u([j) is given by

Wk --Xk X Z
(25) U,(ij)

2ll-xll max {ll- x,ll, }

( is normal to the plane of the flow). Notice that because of (25), nearby vortices
don’t induce large velocities on one another. The velocity field u (j) is thus

N 2

(26) u"()= ui().
k=l i=1

The configuration of the boundary is now advanced one step through thefirst
order approximations"

Xk Xk+ Atu" x

The time step is thus completed.

8. Numerical results on test problems. The method of solution described above
was used to calculate the interaction for an incompressible inviscid fluid surrounding
a tense, elastic one-dimensional circular boundary which at time 0 has the form
of an ellipse. The initial velocities of both boundary and fluid were assumed to be
zero. The vortex dipole algorithm allowed us to calculate the oscillations in time of
the boundary, while respecting the physical properties of both boundary and fluid;
care was taken to verify that tension remained constant along the boundary at each
time step (see Fig. 1) as well as to check that the algorithm did not violate the
incompressibility of the fluid (Fig. 2). Figure 3 depicts the motion of the boundary
for selected time steps. Numerical parameters were as follows: Twenty-four points
were used to represent the configuration of the boundary, which at the start of the
calculation was taken to be an ellipse with major and minor axes of length a 1.5,
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b .5, respectively. It was observed that the phenomenon of numerical instability
developed for values of F $(At)2 satisfying

(27) F > 4 10-4

while the calculation appeared to be stable for

(28) F <= 4 10-4.
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FIG. 1. Area, s 1.0, At .015, time steps 1-300.
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FIG. 2.. Tension of each link, As 1.0, At .015, time step 60.
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FIG. 3. Boundary configurations.
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With the stiffness fixed at C 1.0, several runs with different At that satisfied (28)
were made to verify nondependence on the time step size. A run with At .02 was
made, and approximately three hundred time steps were required to calculate roughly
a half-cycle of the oscillation. The ellipse bounced from being elongated along the
horizontal axis at 0 to being elongated along the vertical axis, passing through the
configuration of a nearly perfect cycle. Because of numerical viscosity, the final
configuration was not symmetrical with the initial configuration. In fact, the final
configuration was less eccentric than the initial one.

The flow n satisfied the condition V. un= 0 everywhere. Seepage across the
boundary was nonetheless present in the calculation. These two seemingly contradic-
tory facts were reconciled as follows: The flux across the boundary is given by
G ,,.,t n 1 ds, where 1 l(s, t) is the normal unit vector at x(s, t). Although the
average G is zero, the numerical flux G N

Yk=l Uk(Xk) lk, where qk is the normal
unit vector at x, need not be zero. To assign a value to the parameter tr, we had to
compromise between two conflicting criteria: If tr is too large, there is no resolution
left in the calculation, while if tr is too small we have too much seepage. Best results
were attained by assigning the value tr h d/2 to the cutoff tr and to each vortex
dipole’s semidiameter h, where d is the length of each of the subdivisions of the
boundary at 0. Best results were also obtained by setting the resting length r0 at
ro=d/2 in the expression T=s(r-ro) (Fig. 1).

Conclusion. We have presented a method for simulating the interaction between
a two-dimensional, incompressible, inviscid fluid and a one-dimensional, tense elastic
boundary. The boundary exerts forces on the fluid, but its motion is determined by
that of the fluid. We have, therefore, examined a coupled mechanical system. Our
method of solution, the vortex dipole algorithm, has succeeded in resolving the
complexity of the mechanical system we have considered.

The method of solution we have introduced in this paper leads to a very efficient
scheme. Since each vortex pair is assumed to move with its associated boundary point,
it follows that the total number of dipoles remains fixed throughout the calculation.
Thus, the amount of labor required to update the location of boundary markers and
vortex pairs remains the same at each time step.

In future work we intend to remove our assumption about vortex dipoles moving
along the boundary points. We propose to do this as follows: At each time step we
shall track the motion of the boundary via a different collection of markers, namely
the centers of our vortex pairs, whose locations will not need to coincide, as in our
present scheme, with the current location of the markers from the previous time step.
To calculate the boundary forces at each marker, we shall obtain the tension (constant
along the boundary) from the link formalism and compute the curvature vector via
splines.

Acknowledgments. The author wishes to express his gratitude to Professors A.
J. Chorin and C. S. Peskin, whose work made feasible the present research, and whose
support and encouragement made it possible.
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SHOCKS IN GAS PIPELINES*

D. MARCHESINt AND P. J. PAES-LEME*

Abstract. We use the uniform sampling method to study shocks and spikes in transient flow in gas
pipelines. The method is well suited for this purpose. Both shocks and spikes tend to be masked by the
use of a conventional damping term known as Moody friction. They are also masked by standard numerical
schemes.

Key words, gas pipelines, pipe transients, Moody friction, Glimm’s method, Riemann problem

1. Introduction. When the flow rate is changed in a gas pipeline network, pressure
surges develop. In this case shocks will be created for sufficiently wide and long pipes,
as we will see. The objective of designers of fluid systems is to avoid undesirable
transients [17].

We use the uniform sampling method [4], [1] to perform a numerical simulation
which gives good results for these spikes even for coarse grids (40 mesh blocks). This
fact could contribute to the efficiency of the simulation of pipeline systems consisting
of many interconnected pipes and pumping stations.

We consider the flow in pipelines governed by the partial differential equations
of gas dynamics with constant temperature. This is a commonly used approximation.
Other approximations are considered in [8]. We use the one-dimensional conservation
laws of mass and momentum, plus a constitutive equation of state. They are

p, + (ou) =0,

(1.1) (on), +p +(Oua) +fOu2ul= o,

2p=c p,

for 0--<_ x _--< L, 0--<_ t, where 0 is the density, u is the fluid speed, p is the pressure, is

the time, x is the distance along the pipe, c is the isothermal speed of sound, d is the
diameter of the pipe and ]’ ]’(O, u) is the "Moody friction factor" [2], [15]. We neglect
any gravity effects by considering only horizontal pipes.

As boundary conditions we specify as function of time either the pressure or the
flux at each end of the pipe. The initial condition at time zero is taken to be the steady
state solution of (1.1).

We now indicate circumstances in which shocks occur. For wide enough pipes
the friction term in (1.1) becomes negligible. We consider a smooth compression wave
such that at an initial time there are two constant states separated by a length 1. For
isothermal flow the characteristic speeds ahead and behind are c + u. and c + ub, where

u. and ub are the respective flow speeds of the gas. Assuming that the wave moves
to the right, i.e., ub > u. > 0, the shock will be formed in a time At such that (c + ub)At
l+(c +u.)At, provided the pipe is long enough. For example, taking the state
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approximately described in the left part of Fig. 2a as initial, with ua 10 m/s, Ub

240 m/s and 40 rn we have At 0.175 s. The wave will have travelled 97 rn by the
time the shock is formed.

Pipes with a diameter of 1.0 rn or 1.5 rn are used to exhaust the gases generated
in smelting plants. Transients are generated by sudden shut-off of exhaustion turbines
caused by power failures.

Analyzing a linearized version of (1.1), one can show that by introducing the
friction term, a shock has its amplitude reduced in time but its sharpness is preserved.
Thus the formation of shocks due to pressure transients is inhibited by friction in
extremely thin pipes.

The uniform sampling method used to advance the solution in time is well suited
when discontinuities are the main feature of the problem, and it has recently been
used in a variety of applications. Finite element techniques have been employed to
solve (1.1) [2], [5], [6], [9]. Good resolution of shocks is obtained only through the
use of meshes which are too fine for the treatment of a full network. In 2 we describe
the method for solving (1.1). In 3 we solve the associated Riemann problem, and
the results are presented in 4.

2. The numerical lroeedure. In order to advance the approximate solution (O, u)
of (1.1) from time t, to time t,/l t, + At we use operator splitting. Taking p(t,) and
u(t,) as Cauchy data we march by At through

(2.1) p,+(pu)=O, (pU)t+C2px-+-(pU2)x=O

obtaining (fi, t). This in turn is used as Cauchy data to march by At through

(2.2) p=0, (pu)t+fPU2U]=o
obtaining p(t+l) and u(t,/l). For a proof of convergence of this procedure see [7].
This approach was used in [12], [13], [14].

At time t,, the solution is assumed to be the constants (pi"+l/2, u1/2) in the ith
interval iAx <=x < (i + 1)Ax, for 0, 1, 2, , N- 1. The time step obeys a Courant-
Friedrichs-Lewy condition At <- -2Ax/supi (lu i+1/21 + C), where c is the (constant) sound
speed x/-p/p. For t, <= <-t, + At, the solution is then uniquely defined and is obtained
by solving for each the Riemann problems associated with equations (2.1) with
Cauchy data at t,"

(p, 12)--(pT-1/a, Ui-1/2) forx <iAx,

(p, u) (to" 1/2, u for x > Ax.i+ i+1/2

The solution of these Riemann problems is described in the next section. Thus a
solution (p (x, t), u (x, t)) is obtained for t,-<t<t,+l; this solution is not piecewise
constant. We introduce a sequence {0,} of numbers equidistributed in the interval
[0, 1]. (Here we use the fractional part of n/.) Finally, we obtain a piecewise
constant function

/i+1/2 p((i + O,)Ax,

ti+1/2 u((i + O,)Ax, t,+l), 0, 1, 2, ’, N- 1.

We remark in passing that if the friction term in (2.2) were zero the function above
would be the computed solution at time t,+l.
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Since the procedure above is essentially first order accurate in time, any reasonable
scheme may be employed to advance the ordinary differential equation in (2.2). We
use Euler’s scheme:

,,+1 ,+1

f "ulul
Pi+l/2 i+1/2, Ui+l/2 =Ui+l/2--At =0, 1, 2,’’" ,N-1.

2d i+1/2

In order to initialize the simulation at time zero, we use the steady state solution
of (1.1), namely,

(13U "-0, C 2p + (pU 2 +fPU2 ldU =0.

To solve this equation, p and u are given at the inlet end of the pipe.

3. The Riemann problem. Consider the initial value problem for (2.1) with initial
data

(a, u)(x, O) (a, u), x >-0, (19, U)(X, 0) (/91, Ul), X < O,

where Sr (Or, ur) and St (Or, ut) are two constant states. Correspondingly denote by
pr, ur and pt, ut the constant pressures and gas velocities of the right and left states.

For later times any left state $ can be connected to a right state Sr through a left
centered wave $1, a constant state S, and a right centered wave $2 (see Fig. 1).

S

S2

(Pl ’Ul 0 (Pr ’Ur

FIG. 1. Solution of the Riemann problem.

Denote by p,, p, and u, respectively the density, pressure and velocity of the
gas in the constant state $,. Define the quantities.

(3.1) Mt
pp______,, Mr

pP___&,.
Ul U, Ur U,

It is easier to describe the solution of the problem in configuration space, where St,
S, and Sr are points. These points are connected through rarefaction or shock curves
which represent $1 and $2.

If the left centered wave is a rarefaction wave (p, <pt), we connect the state St
to a state S, by a rarefaction curve, i.e., a curve on which the Riemann invariant
u + c log a is constant"

log 191 U, + C log p,.
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If the right centered wave is a rarefaction wave (p, <pr), we connect a state on the
right to a state S, by a rarefaction curve on which the other Riemann invariant
u + c log O is constant"

Ur + C log 0r U, + C log O*"

If the wave is a shock we then connect two adjacent states by a shock curve, i.e.,
a curve which satisfies the Rankine-Hugoniot jump condition:

(3.2)
[pu [Ou +p

U.
[0] [Ou]

Here U equals Ut (the speed of the left shock) or Ur (the speed of the right shock) if
the wave is left centered or right centered respectively. If the left wave is a shock we
have p, >p and from (3.2) we obtain

(3.3a) M O(u U) O,(u,- Ut).

Similarly, if the right wave is a shock we have p, > pr and

(3.3b) Mr -Dr(Ur- gr) -[J,(u,- gr).

In either case, from (3.1) we obtain

(3.4)

Mt Mt(p,) (Olpl)a/zb(tt ),
Mr Mr(p,) (PrPr)

where

1--X

x 1/2, x >--_ 1.

Upon elimination of u, from (3.1) we obtain

(3.5) p, (u u + P + P-)/(-- -)Mr
The substitution of (3.4) in (3.5) yields a fixed point equation of the form

(3.6) p, (p,).

The initial guess p0, is chosen as in [1], [11] to be the average value (pl+p,.)/2. We
use one step of Godunov’s iterative procedure on (3.6) to create a second guess p,.
These two guesses are used to initialize the secant method to find the zero of the
function

P,-/(P,).

Replacing Godunov’s iterative procedure in [1], [11], [14] by the secant method makes
the corresponding scheme almost two times faster.
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More details may be found in [14], where the Riemann problem for isothermal
gas flow has been solved. In [14], the Riemann solver is reported to become 66%
faster by using the isothermal rather than the isentropic flow equations.

We refer the reader interested in the details of the implementation of the Riemann
problem to [14]. Flow charts are presented in [11], where an equation of state
p -Ap v (y > 1) is considered. The isothermal case can be obtained by the limit when
3’ tends to 1.

4. Results. We simulated the flow of an ideal gas at fixed temperature in a pipe
with a diameter of 20 cm and length 800 m. We assumed that at time zero there was
a steady state motion with the pressure of the gas entering the pipe at the left being
105 N/mE (approximately 1 atmosphere), density equal to I kg/m3 and speed 10 m/sec.
To simplify our computation with friction we took a constant Moody factor equal to
0.01 (see [16, p. 30, Eq. 1.2-5]). Typical mesh sizes employed were 20 m.

The pressure was increased by 105 N/m2 linearly at both ends of the pipe in
0.1 sec and then kept fixed. The solution at this time is well represented in Fig. 5(a).

The results obtained using the uniform sampling method with zero friction are

displayed in Fig. 2. Note the sharp resolution of the shocks and of the spike, even on
the relatively coarse mesh used.

The results obtained using the Lax-Wendroff finite difference scheme [10] with
zero friction are shown in Fig. 3. We note that the shocks and the spike are not well
resolved. The oscillations behind the shock can be reduced, as shown in Fig. 4,
through the introduction of an artificial viscosity term [10] via operator splitting. The
amplitude of the oscillations is not satisfactorily reduced by using a finer mesh (see
Fig. 5).

The aim of this paper is to determine the effect of the Moody friction term using
a method that resolves shocks whenever they are present: namely, the uniform
sampling method. Figures 6 and 7 show that the Moody friction changes dramatically
certain quantitative aspects of the solution. Even for smooth initial data, shocks are
still created, but their amplitudes are strongly reduced. The initial data and boundary
conditions considered in this paper are not contained in [7], where it is shown that
under certain conditions shocks do not develop.

Figures 6c, d show clearly that the Moody friction term reduces the amplitude
of the shock as it advances. Thus, one way to prevent a pump from receiving a pressure
surge caused by turning on a second pump at the other end of the pipe would be to
make the pipe as long as possible. Pipeline designers seem to be aware of this
consideration [3].

It is commonly believed that the use of a Moody friction term is justified when
turbulent flow is simulated. For laminar flow, see [18], where a memory term is
introduced to model the friction. The use of either these friction terms or the finite
difference techniques tends to smooth the solution. If a simulator is used in the design
o a pipeline system with the purpose of detecting transients, it is better to use the
uniform sampling method.

Acknowledgments. We would like to thank J. Glimm for support and encourage-
ment throughout this work. We are grateful to T. Dupont, E. L. Isaacson and R.
Sampaio for many enlightening conversations. Most of this work was done at the
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FINITE DIFFERENCE CALCULATIONS OF BUOYANT
CONVECTION IN AN ENCLOSURE, I.

THE BASIC ALGORITHM*
HOWARD R. BAUMt, RONALD G. REHM,

P. DARCY BARNETT AND DANIEL M. CORLEYt

Abstract. A novel mathematical model of buoyant convection in an enclosure, developed earlier, is
solved by finite difference techniques in the two-dimensional case. This model has been developed as a
principal analytical tool for the prediction of the movement of smoke and hot gases in fires. Effects of
large density variations caused by substantial heating are retained while acoustic (high-frequency) waves,
which are unimportant to buoyant convection, are analytically filtered out. No viscous or thermal conduction
effects are included in the model. These two characteristics (filtering and lack of dissipative effects) distinguish
the model from all others describing buoyant convection. The mathematical model consists of a mixed
hyperbolic and elliptic set of nonlinear partial differential equations: the problem is a mixed initial, boundary
value one. An explicit time-marching algorithm, second-order accurate in both space and time, is used to
solve the equations. The computational procedure uses a software package for solving a nonseparable
elliptic equation developed especially for this problem. The finite difference solutions have been carefully
compared with analytical solutions obtained in special cases to determine the stability and accuracy of the
numerical solutions. The computer model has been used to compute the buoyant convection produced in
an enclosure by a spatially distributed heat source simulating a fire. The computed results show qualitative
agreement with experimentally observed buoyant convection in enclosure fires.

Key words, buoyant convection, computations--finite difference, Euler equations, finite difference
equations, fire-enclosures, fluid flow

1. Introduction. This paper presents the first results for a finite-difference integra-
tion of an approximate set of equations describing buoyant convection in an enclosure.
The work represents a continuation of the research reported in [16], where the set
of approximate equations was derived. The primary application of interest to the
authors is the movement of smoke and hot gases caused by a fire in a room.

The research presented here is distinguished from previous numerical computa-
tions of buoyant convection in three respects. First, in this model the fluid is taken
to be an inviscid, non-heat-conducting perfect gas, and the spatial and temporal
magnitude and variation of the heat source, which simulates a fire and drives the flow,
are taken as known. These approximations are justified because under conditions
characteristic of even a small room fire, the Grashof numbers (representing the ratio
of the inertial to viscous forces for natural convection) are large enough for molecular
transport phenomena to be important only in wall boundary layers and in the highly
convoluted flame sheets which constitute the region of intense heat addition. The
study of the detailed flame structure of real fires is an extraordinarily complicated
subject in its own right, and is bypassed here by specifying the heat source. Wall
boundary layers represent a local refinement to be considered separately at a later
date. Batchelor [3] gives a brief but relevant discussion of the applicability of the
inviscid equations in the context of atmospheric motions.

It should be noted that such simplifications do not preclude a description of
turbulence; but no turbulence model is explicitly included in this study. We note,
however, that any turbulence model appended to the present equations must be of
the "sub grid" variety, since no spatial or temporal averaging is implied in the equations
derived in [16].

* Received by the editors January 15, 1982.
Center for Fire Research, National Bureau of Standards, Washington, DC 20234.
Center for Applied Mathematics, National Bureau of Standards, Washington, DC 20234.
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The omission of any turbulence model is based on the observation, quantified by
McCattrey [12], that most of the energy containing fluctuations in buoyant plumes
induced by laboratory scale diffusion flames are of low frequency and large spatial
extent. Such fluctuations, with frequencies typically in the range 2-5 Hz and length
scales comparable to the local plume width, are directly resolved by the computational
procedure. A knowledge of the behavior of higher frequencies and smaller length
scales is of course crucial to an understanding of combustion related phenomena.
However, as noted above, such questions have been bypassed in the present study.

Simple models of smoke and hot gas transport which neglect molecular transport
phenomena have been reasonably successful in predicting global properties of flow
fields [15]. The present work is intended as a first step towards more detailed studies
along these lines.

Second, the approximate set of equations integrated in this paper are characterized
by the fact that large density variations due to temperature changes are admitted, but
compressibility effects are suppressed. Such a fluid has been termed thermally expand-
able in other contexts [14]. In the fire setting, allowance for density variations due to
temperature increases during combustion is essential. It is common for temperature
in a flame to exceed 1000C, implying that the density decreases locally to less than
one-quarter its ambient value in the nearly constant-pressure process. In [16], a set
of equations of motion was derived formally which permit description of large density
variations in a flow while ignoring acoustic oscillations arising because of the elastic
properties of the fluid. Such model equations include the important features of buoyant
flows without requiring excessive computer time necessary to determine high-
frequency sound waves when numerically integrated. In this sense the equations "filter
out" the sound waves while describing the lower frequency, organized motions due
to buoyant effects such as internal waves.

Finally, in previous efforts to compute flow fields, produced by buoyancy or by
any other mechanism, there are few reported detailed checks on the quality of the
numerical solutions to the finite difference equations. By contrast, in [4] and [17]
detailed comparisons are made with analytical/numerical solutions obtained to the
general difference equations in simple, special cases. Through these comparisons,
confidence in both the algorithm and its implementation as a computer code was
gained. Such tests showed that the algorithm is stable, and for the example cases
performed, the error made in solving the difference equations at any time step, even
in the nonlinear case, was over two orders of magnitude less than the discretization
errors made in approximating the partial differential equations by finite difference
equations. For buoyant flows of the type considered in this paper, it is especially
important to have confidence in both the stability and the accuracy of the algorithm
so that the real physical instability represented by the fluid motion can be distinguished
from any computational instabilities.

In 2 the equations derived in [16] are recast into the form in which they are
solved, and the finite difference approximations to the equations are presented. In
3 solutions determined by this model, for the buoyant flow produced by a heat

source in a rectangular enclosure, are presented and discussed.

2. Formulation.
2.1. Continuous problem. In [16] the authors derived a set of nonlinear equations

describing nondissipative, buoyancy driven flows of a perfect gas. The flows were
assumed to be generated by a localized heat source in which the heat is added slowly
so that the time scale associated with the heat-source growth and resultant fluid motion
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is long compared with the transit time of an acoustic signal across the spatial extent
of the source. Flows induced by a room fire generally satisfy this assumption. Properties
of the equations were discussed in [16]. In this section these equations are rewritten
in a form appropriate for numerical integration by finite difference techniques, and
the boundary conditions for the equations are presented.

As in [16], we consider an inviscid, non-heat-conducting perfect gas. The magni-
tude and the spatial variation of the heat source (representing the exothermic reaction
in a fire) are taken as known; justification for such a model is given in [16]. The fluid
and the fire source are assumed confined in a closed rectangular room with the center
of the source along the floor. In contrast to [16], we consider only a completely
enclosed room (no leaks), and when difference equations are introduced, we confine
attention to the two-dimensional evolution of the flow.

The continuity, momentum, energy, and state equations are given respectively
in [16] as:

"b (PUi O,
Ot

Ou, c3u] O(p-po(t))
P -+ ui oxiT + -pkig O,

c3xi

OT OT ) dpo
pco -+ u -x --t- O xi,

po(t) =pRT.

Here p is density, ui the velocity in the ith coordinate direction (i 1, 2, 3), p is the
pressure excess above the mean pressure po(t) in the room, T the temperature, co the
constant-pressure specific heat, R the gas constant, kg is the gravitational acceleration
(of magnitude g) and Q(x, t) the specified volumetric heat source. The spatially
uniform mean pressure po(t) depends only upon time and increases because of the
heating within the room. It is determined in a completely enclosed room by the equation

dpo 3, -1 Iv(2) -- V
O(xg, t) dV,

where y is the ratio of specific heats, V is the volume of the room and the integration
is performed over this entire volume. Equation (2) is a thermodynamic statement that
the mean pressure rise as a function of time is determined by the total heat added to
the room. (Heat can only be added or removed volumetrically and not through the
walls because thermal conduction and radiative transport have been ignored in this
model.) It will also turn out to be a mathematical consistency condition required if a
solution for the pressure field is to exist.

Equations (1) and (2) are the approximate set of nonlinear equations solved by
finite difference techniques in two spatial dimensions in this paper. The equations
admit buoyant or internal-wave motions while "filtering out" high-frequency, acoustic
waves. They reduce to the Boussinesq equations when heating is mild, total density
variations are small, and variations in the mean background pressure can be neglected
(as would be the case if the room considered here were open or if the mean pressure
variation were comparable to the spatial pressure perturbation). To recast the
equations into a form more suitable for numerical computation, we take the substantial
derivative of the equation of state and use this with the energy equation to eliminate
the temperature. The resulting equation describes the evolution of the density under
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heating:

(3)

where

Op Op c3u
--4- ui -pD(x, t)
Ot E -P -xi

(4) D(xi, t)=ypo(t)
(/- 1)O(xi, t)-

dt J"
Equation (3) and the continuity equation identify D(xi, t) as the divergence

(5) Ou---2= D(x, t).

Finally, as in [16], the equation for the spatially variable portion of the pressure
is obtained by dividing the momentum equations by density and taking the divergence
of these equations. The resulting equation is

0 1 Ou OD(x,(6) Ox---(- xP/) =-[(u’/+, Ot t)].
Equation (6) is the generalization for a "thermally expandable" fluid, which we
consider here, of the well-known incompressibility condition in Boussinesq fluids.
When the density is constant, then D(x, t)= 0, and (6) reduces to Poisson’s equation.
The boundary conditions on these equations are that velocity normal to any (imper-
meable) wall vanish,

(7) un O,

where n are the normal components of a vector describing the boundary walls. From
(1) and these conditions, the appropriate boundary conditions on the pressure equation
are obtained:

p
(8) hi-;---= pgniki.

oxi

An important observation must be made concerning (6) and the Neumann
boundary conditions (8). When (6) is integrated over the total volume of the room,
both the left-hand side of the equation and the first term on the right are divergence
forms and can be converted into integrals over the boundaries of the room. Application
of boundary conditions (7) and (8) show that each o the terms is zero; therefore, the
integral over the volume of OD/Ot must also be zero. The requirement that the integral
of (4) for D over the volume be zero produces (2), the condition for the spatially
uniform background pressure. Therefore, the elliptic equation (6) for the pressure,
with the Neumann boundary conditions, is seen to produce a condition which must
be satisfied for a solution to the equation to exist. This condition (2) determines the
time evolution of the spatially uniform background pressure and demonstrates that
the total pressure can be consistently separated into a spatially uniform background
pressure and an inhomogeneous time-dependent overpressure. In the next section
describing the difference equations, exactly analogous considerations are found to
apply to the linear algebraic equations approximating (6) and the boundary conditions
(8).

For selecting a difference scheme, the second of equations (1), the momentum
equations, are rewritten in vector invariant form, noting that ui are components of
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the velocity vector field u

0u 1
(9) --+-(q2) u x -lp + kg,

where q2 =u.u and Vu is the vorticity. The curl of (9) yields the vorticity-
transport equation"

O.
V x ( x .) _V(pl_.) x Tp.

Since is a vector field, it is necessary to calculate correctly both its divergence and
its curl. Equation (5) specifies the divergence of u, and the equation for the pressure,
(6), assures that the divergence is properly determined at each time. Equation (10)
is the equation for the evolution of the curl of the velocity, the vorticity. The difference
scheme selected must assure that (10) is satisfied in difference form.

The complete set of recast nonlinear equations are gathered and rewritten below:

(lla) OO Op
--+ us -pD(xj, t),
ot

(11b) Ou 1 0
--+ (u#) o
ot *

(11c)
0 10p 0

where

dpo 3-1 Iv(lld) d---t-=--- O(x,, t) dV,

(lle) D(xi, t)=1[(,- 1)O(x,, t) -dp]
ypo(t) dt J’

ei is the permutation tensor and toi eiil OUl/OXi are the components of the vorticity
vector.

Boundary conditions are

(12a)

(12b)

Uigli O,

op
ni pgkini.

For numerical integration, (11) and boundary conditions (12) are altered in two
additional ways. First, we calculate the density and pressure differences from their
initial values, which may be functions of the vertical coordinate. This is done to
eliminate accuracy problems, since the thermally induced density and pressure differ-
ences can be very small during the early portion of the heating process. Second, the
equations are made dimensionless. The nondimensionalization is done both for con-
venience and to ensure proper scaling. All dependent quantities are made to be of
order unity in magnitude for purposes of the computation. The remaining dimension-
less parameters characterize the strength and location of the heat source as well as
the room geometry.

In Fig. 1 a schematic diagram of a fire evolving in a room and a set of coordinate
axes are shown. It is assumed that initially the enclosure is filled with quiescent,
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Smoke and
hot gases

FIG. 1. Schematic diagram of an enclosure with a two-dimensional heat source, plume and region of
smoke and hot gases.

stratified fluid of density po(y), where we denote Xl x, x2 =y and x3 z. We define
a density difference from ambient and a pressure difference as follows"

(13a) fi(x, y, z, t) O(x, y, z, t)-0o(y),

(13b) (x, y,z,t)=p(x, y,z,t)-po(t)+g 0o(y’) dy’.

These differences and/ need not be small compared with 0o(y) and po(t) respectively.
Then (1 la)-(1 lc) become

(14a) O0+u, OO +v =-(Oo(y)+)D(x,t),
Ot OXi

OUi 10 1 [0 kig]--+ (uu)(14b)
t

(14c)

where v uz and q= uu, and the boundary condition (12b) becomes

Finally, we form dimensionless equations using the density poo po(0), the height
of the room H as the length scale and the free fall time (H/g)x/z as the time scale.
Then, denoting dimensionless quantities with a hat,

= o oo

(16)
Poo PoogH’

Uia,
4’ ’ ’ 4(rag)

Equations (13) remain exactly the same in dimensionless form with g set equal to
one. Subsequently, in this paper all quantities will be understood to be dimensionless,
and the hat notation will be dropped. For the dimensionless coordinates, we note that
0 x 1/AR, 0 y 1 and 0 z 1/BR where AR H/L and BR H/W. Also,
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in the remainder of this paper, the problem will be specialized to two spatial dimensions
so that all quantities will be assumed independent of z. This nondimensionalization,
while simplifying the form of the equations, does not relate the scale of the induced
motion to that of the source. An alternative scheme which does have this feature is
derived in the Appendix. The resulting equations are somewhat less convenient for
numerical computation, except in the Boussinesq limit when density differences are
small. Hence, the variables as defined by (16) will be used throughout the remainder
of the paper.

2.2. Finite difference equations.
2.2.1. Basis for the selection of the difference equations. In this section the finite

ditterence equations and the boundary relations for the solution algorithm are presen-
ted. It is important first, however, to state the requirements which we used in selecting
the scheme. These requirements do not necessarily specify a unique scheme, but
restrict greatly the selection. As noted in the previous subsection, the momentum
conservation equations provide relations for determining the velocity field, which is
a vector field, as a function of time. Forming the difference equations is one criterion.
This choice is made to assure that, when the discrete analogues of the divergence and
curl are applied to the difference equations, suitable discretized equations for ,the
pressure and the vorticity transport are obtained. Thus we can be certain that the
divergence and the curl are calculated correctly in discrete form, the divergence
producing the equation for the pressure and the curl producing an evolution equation
for vorticity.

A second criterion imposed is that the difference equations provide second-order-
accurate approximations to the partial differential equations. This condition is imposed
because second-order accuracy is necessary to obtain reasonable spatial and temporal
resolution for the hundreds of time steps required to calculate the complete evolution
of the flow field in a room fire.

A well-understood buoyant flow field is that produced by internal waves in an
ambient stratified environment. Internal waves have for a long time been analyzed
and calculated [10], [21]; they are determined as solutions to the linearized partial
differential equations of buoyant flow. In addition, internal waves can be expected to
arise naturally in a room fire setting when the driving fire has heated and stratified
the room air; after the fire has extinguished itself because of vitiated air, for example,
pure internal wave modes will exist. An additional criterion which was imposed on
the selection of the difference scheme was that it accurately reproduce internal-wave
modes in an enclosure: if the difference scheme does not reproduce this rather simple
linear flow field, it is unlikely to reproduce more complicated flows. In [4] the authors
examined internal waves and some second-order linear difference equations that
reproduce these waves. This analysis determined the difference scheme for all but the
nonlinear convective terms in the momentum equations.

In an important paper for numerical weather forecasting [1], Arakawa discusses
design of computational schemes for long-term numerical integration of the equations
of fluid motion in the case of two-dimensional incompressible flow. The major thrust
of his paper is a derivation of second-order accurate spatial difference schemes which
eliminate the nonlinear computational instability first noted by Phillips [13]. Arakawa
emphasizes that for two-dimensional, incompressible flow, the discrete approximations
to quadratic forms of dependent variables, such as the velocity squared or the vorticity
squared (or both), must be conserved when the continuous variables are, and he uses
this constraint to select three difference approximations which are acceptable. Another
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criterion imposed in the selection of our difference scheme is that it reduce to one of
Arakawa’s acceptable, or stable, schemes with respect to the nonlinear computational
instability when the flow is incompressible. The scheme chosen is denoted J3 by
Arakawa [2] and conserves energy in the incompressible case. It can be obtained by
differencing the vector invariant form of the momentum equations.

Finally, we wanted the difference scheme to be easily generalized to three-
dimensional flow configurations. For a model of buoyant flow driven by a fire to be
successful, it must be able to calculate three-dimensional flows. The scheme selected
and presented below satisfies all of the criteria stated above.

2.2.2. The equations. The two-dimensional rectangular enclosure in dimension-
less variables is covered with a uniform spatial grid for the finite difference scheme.
There are I mesh cells in the x-direction and J mesh cells in the y-direction. Along
the edges of this basic mesh, the two components of the vector velocity (u, v) and
single surviving component of the vector vorticity to =Ov/Ox-Ou/Oy are defined. At
the center points of the basic grid cells, the scalar quantities such as density 9 and
pressure p are defined. In Fig. 2 a typical mesh cell is shown, illustrating where all
of the dependent variables in the finite difference scheme are defined relative to the
cell.

bij
Oij

Ui-l,j Oil

vi, H

tO i-l,j-1 0.9 i,j-1

FIG. 2. A typical mesh cell, with center located at x (i 1/2) 6x and y (!" 1/2) 6Y, illustrating where all
dependent variables for the finite difference scheme are defined.

The following discretely evaluated functions will denote approximations to the
corresponding solutions to (9) and (10)"

(17a) ui u(i x, (j-1/2) 6y, n 6t),

(17b) Dinj --((i-1/2) 6x, j 6y, n 6t),

(17c) O =o((i-) 6x, (i-1/2) 6y, n 6t),

(17d) p, -p((i-1/2) 6x, (i-1/2) 6y, n 6t),

(17e) D=D((i-)6x,(j-1/2)ay, nat),

(17f) (o, -o(i 6x, j 6y, n 6t),

where 6x 1/(I.AR) and 6y 1/J are the mesh cell sizes in the x- and y-directions
respectively, and where 6t is the time-step size. Such a staggered grid is commonly
used for multidimensional finite difference integrations [8].
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With this notation, the following set of finite difference equations was used to
approximate (11) and boundary conditions (12).

For (14a), l<_-i<_-L l<=j<_-J and n >_-2,

~n+l(18)

where

1
1 + ()D i 3t

-x (1 (1/2)D ,’} 3t) 26t(F,, +F,y,i + (1/2)D ,iPo(1))},

(19)

p ij =p ij- po(])= the density difference from the initial density,

po(]) exp [-(]-1/2) 6y/Ys] the prescribed ambient initial stratification,

Ys the stratification length scale.

The flux terms F"ox,j and Fo,,j for 1 < <L 1 <-] <J are given by

(20a)

(20b)

+ \Po(] + l)-Po(j-1)+pid+x -fii.i-a vq +vi.i_
26y 2

Equation (18) employs a modification of the second-order accurate central difference
(leap frog) temporal discretization. The modification eliminates an instability that
would arise if the leap frog scheme had been applied. It affects the undifferentiated
term D(x, y, t) in (14) that is well known to lead to a computational instability for
ordinary differential equations when leap frog differencing is used [9].

For (14b),

(21a)

and for 1 -< <_-I- 1, 1 -<_ ] <= J,

n+l n-1 {F(21b) vii vi -26t yll

for 1 <-i<_-L 1-<_]-<]- 1.

2 ,+-+(tSa+ +p)

8y po(] + 1) + po(]) + fi,"a+a + fii]

The fluxes FTij and Fyii are defined as follows’ for 1 <_-i <_-I- 1, 1 -<_] <_-J,

1
(22a) Fii 2 6x

)2[(qT+a (q)2]_ (v..,,oo ii + v,,.,_lO i.i-x ),

and for 1 <- ] <_- J 1, 1 <_- <_- I

1
(22b) F,i 26y

[(q. 2 .)2 1/2(..i.i+l) -(q ]+ u,o,,toii+
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and where

V + l,] V i] U i,] + U i]
O)i]--

6x y
22)C Ui Uij+Ui+l,j Ui = Ui,j+l +Rii

2
2 Uij + Ui-1, +(q’*)

2 2

Note that boundary conditions (12a) on the normal velocities imply that Uo,i uhi 0
for 1 jJ and v,0 vg, 0 for 1 iL These boundary conditions are applied
formally in the expressions for the fluxes

(23) Foii, foyij, Fxij and Fyij

in mesh cells adjacent to boundaries.
The finite difference analogue to (14c) is, for 1 I and 1 j L

2 Pi+4--q Pq

8x a 2p0(/)+" ,i+ +0i 200(i)+i+0-,i

(a4
D+ -D- +F’i-’ -F,i+Fi,_ -Fi

2 6t x 8y

1 + +, o, +

This difference equation for the pressure arises formally from applying the finite
difference analogue of the divergence operator to (21) and noting that the finite
difference divergence of the velocity field satisfies the equation

D i] D i,]-1(25)
u q u _a,i + D i.6x 6y

(This equation is the difference approximation to (5).)
The boundary conditions (15) in discrete form become

j J,(26a) p0,i ff .i, p t,i fft+, for 1 <=
(26b) p,, -0,,o y(o,, +,,0), 0 ,,) forj+ P i, 6y (p i,+ + 1

Although 0 and+ appear in the boundary conditions (26b), they also appear
in (24) with f 1, J in the same combination. As a result, 0 and +a never need
to be specified to obtain a solution to (24) and the boundary conditions (26). Equation
(24) and boundary conditions (26) constitute a singular linear algebraic system of
equations. When (24), with boundary conditions (26) incorporated, is summed, the
left-hand side sums to zero, demonstrating that all of the equations are not linearly
independent. Also, the last three terms on the right-hand side sum to zero, producing

n+lthe requirement that the double sum over (D i -D. a)/2 6t must vanish.
The vanishing of the sum of the left-hand sides of (24) and (26) is the discrete

analogue of the fact that the left-hand side of the integral of (6) over the room volume
vanishes when the boundary conditions u. n 0 are applied. The vanishing of the sum
of the right-hand sides of (24) and (26) is the corresponding discrete analogue for the
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requirement on the integral of the right-hand side o (6). This requirement, that F.Y Dij
must vanish at each time level, is the discrete analogue of (1 ld).

Examination of (28) for D ;} shows that it has been chosen so that its double sum
over all mesh points vanishes, and that the condition which must be satisfied to allow
this choice produces (29) for the mean pressure. Therefore, the singular linear algebraic
system is seen to be consistent and thus to allow a solution. The solution is made
unique by specifying that the double sum over all mesh points of/’} is zero. This is
tantamount to specifying that P0 is literally the mean pressure in the room, with/
the perturbation about the mean. Details of the algorithm used to solve (24) and (26)
for/i are presented in 11 ].

The heat source has been chosen to have the form

(27a) O ij Oif,

(27b) 0u A exp [-/ (x, xc Ayi],

(27c) x (i 1/2) tx, yj (j ) By,

(27d) f" Q0 tanh

.-1

(27e) o 0, t" tt"’.
.’=0

Hence, the discrete divergence of the velocity field becomes

(28a)

where

1
D, --- [(3’ 1)(,j-K]f",

Po

I J

(28b) K-3’-1 E Qu,
IJ i=1=1

and the mean background pressure is found from the difference equation
n+l n--1(29) Po =Po +Kf"28t

with p po 1 since fo 0.
Since difference equations (18) and (21) are three-level, second-order schemes

(leap frog) in time, a starting procedure is needed. The following first-order, explicit
scheme was used to start the computation and to restart when a change in the time
step had been made:

Pi+l,] --Pi](30a) u U t F -I- -x -7 --\2p0(1) +p+la

n+l= n__ 2
i,j+l--ij+(i,j+l

(3oh) v v u + + 1) +  o0) + +

(31 a) O 0,,

n+l(31b) po =p0+Kf"

When starting, (31a, b) are used to obtain p;+X and +x. Then ff is obtained from
(24) with (D+ -D.-x)/28t replaced by (D+ -D.)/t. With this solution for
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n+l n+l(30a, b) are used to obtain u ij and v ij The starting procedure is completed (and
two levels ol all dependent variables have been obtained) by solving (24) with n
replaced by n + 1 throughout. Subsequent time steps are taken in a straightforward
fashion with the density and velocity components being advanced through (18) and
(21), and the pressure being updated through (24).

The linear stability of the algorithm is the only other consideration for discussion.
A linear stability analysis ol (18) or the density shows that the time step 8t must
satisfy the following condition for stability:

where

When the stability condition (32) is not satisfied by a time step, the time step ;t" is
halved. Then the time-marching algorithm is restarted using the last time-level values
as initial conditions. A first-order time step is taken and then leap frog is resumed.

When the finite difference analogue of the curl (see (22)) is applied to the difference
equations for the velocity components (21), a discretized form of the equation for the
vorticity transport (10) is formed. A linear stability analysis of the difference equation
yields exactly the same form for the stability criterion as that found above for the
density equation. Reference to Fig. 2b shows that the density and vorticity are
evaluated at different points in the mesh, however, and therefore the divergence D
and the velocity components U and V are to be evaluated at different points than
those used in (32). To account for the difference in the stability criterion implied by
the different mesh location points, in all calculations performed using the algorithm
described above, the time step was chosen to be less than or equal to 0.8, the maximum
value found for the right-hand side of (32).

3. Example calculations. The algorithm described in 2 has been used to com-
pute solutions to the buoyant-flow equations for a heat source centered along the
floor in a square enclosure. Other calculations will be reported in a companion paper.

In Fig. 3 contours of constant temperature (isotherms) are shown at dimensionless
time 2.0 for a volumetric heat source centered along the floor in a square room. The
rate of heat added per unit volume is largest along the floor at the center of the room
and decreases in a Gaussian fashion with horizontal distance from the center and
exponentially with height above the floor" the dependence of the heat source upon
position in the room is given by (27) with xc 0.5. The heat source is "turned on"
slowly according to (27a) and (27d) asymptoting to full strength around 10.0. At
this early time the problem is still linear; the flow velocities are sufficiently small that
convection is unimportant, and the temperature increase in the fluid is directly
proportional to the volumetric rate of heat added. Therefore, the isotherms are also
contours along which the volumetric heat-addition rate is constant. (These contours
can be seen to be parabolas by examination of (27b), which describes the spatial
dependence of the heat source selected for these computations.) These computations
were performed on a spatial mesh of I J 31; the tick marks along the boundary
of the enclosure show the mesh cell spacing.

At time 11.5 (Fig. 4), a buoyant thermal has developed, giving the appearance
of a mushroom cloud. The temperature has increased and the density has decreased
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TEMPERliTURE CONTOURS liT T 2.000

FIG. 3. Contours o[ constant temperature at dimensionless time 2.0 in a square enclosure using a
31 x 31 mesh. At this early time convection is unimportant, and isotherms reflect contours ofconstant volumetric
heat addition.

TEMPERFITURE CONTOURS FIT T 11.500

FIG. 4. Contours o[ constant temperature at dimensionless time 11.5 in a square enclosure using a
31 x 31 mesh.

where heating has occurred. The heated fluid has become lighter than its surroundings
and begins to rise due to buoyancy. By continuity, surrounding fluid begins to be
drawn into the region of the heat source, and the isotherms, therefore, appear to be
pinched off at the bottom (near the center of the heat source). Two vortices of equal
and opposite strength located on the two halves of the heat source have developed
and have begun to rise with the fluid, being convected out of the region of primary
heating. The buoyant thermal intensifies in strength as shown in the plot at time 13.5
(Fig. 5), until the thermal hits the ceiling, as shown in Fig. 6, time 15.5, and begins
to spread. Inside the plume a distinctly periodic structure has begun to develop, as
can be seen vividly in Fig. 5; here, progressing up the plume along its centerline, one
finds a local low first, then a periodic sequence of local highs and lows.



130 H. R. BAUM, R. G. REHM, P. D. BARNETT AND D. M. CORLEY

TEMPERFITURE CBNTIZIURS FIT T 13.500

FIG. 5. Contours of constant temperature at dimensionless time 13.5 in a square enclosure using a
31 31 mesh.

FIG. 6. Contours of constant temperature at dimensionless time 15.5 in a square enclosure using a

31 x 31 mesh.

The heated gases spread along the ceiling and fill the room from the top down,
as shown in Figs. 7 and 8. This physical behavior is exactly what is observed in
room-fire tests and in other experimental observations of heating in enclosures. The
symmetry about the centerline of the room displayed in these computations is some
measure of the accuracy with which they were performed: the heat source is placed
symmetrically, but the computations were performed as if no symmetry existed. To
assess the resolution of the computed results shown in Figs. 3-8, the flow field was
computed again using a larger number of mesh points: I 63, J 64. Selected plots
from this larger computation are shown in Figs. 9-11.

These plots demonstrate that the large-scale features determined by the 31 x 31
computation are correct and agree with those determined from the larger computation
to within about ten percent. The results from the larger computation are characterized
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TEMPERQTURE CONTQURS QT T 16.500

FIG. 7. Contours of constant temperature at dimensionless time 16.5 in a square enclosure using a
31 31 mesh.

TEMPERFITURE CONTIZIURS FIT T 18.500

&...,,:: ...... ......
.’":’::",i":.,

FIG. 8. Contours o] constant temperature at dimensionless time 18.5 in a square enclosure using a
31 x31 mesh.

by smoother isotherms and more detailed structures because of the greater resolution.
We note that the time required for the buoyant thermal to reach the ceiling is about
ten percent longer in the 63 x 64 results than in the 31 31 results, again apparently
because of the greater spatial (and temporal) resolution of the larger computation.

Detail on a length scale of the order of one or two mesh cells must be disregarded
because the computations cannot resolve such detail. On the other hand, features
with a larger scale can be interpreted. The spatially periodic behavior in the plume
noted above is a feature which requires some discussion. The starting thermal and
the plume induced by a heat source in an enclosure are a result of physical instability
of the flow field. In addition, in the introduction, we discussed the fact that this fluid
model was one in which viscosity has been ignored, and therefore it could be considered
to result from the Navier-Stokes equations in the limit of very large Grashof number
(roughly Reynolds number squared).
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TEMPERFITURE CONTOURS FIT T 11.225
lll

FIG. 9. Contours of constant temperature at dimensionless time 11.225 in a square enclosure using
a 63 64 mesh.

TEMPERFITURE CONTOURS FIT T 15.225

FIG. 10. Contours of constant temperature at dimensionless time 15.225 in a square enclosure using
a 63 x 64 mesh.

Over the last several years, starting with the pioneering work of Brown and
Roshko [5], there has been a reexamination of the meaning of turbulence in shear
flows. There had been a growing realization that turbulence is not satisfactorily
described in terms of velocity correlations and their corresponding spectra only.
Rather, there are distinct coherent vortex structures in shear flows, and Brown and
Roshko vividly demonstrated the existence of these coherent structures in turbulent
shear flows using shadowgraphs to visualize the flow field. In particular, among many
other interesting features, Brown and Roshko found that large scale coherent structures
of the same type existed in a shear layer independent of the value of the Reynolds
number provided only that the Reynolds number is large enough to have turbulence.
Subsequent studies in other flows (see Roshko [19] for some of the references) have
shown that organized structures exist in these flows also. In addition, recent theoretical
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FIG. 11. Contours of constant temperature at dimensionless time 16.187 in a square enclosure using
a 63 x 64 mesh.

studies have shown that many of the features of the large-scale coherent structures
observed in high Reynolds number flows can be described by vortex structures
satisfying Euler’s equations.

The spatially periodic structures calculated in the starting thermal and the plume
have been found to be vortices of alternating sign produced in the heating region and
convected out by buoyancy. These vortices increase in strength with height above the
floor and occur in antisymmetric pairs with respect to the centerline of the room. We
interpret these structures as analogous to the large scale coherent structures observed
in turbulent shear flows. In addition, because these vortices are convected with the
buoyant flow, the spatial periodicity is translated into a temporal frequency: at any
point within the plume, each of the dependent variables oscillates with a frequency
related to the rate at which vortices are generated and convected away. Experiments,
both at the National Bureau of Standards and elsewhere [22], have demonstrated
qualitatively the same feature: namely, buoyant "puffs" or regular upwellings, followed
by short quiescent periods, produced at a frequency determined by the experimental
arrangement. The frequency of these puffs is also found to agree with the frequency
predicted by these calculations.

Appendix. Alternate nondimensional variables. Consider the dimensional system
of (1) and (4) written in the form:

--+ui + Q- Od =0,
Ot xi p

1 Po

(A1) + uj + + [p p0(y)]gk, 0,O\ Ot Ox]

OUi
Oxi

3/-1 l[o_lT Po - I O dV]"
Here p and u are the density and velocity components as defined in the text. The
quantities p0(y) and ff are respectively the initial density stratification in the vertical
(y) direction and the difference between the local pressure and the hydrostatic pressure
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at the height in question. This pressure difference which affects the fluid motion, is
the quantity i6 defined in (13b) of the text. The heat source Q is prescribed in the form

Oo[(t) I 12--(x--xc) x--y/ly(A2) Q e

Note the slight difference in notation from (27b) of the text.
We now seek to introduce nondimensional variables, denoted with an asterisk

(*), that are close to those defined in the text but which reflect the strength of the
heat source Q0. To this end, we define the following quantities:

(A3)

xi Hxi*, ui Uuig(Xb #, t*)

H=- t*, Po= PPo*(t*),

P oo(O)Up*(x*, t*),

o oo(O){1 +/3o*(x,*, t)},

oo(y) oo(O){1 + t3oo* (y*)}.

Here, P, is the undisturbed ambient pressure, po(0) the ambient density at the floor,
and H the height of the enclosure. The reference velocity U and the dimensionless
density ratio/3 are as yet undefined. These two quantities are now determined by
requiring that in the Boussinesq limit, when the density ratio/3 --> 0, all nongeometric
parameters disappear from the problem. This leads to the following equations for U
and/3:

U /3U Oo(A4)
gH

[3, --=HElz’--.
This yields a velocity scale which differs from that employed in the text by a factor
x/, and a dimensionless density ratio given by

l { Qo g }
2/3

Finally, the equations of motion (A1) become

(1 +/30*)\ at* +Uk d-*) ++k’(P*-P*)=O’Oxi*
OUi(A6)
xi*

flD*,

D*=T-1 1 [Q* H2lz ]"V Po* -V f(t*)

Q. f(t*)H2

[ (H)
2

(H) ]/- ll
exp -x (x*-x*)2- -y y*
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Note that when /3 is O(1); i.e., when there are significant density variations, the
nondimensionalization is for all practical purposes the same as that used in the text.
The most significant feature of this derivation is (A5), which determines/ and hence
the conditions under which a non-Boussinesq model is necessary.
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AUTOMATIC SELECTION OF METHODS FOR SOLVING STIFF AND
NONSTIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS*

LINDA PETZOLDt

Abstract. This paper describes a scheme for automatically determining whether a problem can be
solved more efficiently using a class of methods suited for nonstiff problems or a class of methods designed
for stiff problems. The technique uses information that is available at the end of each step in the integration
for making the decision between the two types of methods. If a problem changes character in the interval
of integration, the solver automatically switches to the class of methods which is likely to be most efficient
for that part of the problem. Test results, using a modified version of the LSODE package, indicate that
many problems can be solved more efficiently using this scheme than with a single class of methods, and
that the overhead of choosing the most efficient methods is relatively small.

Key words, stiff, nonstiff, ordinary differential equations, initial value problems

1. Introduction. This paper describes a scheme for automatically determining
whether an initial value problem dy/dt=f(y,t), y(to)=yo, can be solved more
efficiently using a class of methods suited for nonstiff problems or a class of methods
designed for stiff problems. The decision is based on information which is available
at the end of each step of the integration, so that if a problem changes character (i.e.,
from nonstitI to stiff or vice versa) in the interval of integration, the solver automatically
switches to the class of methods which is likely to be most efficient for that part of
the problem.

This scheme is useful in several different situations. The user of an ODE solver
may not know whether his problem is stiff, or the solver may be called by another
code (a package for solving partial differential equations or boundary value problems,
for example) where the character of the problem is not known in advance. With the
technique described here, the most effective family of methods is chosen automati-
cally. Moreover, many "stiff" problems are often nonstiff in the initial phase, or
transient. Integrating through the transient with stiff methods (by a "stiff method,"
we mean a method designed for stiff problems) is very expensive, whereas nonstitt
methods are much better suited for this purpose. As the problem becomes stiff, the
code can eventually switch to the stiff methods. In general, problems may be stiff in
some intervals and nonstitt in others. This scheme selects the methods that are most
efficient for each interval.

Several techniques have been reported in the literature (Shampine [5], [6], [7])
for detecting stiffness. Our objective here is somewhat different, because in addition
to detecting stiffness we actually expect the code to shift to the methods which are
most appropriate for the problem. Some of the ideas in these papers (especially
Shampine [7]) have influenced the approach that was taken here. Shampine [8] outlines
a scheme for automatically altering the solution algorithm based on stiffness of the
problem for codes based on implicit A-stable formulas. Our scheme is somewhat
more general than his in that we automatically select a method from a class of methods
where all of the members are not necessarily A-stable.

The basic principles underlying the switching technique are quite simple and are
explained in the next section. Some of the difficulties involved in implementing this
scheme are described in 3, along with the approaches we have taken to resolve these
problems.

* Received by the editors December 3, 1980, and in revised form September 1, 1981.
t Applied Mathematics Division, Sandia National Laboratories, Livermore, California 94550.
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This scheme has been implemented using Adams methods (orders 1-12 with
functional iteration to solve the corrector equation) as the family of nonstiff methods,
and backward differentiation formulas (BDF) (orders 1-5 with modified Newton
iteration) as the family of stiff methods. These seem to be good choices because
general purpose codes based on these methods are among the most effective codes
available for solving nonstiff and stiff problems, respectively [1], [2], [4]. We have
modified the code LSODE, an updated version of the GEAR package written by A.
C. Hindmarsh [3], to automatically switch between Adams methods and BDF
whenever it is appropriate. In order to illustrate the basic operation of the scheme,
some care has been taken to keep the changes to the code to a minimum and to avoid
exploiting any properties that are specific to this particular implementation (for
example, error estimates based on the Nordsieck vector). It is clear, however, that by
exploiting some of the features specific to a particular code, somewhat greater reliability
and efficiency of this scheme could be achieved. In addition to a block of code which
actually makes the decision and implements the change in method families, several
other changes to the code were made so that reliable information about the problem
could be obtained at each step. These changes occur in the stepsize and order control
logic and in the corrector iteration in the Adams part of the code. In 4 we describe
the results of applying this code to some test problems.

The overhead of making the switching decisions is small. For a truly nonstiff
problem, where the method family will never be changed (we always start out using
nonstiff methods because they are much cheaper per step and many stiff problems
are really nonstiff in the beginning of the interval), this code runs nearly as fast as
the unmodified LSODE, using the Adams option with functional iteration. For
problems which are stiff in some regions of the interval of integration and nonstiff in
others, this code can be much faster than using either Adams methods or BDF over
the entire interval. Because the cheaper nonstiff methods are used during the transient
of a stiff problem, significantly fewer Jacobian evaluations are required for many stiff
problems.

2. Basic strategy. As the integration proceeds our objective is to choose the
family of methods which will solve a given problem most efficiently. This decision is
made by comparing the method that is currently being used to the method that would
be used if the code switched to the other family of methods. To compare the methods,
we consider the stepsize that each method could use on the next step, and the cost
per step of each method. Since one step of a nonstiff method is typically much cheaper
than one step of a stiff method, we should favor using the nonstiff method as long as
the stepsizes it uses are not very much smaller than the stepsizes that would be used
by the stiff method.

What controls the stepsize for each method? For the nonstiff method several
considerations affect the stepsize. First, we must choose a stepsize so that the formula
is accurate over the next step (so that a norm of the local truncation error is less than
some constant e). If the code uses functional iteration to solve the corrector equation,
the stepsize must be small enough so that the iteration will converge rapidly. Finally,
the stepsize must be small enough so that the method will be stable. For the stiff
method, the stepsize is chosen so that the formula is accurate over the next step. We
will assume that stability and convergence of Newton’s method do not restrict the
stepsize that could be used by the stiff method. Obviously, this assumption may not
always be correct. However, while the stiff method we are currently using may not
be stable for the stepsize we would like to use on the next step, another method in
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the family of stiff methods probably would be. Hopefully, the order control mechanism
would find that method. Skelboe [9] describes an order control strategy to accomplish
this; we will not take up this question here. If the stepsize is being controlled by
convergence of Newton’s method--due, for example, to a very poor approximation
to the Jacobian matrix--these assumptions will cause the code to stay with the stiff
methods even if they are doing very poorly. We see no good way to avoid this problem.

The first task is to estimate the stepsize that each method could use to achieve
the requested accuracy. Let N be the nonstiff method and S the stiff method. If N
and S are both linear multistep methods of order q, for example, then we can require
the norm of the principal part of the local truncation error to be less than e. Suppose
we are currently using method N with step size h CURRENT, that N is stable for this
problem with this stepsize, and that I[LTENII is our estimate for the local truncation
error. Then, it is well known that hN and hs (the stepsizes that the nonstiff and stiff
methods could use on the next step) should satisfy

/(+)

and

(2) hs =, IIrll h.

C and Cs are constants dependin on the methods N and $.

The stepsize of N may also be affected by considerations such as stability and
convergence of functional iteration, so we must find out what effects, if any, these
conditions will have. To accomplish this, we need an estimate for II,sfl y or an estimate
of the spectral radius o(6f/Sy).

When the stiff method is used, a Jacobian matrix is available and [I,f/,yll can be
computed directly. The norm used is the matrix norm which is consistent with the
vector norm that is used in the code--a weighted norm where the weights depend
upon error tolerances. The norm can be computed cheaply (relative to the cost of a
matrix factorization) whenever a new Jacobian matrix is formed. Thus, the norm
which is available at any given time may correspond to a time several steps back, but
it is not likely to be too severely in error because the stiff method reevaluates the
Jacobian whenever it changes significantly.

If we are using the nonstitt method, a lower bound for IItf/@ll can be obtained
very cheaply during the correcter iteration, using the ideas of Shampine [7]. The
bound is formed concurrently with our estimate of the rate of convergence of the
iteration. The basic idea is that if the iteration is written as

then

y(+) hyf(y ()) + O,

Ily(- y-11 --< hy

The maximum of these ratios,

lly (+’ y (11
hv Ily ()- y ("-’11
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obtained over the current step, is a lower bound for 11/7yll. These bounds tend to
be quite good (near the spectral radius of 8f/By), although they fluctuate when the
dominant eigenvalues of 8]’/5y are complex. Unless the difference between two iterates
is so small that our estimate would be polluted by roundoff error, we force the nonstiff
part of the code to take at least two corrector iterations, in order to generate a lower
bound for II:/yll on each step.

In any case, suppose a lower bound K for II:/yll has been generated or 11/7yll
has been computed directly. Then hr must be small enough so that functional iteration
will converge at a sufficiently rapid rate r, for example r-< 1/2. Thus hr must satisfy
hm,ll,W,yll <- 1/2, so we will require

1
(3) hN <=2yK

Stability also constrains the stepsize for the nonstitt method. If rq is the radius of
the largest half disc contained in the stability region of method N, we must have

or the computation can become unstable. Thus, we require hr to satisfy

(4) hr <
rl

=2K
where K is our lower bound for II/yll and the factor is included so that we can
be reasonably sure that hr would lead to a stable computation (since K is only a
lower bound). We actually require h to satisfy (4) when computing with the nonstitt
method, not just for deciding whether to use the stiff or nonstitt methods. The reasons
for this will be discussed in the next section.

Once these estimates have been generated, it is a simple matter to decide whether
to use method N or method $. The stepsize that N could use on the next step is the
largest hr that satisfies conditions (1), (3) and (4). The stepsize that $ could use is
the largest hs that satisfies (2). Supposing that N is cheaper per step than S, so that
we would be willing to take as many as M/ steps with N for each step that would
have to be taken with $, then we will shift to method S (if we are currently using N)
if

(5) hs >-_ M+hr.

It is important to guard against changing families of methods too frequently, for it
might happen that the computation is no longer stable. To avoid this, we stay with
method $ possibly a little bit longer than what is really optimal; that is, shift from S
ton if

(6) hr >-_M-hs.

In our code, we have taken M_ 1.
Another factor that is working to prevent the code from shifting back and forth

very often is that the constant K which is computed in N is a lower bound for
while in $, ll/7yll is computed directly This has a conservative effect in switching
from $ to N. As a final precaution, we force the code to wait 20 steps after a change
in method families before considering a change again. This provides time for the error
estimates to settle down after the switch before trying to use them to make another
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such decision. The constantsM/ andM_ can be chosen to be functions of the dimension
of the system of equations.

3. Imlflementafion considerations. In any practical implementation of a scheme
such as the one described above, it is important that the information upon which the
code is basing its decisions be reliable, and not misleading. The code should recognize
situations where it is not possible to obtain reliable information, and take some
appropriate action. In this section we will describe some of the problems involved in
ensuring that the information which our scheme requires, namely the local truncation
error and a reasonable lower bound for 118f/Syll, are reliable, and in recognizing those
situations where the information obtained may be misleading.

Several problems with estimating the local truncation error must be dealt with.
The first is a problem involving instability. Normally, when the stepsize for the nonstitt
method is limited by stability, it tends to oscillate about the largest stable value. (This
is explained in detail in Shampine and Gordon [5].) When the stepsize is inside the
region of absolute stability of the method, errors are damped. When it is outside the
stability region, there is an error growth which causes the error estimates to increase.
This eventually brings the stepsize back into the stability region (because the code
adjusts the stepsize to keep the error estimate less than e). In this way, most codes
do in some sense detect instability and handle it automatically. When this happens,
however, the code has no way of distinguishing whether the error estimates actually
reflect the smoothness of the solution or are polluted by terms arising from instability.
Thus, instability can make a problem appear to the code to have a solution that is
much less smooth than it really is. This is obviously a very undesirable situation for
our scheme, which is asking the question ater every step, "How smooth is the solution
relative to the size of the largest eigenvalues of the problem?"

There would seem to be several ways around this apparent dilemma. The simplest
solution is to switch to the stiff methods at the first sign that the stepsize is being
limited by stability. Unfortunately, this causes the code to use the stiff methods for
many problems that are only marginally stiff and could be solved much more efficiently
using the nonstitI methods.

Assuming then that our objective is to use the nonstitI methods as long as the
stepsize is not being limited very severely by stability, what can we do to ensure that
the estimates are not misleading? Because we intend to use the nonstitI method for
some time while the problem is stiff, some rather subtle difficulties can occur. For
example, even if we are using an A-stable corrector with functional iteration for
solving a problem which is becoming stiff, the error estimates may become polluted
by terms arising from instability, unless we are very careful about deciding when the
corrector iteration has converged. This is because the stability that is of interest here
is not the stability of the implicit method by itself (with the corrector solved exactly),
but the stability of the method with only a finite, but not necessarily constant, number
o corrector iterations.

For example, to illustrate the problems with stability, suppose the trapezoidal
method, with functional iteration and automatic stepsize control, is used for solving
a stiff problem, and that the corrector iteration is terminated when the norm of the
difference between two iterates is less than 8 (8 is some constant related to the error
tolerance e, like 8 e/10). As the problem becomes more and more stiff, the corrector
iteration eventually fails to converge, and the stepsize is reduced. This may happen
several times, until finally the stepsize is small enough that the iteration may converge,
not because the iteration is contracting, but because the difference between the
prediction and the first correction is less than 8. There are two ways to interpret this
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behavior. If the stepsize is limited by convergence of the iteration, then the error
estimate must be less than e--possibly much less--if it is to be an accurate indication
of the smoothness of the solution. However, since the error estimate is based on the
difference between the predictor and the corrector, and this difference may be accurate
only up to the error 6 incurred from terminating the corrector iteration early, there
is a limitation on how small an error estimate the code can resolve. Another way of
seeing this is the following: As long as the difference between the prediction and the
first correction is less than 6, the algorithm we are using is in some sense not the
trapezoidal method. It is, instead, a prediction followed by one corrector iteration
based on the trapezoidal method. This method is not A-stable. Thus, errors are
amplified and the error estimate is misleading. These problems can be avoided if 1)
the code is forced to take two corrector iterations per step to estimate a rate of
convergence, and 2) the step is rejected if the rate of convergence is not rapid enough,
even though the difference between two successive iterates may be quite small. This is
an implicit limitation on the stepsize of the form h]16f/6y]]<= C, for C some constant,
because steps are rejected during the corrector iteration that do not satisfy this
criterion. A problem with this strategy is that when convergence of the iteration is
limiting the stepsize, there are likely to be many rejections of this type, and this is
costly.

The solution that we have adopted for these problems of polluted error estimates
is to explicitly limit the step size so as to try to ensure stability. Zlatev and Thomsen
[11] employ a strategy of this type to avoid repeated step failures, although their code
uses a user-supplied estimate of the magnitude of the largest eigenvalue of the Jacobian.
The form that this takes in our modification to LSODE is that when a new stepsize
and/or order is selected in the nonstiff part of the code, the stepsize that could be
used in the next step for each order is computed as the minimum of the stepsize
required for accuracy and the stepsize needed to ensure stability. (We require hK <=
rq/2, where K is our lower bound for I[]’/yll, and rq is the radius of the largest disc
contained in the stability region of the Adams PECE method of order q. There is no
good reason for using the PECE stability region here--in fact, it is probably more
reasonable to use the intersection of Adams-Moulton stability regions with regions
where a rapid rate of convergence of the iteration could be obtained. The code is not
very sensitive to these numbers, so long as they are the correct order of magnitude,
and they decrease monotonically with the order from order 2 or 3 upwards.) Since
this code chooses the order which can use the largest stepsize, an effect of this explicit
limitation on the stepsize is that when stability is limiting the stepsize, the order is
automatically lowered (unless it is already at second order) because the restrictions
are less severe for lower order methods.

Sometimes the error estimate cannot be trusted because it may be polluted by
roundoff error. This occurs frequently in three different situations" 1) At the very
beginning of the computation, the stepsize is often much smaller than what is needed
for accuracy, and it takes some time for the code to increase it. During this time,
error estimates are quite small, and may be indistinguishable from zero by roundoff.
2) After passing over a discontinuity, the code may be taking very small steps, while
the problem after the discontinuity is very smooth. The same problem as in 1) then
occurs. 3) With the limitation on the stepsize to ensure stability, as the problem
becomes more and more stiff the error estimates become smaller and smaller. If the
tolerance is tight, and/or if the constant M/ in (5) is relatively large, then the error
estimates can be driven down to a level which is sensitive to roundoff. The code should
switch to the stiff methods in situation (3), but not in (1) or (2).

The problem of detecting when the error estimate may be polluted by roundoff
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does not appear to be trivial. We have taken a simple approach to this problem and
some further work is necessary on this topic. We say that the estimate is indistinguish-
able from zero if the norm of the difference between the predictor and the corrector
is less than one hundred times the norm of the predictor times the unit roundoff error
of the machine. When this condition is detected, then if the last stepsize chosen had
to be reduced to ensure stability, we switch from the nonstiff to the stiff methods.

In order to guard against switching back from the stiff methods immediately after
passing this test, a similar test in the reverse direction is necessary. We switch from
the stiff to the nonstiff methods if HN/Hs >= M_, and the estimated predictor-corrector
difference, for the stepsize that the nonstiff method would use, is not so small as to
be indistinguishable from zero as measured by the test described above.

The lower bound for I[a/’/diyll can also be misleading because of roundoff. This
has been noted by Shampine [7], and we use a test similar to his to describe whether
to form the bound. If Ily(k + 1)-y(k)ll---100. u Ily(0)ll, the bound is not formed and
the corrector is considered to have converged (the iteration is terminated). Since a
recent lower bound is important for our scheme, then if the bound has not been
generated recently and the last stepsize chosen had to be reduced to ensure stability,
we switch from the nonstiff to the stiff methods.

If the error tolerance e is so small that the norm of the difference between the
predictor and the corrector is forced to be smaller than one hundred times the norm
of the predictor times the unit roundoff error of the machine, then the error estimates
are indistinguishable from zero, and no lower bounds for Ilaf/ayll are formed. In this
situation it is impossible to tell whether the problem is stiff. To avoid these problems,
we double e if e _<- 100. u Ilyll at the start of any step.

Another difficulty with lower bounds for IIsTyll occurs in problems whose
dominant eigenvalues have large imaginary parts. For these problems, the lower
bounds can fluctuate between values much smaller than the spectral radius of the
Jacobian, and much larger. In response to this problem, and in the interests of being
conservative, we use the maximum of all lower bounds generated since the last time
a change in stepsize or order was considered (at most, q + 2 steps). If a lower bound
has not been generated during that time, the code may decide to switch to the stiff
methods. If the switch is not made, the most recent nonzero maximum is used. These
fluctuating estimates can cause problems for the stepsize and order selection mechan-
isms in the code. For instance, the stepsize may be restricted and the order lowered
based on an unusually large estimate, when possibly the next time such a change is
considered the estimate is much smaller. Since the earlier computation was probably
very stable (because of the large estimate restricting the stepsize), the response of the
code to the smaller estimate is likely to be to increase the stepsize and raise the order
(this is because, without the effects of instability on the error estimates, high order
differences of the solution tend to be smaller than low order differences). K.Stewart
[10] has suggested using averages of the lower bounds; this looks like a very go6d
idea, but in the case of wildly fluctuating estimates there still seem to be problems.
Either an average that heavily weights large values, or the maximum over a large
number of past steps would also help to minimize this difficulty. Order selection
algorithms now used in nonstiff codes do not appear to be adequate when the stepsize
is restricted to ensure stability and/or convergence of functional iteration. Different
order selection algorithms should probably be used in this situation.

4. Practical experience. In this section we will first complete the description of
the modifications that were made to LSODE, and then describe the results of using
the modified code to solve some problems.
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A change from one family of methods to the other is considered after every
successful step, unless it has been less than twenty steps since the last switch. The test
is skipped if the current method is an Adams method of order greater than five. The
reasoning behind this is that the code is not likely to be using such a high order
method for solving a stiff problem. If the problem is stiff, then stability will be restricting
the stepsize, and the order should be lowered rapidly so that soon the test will be
made (there is some danger in this logic, but there have been no problems with this
in practice).

The method in the other family that we consider switching to is the one which
is of the same order as the method that we are currently using. This is in some ways
an arbitrary decision, because information is always available to consider any method
with order less than or equal to the current order. Most of the time when the switch
is made from Adams to BDF, the order is already quite low, so there is not much
choice .about which BDF to use. When switching from BDF to Adams there should
not be any stability problems with the new method, because the stepsize is restricted
to ensure stability. There is a potential source of problems when changing from Adams
to BDF, however. The stepsize will generally be increased substantially in this direction,
and it is possible that for the stepsize chosen, the BDF may be unstable (especially
if the problem has eigenvalues near the imaginary axis). If this happens, it is possible
that the code could be led into diagnosing that the problem is less smooth than it
really is, and would then switch back to the nonstiff methods. This problem has not
been encountered in practice.

The actual switch in method families has been implemented in the most obvious
way using the Nordsieck data representation. New method coefficients are calculated,
and the old Nordsieck vector is used as if that family of methods had been used all
along. Thus, in the first step of the "BDF" after using Adams methods, a true BDF
is not really being used, because that would require the polynomial represented by
the Nordsieck vector to interpolate past values of the solution, whereas the Adams
methods use a polynomial whose derivatives agree with the derivatives of the solution
at past times. If the switch is done often, this could cause stability problems, but there
is no problem if it is done only a few times. There are several devices in the code
which have been described earlier designed to prevent it from thrashing between
families of methods. Thrashing has not presented a serious problem in our experience.

The norms used in the code were all changed to weighted 11 norms, and ll/7yll
is computed in the stiff part of the code with the norm which is consistent with the
weighted vector norm. (The weights are the same as the ones used in the unmodified
LSODE, and depend on the error tolerances.) The constant M/ was taken to be five
in the tests described below, and M_ 5/M/ 1. The test problems are relatively
small (all have dimension less than or equal to 51 and most are much smaller than
that) so for these problems our algorithm is conservative about diagnosing some
problems as stiff. With these parameters and the range of tolerances used in the tests,
the code occasionally runs into the roundoff limitations described earlier.

The modified code was tested on the nonstiff DETEST problems [4] and on the
stiff DETEST problems [1], [2]. In addition, we solved van der Pol’s equation,

(7)
y y2, yl(0) 2.0,

y r/(1 y21)y2--Yl y2(O) 0.0,

with r/= 100.0 on the interval [0, 1000]. This problem was chosen because it alternates
between being stiff and nonstiff several times during the interval of integration, so
that it is a good illustration of the code’s ability to switch back and forth between the
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two families of methods. All computations were done in single precision on a
CDC 6600 with pure absolute error tolerances. The initial stepsize was determined
automatically by the code (using the algorithm in LSODE) in all cases. An initial
stepsize of 1.0E-12 was used for all problems. Detailed results for the DETEST
problems along with results for unmodified LSODE for the same problems are
available from the author. Both codes achieved comparable accuracies for the test
problems. Conclusions based on these tests are summarized below.

Very few of the problems of nonstiff DETEST were diagnosed as stiff. The times
that this happened the problems were solved in a comparable amount of time or faster
(in terms of function evaluations, steps, and execution time) than unmodified LSODE
using functional iteration.

On most of the nonstiff problems, the modified code used fewer steps, but more
function evaluations, than LSODE with MF- 10 (Adams methods with functional
iteration). This is mainly a consequence of forcing two corrector iterations per step.
The limitations on the stepsize to ensure stability do not appear to seriously limit the
efficiency of the code on these problems. The modified code was slightly less efficient
than LSODE on the sum total over all of the nonstiff problems. This is to be expected,
as there is some price to be paid for making the tests to diagnose stiffness for problems
that are not stiff. A summary of results for the nonstiff DETEST problems is shown
in Table 1. We have also included in this table the results of using LSODE with
MF 22 (BDF with Newton’s method using finite-difference Jacobian), as an example
of how a code which might be used if the problems were suspected to be stiff would
perform on the test problems.

TABLE 1
Nonstiff test problems, summary.

Exec. FCN No. of
Code EPS time calls steps

Switching* 10-3 5.265 7,891 3,234
10-6 12.041 17,189 7,681
10-9 24.589 30,987 14,819
Overall 41.894 56,067 25,734

LSODE (MF 10)f 10-3 4.334 5,412 3,557
10-6 10.417 11,081 8,948
10-9 24.243 22,581 19,595
Overall 38.994 39,074 32,100

LSODE (MF 22) 10-3 10.263 8,503 3,909
10-6 25.488 19,237 10,454
10-9 61.403 43,926 28,595
Overall 97.154. 71,666 42,958

* The stiff methods in the code use modified Newton iteration with finite-difference generated Jacobian
matrices.

t The option MF 10 uses Adams methods with functional iteration.
The option MF 22 uses BDF and modified Newton iteration with finite-difference generated

Jacobian matrices.

On the stiff problems, our experience indicates that the tests work very well at
loose and moderate tolerances. With EPS 10-3, the code switched to the stiff methods
at a reasonable time for every problem, and with EPS 10-6 the results were very



AUTOMATIC SELECTION OF SOLVING METHODS 145

good except for problem E4. At tighter tolerances, there were minor difficulties mainly
with B5 and E4. Both of these problems have eigenvalues with relatively large
imaginary parts, especially B5 which has eigenvalues -10+ 100i. So far as we have
been able to tell, the difficulties with these problems appear to be related to fluctuating
lower bounds for I[/’/y l[. The code switched back and forth between the two families
of methods once on problems E2, EPS 10-3, and F4, EPS 10-3. This is the correct
action for problem E2, which is van der Pol’s equation (7) with rl 5. Problem F4
is the Field-Noyes chemical oscillator [2], and the response of the code to this problem
appears to be incorrect, although this does not seriously degrade the efficiency of the
code (over using LSODE with MF 22).

A better test for deciding when the error estimate is polluted by roundoff would
probably increase the reliability of this scheme at tight tolerances, although it performs
well already for most problems, and we do not expect many users to ask for stringent
tolerances when solving stiff problems. For practically all stiff problems, this new
switching technique uses many fewer Jacobian evaluations, and it is definitely more
efficient than LSODE (MF 22) at loose tolerances. Since most stiff problems we
would expect to see in a practical situation would be somewhat larger than the test
problems (all have dimension less than or equal to ten) and would be solved with
loose to moderate tolerances, this technique is useful. At stringent error tolerances,
our scheme uses more function evaluations than LSODE (MF 22), probably due
again to forcing two corrector iterations per step in the nonstiff part of the code
(during the transient). A summary of results for the stiff DETEST problems is given
in Table 2, and detailed results are available from the author.

TABLE 2
Stiff test problems, summary.

Exec. FCN JAC No. of
Code EPS time calls calls steps

Switching*

LSODE (MF 22)t

10-3 8.244 8,331 488 3,821
10-6 21.606 20,676 707 9,984
10-9 54.213 50,763 1,894 22,751
Overall 84.063 79,770 3,089 36,556

10-3 14.488 10,143 753 5,368
10-6 27.414 19,227 1,285 11,136
10-9 61.564 43,129 2,700 27,103
Overall 103.466 72,499 4,738 43,607

* The stiff methods in the code use modified Newton iteration with finite-difference generated Jacobian
matrices.

" The option MF 22 uses BDF and modified Newton iteration with finite-difference generated
Jacobian matrices.

To illustrate how the code performs on a problem which repeatedly changes
character during the interval of integration, we have included the results of applying
the code to van der Pol’s equation (7) with r/= 100.0 on the interval [0, 1000]. A
plot of the first component of the solution to this problem is shown in Fig. 1. During
the times when the solution is changing rapidly, the problem is nonstiff, and when it
is changing more slowly, it is stiff. Statistics on the performance of the modified code
for this problem are shown in Tables 3a, b.
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TABLE 3
van der Pol’s equation test results

Switched from Switched from
BDF to Adams Adams to BDF

Time Step Time Step

EPS 10-6

EPS 10-9

.04095 34
80.79 172 81.25 417

162.21 555 162.59 680
162.62 813 162.67 859
243.64 981 244.09 1190
325.05 1312 325.42 1423
325.44 1519 325.50 1583
406.46 1721 406.84 1846
406.87 1979 406.92 2025
487.89 2147 488.34 2356
569.30 2478 569.75 2711
650.72 2833 651.17 3042
732.14 3164 732.59 3381
813.54 3519 813.92 3644
813.95 3777 814.00 3823
894.97 3945 895.42 4154
976.38 4276 976.76 4387
976.78 4497 976.84 4546

.06328 73
80.40 341 81.18 618
81.19 840 81.28 953
161.89 1214 162.70 1639
243.32 1912 244.12 2332
324.68 2584 325.53 3018
406.14 3292 406.95 3719
485.38 3917 485.47 3938
487.51 4016 488.37 4433
566.98 4655 569.79 5186
650.38 5476 651.21 5913
731.77 6171 732.63 6659
813.23 6898 814.05 7369
894.66 7641 895.46 8079
976.07 7335 976.88 8766

Error No. of FCN JAC
Code tolerance steps calls calls

Switching* 10-6 4565 9311 372
10-9 8802 17465 456

LSODE" (MF 22) 10-6 5810 9124 707
10-9 15851 21617 1330

* The stiff methods in the code use modified Newton iteration with
finite-difference generated Jacobian matrices.

t The option MF 22 uses BDF and modified Newton iteration with
finite-difference generated Jacobian matrices.

We are still making improvements to the switching code. Anyone desiring a copy
of the code described in this paper (or possibly an updated version of this code) is
encouraged to write to the author.
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FIG. 1. Van der Pol equationmfirst component.

$. Snmmary. A scheme has been described for automatically determining
whether a system of ordinary differential equations can be solved more efficiently
using a class of methods suited for nonstitt problems or a class of methods designed
for stiff problems. A code using this new technique is nearly as efficient for solving
problems which are known in advance to be nonstitt (stiff) as codes designed for
nonstitI (stiff) problems. Switching between families of methods is often more efficient
than using a stiff method alone for problems which are nonstitt in some regions of
the interval of integration and stiff in other regions. This scheme is useful for solving
problems where the character of the problem is not known in advance, because the
methods which are likely to be most efficient are selected automatically.
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AN ITERATIVE METHOD FOR SOLVING INVERSE
PROBLEMS OF A NONLINEAR WAVE EQUATION*
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Abstract. The iterative numerical algorithm of the pulse-spectrum technique (PST) is extended to
solve the inverse problem for a nonlinear wave equation arising from remote sensing of the ocean sound
velocity profile by using finite-amplitude acoustic waves. Its applicability is demonstrated for the one-
dimensional case. Numerical simulations are carried out to test the feasibility and to study the general
characteristics of this technique without real measurement data. It is found that the PST does give reasonably
good results, and hence it is a viable method.

Key words, iterative method, pulse-spectrum technique, inverse problems, nonlinear wave equation,
numerical simulation

1. Introduction. The sound velocity profile of the ocean can be inferred numeri-
cally from a small number of experimental data obtained through remote sensing
techniques on the boundary as opposed to in situ techniques in the interior. From the
experimentalist’s point of view, for the ease of performing a reliable experiment the
measured physical quantity should be as fundamental as possible, e.g., the particle
displacement, the particle velocity, the pressure, etc. Often this type of remote sensing
problem can be formulated as an ill-posed inverse problem for a wave equation, where
the solution is often not unique and does not depend continuously on the given data.

This type of inverse problem for the linear wave equation has been solved
successfully using both numerical and analytical methods by many researchers in the
past and the present, e.g. Chen and Tsien [1], [2], Cohen and Bleistein [3], [4], Hagin
[5], etc. However, the linearized wave equation cannot accurately describe the correct
physical phenomena and is strictly correct only for waves with infinitesimal amplitude.
Hence one should consider this type of inverse problem for a nonlinear wave equation,
which should at least contain a small nonlinear term so that it can describe the weak
shock phenomenon. In this regard, to solve the inverse problems of a nonlinear wave
equation, Nigul [6] and Nigul and Engelbrecht [7] have presented a perturbation
method for solving an inverse problem of a nonlinear wave equation; however, it is
limited to one-dimensional problems and is not suitable for numerical computation.
In this paper we extend the so-called "pulse-spectrum technique" (PST)--an iterative
computational algorithmwfor determining the unknown velocity profile of a one-
dimensional ocean model from the boundary measurements of the particle displace-
ment and its space derivative (proportional to the pressure). It is more suitable for.
numerical computation and can be readily extended to solve three-dimensional inverse
problems. The basic idea of PST is that data are measured in the time-domain with
compact support (pulse-shaped functions), and the synthesis of the unknown coecient
is carried out numerically in the complex frequency domain by an iterative algorithm.

The PST was first introduced by Tsien and Chen [1] for solving an idealized
velocity inverse problem for the linear wave equation. Then it was further developed
to have the capability of handling noise and poorly distributed and inadequately
measured data by Chen and Tsien [2]. Later it was used to solve an inverse problem
in electromagnetic wave propagation by Tsien and Chen [8]. Recently, its versatility
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has been demonstrated by Chen and Liu [9] in an application to solving inverse
problems of a linear diffusion equation. Moreover, the discretized version of this
iterative algorithm under idealized conditions has been proved to converge quadrati-
cally by Chen 10]. This is quite efficient from the numerical computation point of view.

The main purpose of the present paper is to extend the numerical algorithm of
PST to solve inverse problems of a nonlinear wave equation and to demonstrate its
applicability. For simplicity, only the formulation of the inverse problem of a one-
dimensional nonlinear wave equation and its numerical algorithm are presented. The
numerical algorithm is written in a modular form. The numerical method used in each
module is chosen, not for its being the most efficient one in the one-dimensional case,
but for its ability to be extended to the three-dimensional case in a straightforward
manner. Then numerical simulations are carried out to test the feasibility and to study
the intrinsic characteristics of this numerical algorithm without real measurement data.
Finally, a comprehensive discussion of the numerical results and their implication in
actual implementation of this computational algorithm are given.

2. Mathematical formulation of the problem. The problem set forth here from
acoustical oceanography is the determination of the sound velocity profile, c (x). This
is achieved through remote sensing via acoustical pulses, which are produced near
the surface and directed downwards through the stratified ocean and past a deep
recording device near the bottom. The measurements of the pulses near the surface
and near the bottom of the ocean (initially at rest), together with the governing
equation for waves of finite amplitude, from nonlinear acoustics [11], make up the
complete mathematical formulation of the inverse problem.

The equation of motion governing the particle displacement (x, t) in a nondissipa-
tive fluid undergoing longitudinal compression from acoustical disturbances is

0: ( 0)(l) 0-- C2(X) I O
t7 OX2, ONX=<I, 06t,

where c(x) (>0) is the unknown sound velocity profile, and a(x) (>0) is the known
nonlinearity parameter which is chosen to be small to avoid shock formation in the
time interval of measurements. The nonlinearity parameter, a, is usually treated as a
constant, but for the sake of generality it is considered as a function of x, a(x),
throughout the treatment of this problem. The deep recording device is located at
x 0 and the other recording device, near the surface, is located at x 1. In other
words, x represents the height above the deep recording device.

The initial conditions, at the beginning of the remote sensing experiment, 0,
are

(2.) sO(x, O)= d(x), (x, O) =f(x).

The common assumption is that the ocean is at rest, d f 0, but d and f are carried
throughout this treatment in order to realize their effect in the solution process, as
well as for the sake of generality.

Next, an acoustic pulse is produced and recorded at x 1. It propagates down-
wards and past the deep recording device at x 0 where it is measured again, i.e.,
the boundary conditions are

(3) (0, t)= g(t), (1, t)= h(t).
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If C(X) were given, then the corresponding sO(x, t) would be determined by the
above equation of motion, initial conditions and boundary conditions. However, since
c(x) is not known, :(x, t) is not uniquely determined by the above constraints.
Therefore, for the determination of c (x) (cf. [1], [5]), an additional constraint is placed
upon sO(x, t) by an extra set of data recorded at x -0 as the pulse passes by; i.e.,

0- (0, t) p(t).(4) ax

Thus, the inverse problem is to determine c(x) from (1) given a and the data
d(x), f(x), g(t), h(t) and p(t). The experiment and hence the data recordings are
terminated when the pulse has entirely passed by the deep recorder, i.e., out of the
x domain at time t- T.

With regard to numerical use, any collection of data is essentially finite. In other
words, the data are, at best, specified only along the edges of a space-time grid
spanning the (x, t) domain. This discretized version of the problem is handled in 4.
Until then, the iterative solution of the problem will be treated in an analytic manner.

3. The iterative scheme. The following iterative algorithm is based upon succes-
sively improving upon an initial guess, Co(X), of the velocity profile and using the latest
improved guess to figure out what the next correction should be. For convenience, it
is c2(x) that will be determined, since c appears only in this form.

Let c2(x), (n-0, 1,2,...) be the nth iterative approximation of c2(x), where
c(x) is the initial guess, supposedly close to c2(x). Let (x, t) be the nth iterative
approximation of :(x, t), determined by (1), (2) and (3) with c 2 in place of c 2. Let
(5) ,c (x c/ (x -c (x).

Given c 2 and thus :,, the correction 8c 2 will be determined as follows and then added
to c 2 2 2to get c,/1, a better approximation of c Similarly let

(6) 6:, (x, t)= ,/l(x, t)-n(x, t).

This is the corresponding correction that will occur in :(x, t) when c is replaced by
2

c,/1. These corrections will be assumed to be small.
Upon substitution of sc and s.+1 (=so. + 6s.) into (1) with c2 and C2n+l (=C 2 -[- 6C 2n),

respectively, we get

Ot2
=Cn 1--0

OX ] O’
02 ((8)

02_._0 g. +,) (. +,.).
Ox Ox

Subtracting (7) from (8), we obtain

(9) c],o,() + o(),x ] Ox 2

where

and 02(6) contains expressions of the second and third order in correction terms.
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Since the boundary and initial conditions on s, and s,/1 are identical, the conditions
on 6s,, are homogeneous.

The last two terms of (9) will be neglected due to the supposedly small magnitudes
of the correction terms and a. (In linear acoustics, cz 0.)

(1 O) +8c.l-a --| 2"Ot2
C

OX 2 OX ] OX

Using (7), this becomes

(11)
0t

2 (2(n 2 --2 O2:n
C tC .C

cOX 2 c3t2
This will serve as the basic relationship between (C 2 and 8:n, for C

2 and :, have
already been determined.

Next, according to PST, the time domain is replaced by a frequency spectrum.
This is accomplished through the finite Fourier sine transform,

T

(12) (x, to) | so, (x, t) sin tot dt.
Jo

A finite transform is used not only because the data measurements were terminated
at time T, but also because the infinite transforms may not converge.

It is reasonable to assume that all sound disturbances have left the x domain by
the time that the acoustic pulse has passed entirely through it; i.e.,

(13) (x, t) =O(x’t) O, _--> T.
Ot

Thus, an infinite integral of s would present no problems. But since :, is only an
approximation of , the pulse produced at x 1 most likely will not quite match the
boundary conditions at x 0, e.g., 0:(0, t)/Ox # p(t), and thus will not simply pass out
of the x domain leaving the system at rest. Instead, a small residual wave is produced
by the boundary conditions at x 0 minus the effect of the acoustic pulse as it reaches
that point. Since the equation governing these waves is designed for nondissipative
fluids, the residual wave may reflect back and forth indefinitely without ever dying
out. Hence, the infinite transform of :n will not converge, in general.

Ideally, the determined correction c2 will be such that c 2 2
n+l =c andthus:,+l=s.

From the latter equality, (6) and (13), we get

(14)
6,, (x, T) -,, (x, T),

06,, (x, T) O’,, (x, T)
Ot Ot

Applying the finite Fourier sine transform to (11), keeping in mind the homogeneous
conditions on 6s,, we get

c. c{ (x, T)
+to

OX 2 Ot
(15)

sin toT + to’,, (x, T) cos toT}

+C2nC-4 On(X, T)sintoT+to[,(x T)costoT-d(x)]+to
Ot
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The boundary conditions accompanying this nonhomogeneous linear ordinary
differential equation are

T

8(0, to) 1 8s (0, t) sin tot dt O,

(16)

6so (1, to 6f, (1, t) sin tot dt O.

Now, everything on the right-hand side, RHS (x, to), of (15) is known except 8c 2,.
Hence, 8n can be expressed explicitly in terms of 8c 2 by means of Green’s function
G,(to, x; y) of (15) and (16):

(17) IoRHS (y, to)G,(to, x y)dy 6g,(x, to).

With 6, in this form, we can finally use the extra boundary condition, (4), that was
supplied in order to compensate for the lack of knowledge about c (x). Since f,/l f,
ideally speaking, (4) may be written as

8)
(o, og(o, (o, (o,
Ox Ox Ox Ox

This is incorporated into (17) after differentiation and setting x equal to 0"

OG.(to, O; y)
dy =/(to)

’.(0, to)
(19) RHS (y, to)

Ox Ox

Finally, each expression in (19) is known except 8c2,, which appears in one of the
two terms of RHS. Transferring the other term to the right-hand side of (19), we obtain

Io tC2nC’4{ -On(y’Ott’-------)))sin toT + to[g"(Y’ T)cos toT-d(y)]+to2g,(y, to)} OG,(to,Ox O; y)dy

+ c sin toT tos, (y, T) cos toT dy.Ox Ot Ox

This can be written in the abbreviated form

(21) fo K,,(to, y) 6c](y) dy b,,(to).

Hence, 8c 2, is the solution of a Fredholm integral equation of the first kind which
is an ill-posed problem, in general. Thus, special techniques must be employed in
order to insure inverse continuity in the solution. Here we prefer to use Tikhonov’s
regularization method [12], not for its efficiency in solving the one-dimensional
Fredholm integral equation of the first kind, but for its ability to be extended to solve
the three-dimensional case in a straightforward manner. The essence of the first cycle
of iteration is given in the accompanying diagram and the procedure for later cycles
is exactly the same.
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3(f(O,t)/Ox=p(t)

,5 (o) is computed
by using finite
Fourier transform.

Initial guess: Co(X)

By using a finite difference method,
one solves (2), (3) and (7) to obtain
5o(X, t) and O:o(X, t)/Ox.

!
go(x, ,o)e og(x, oo)1o
are computed by
finite Fourier

By using a finite difference
method, one constructs Go(ok, x" y),
Green’s function of

transform. (15) and (16) for o ok,

i k=l,2i K.

y using Tikhonov’s regulrization method,
one solves the discrete version of (21) with

2
o ok, k 1, 2 K, to obtain 6c o(X).

From (5), one obtains c(x).

4. Discretization.
(a) Nonlinear wave equation. To perform the iterative algorithm numerically,

the x and intervals, [0, 1] and [0, T], are partitioned into M and N subdivisions,
respectively, thereby producing a uniform mesh with Ax 1/M and At TIN. All
functions are replaced by their discrete counterparts; e.g., uG(iAx, fAt), c--
2c,(iAx), and a =-a(iAx), where n 0, 1,... denotes the iteration, 1,..., M-1,
and / 1,..., N. The initial and boundary values of : (not included in uo), are given
as data: di =-(iAx, 0), fi =-O(iAx, O)/t, gj :(0,/’At), and hj :(1,/’At), where
0,..., M and f- 0,..., N. The extra information supplied, in order to determine
the true velocity profile c(x), is also given as data; i.e., p=-(O,]At)/Ox, where
/" 0,..., N. The nonlinearity parameter and the initial guess of c2(x) must also be
supplied, as a and c 2, respectively. Any additional data are indicated where necessary.

To aid the simulation of the nonlinear wave equation (7), let

(22)

OG[(i- 1/2)Ax, fat]
wq i=l,...,M, /’=0,...,N-I,

Ox

oG[iAx, (]- 1/2)t]
vo=-- l, ,M-1, ]= I, ,N.

Ot

By utilizing finite difference approximations, u0 is calculated by the following iterative
scheme (starting with ] 1)"

Wio=(di-di+l.)/Ax,

t)il "-fi "[- At2-Xc [1- ai(wi+l,o + Wi,o)/2](Wi+l,O--Wi,o)/Ax,

ui u,_ + htv (Uo =--d),
(23)

Wlj (Ulj--gj)/Ax, WMI (hi--UM-I,i)/Ax,

wi wi.i-1 + At(vo-vi-l,j)/Ax (i : 1, M),

vi.+l v, + Atc/ [1- ai(wi+l.i + w,)/2](wi+a- wo)/Ax.
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For the above order of calculations it is only necessary to store the latest values
of vii and wij, with respect to /’. For later use, the quantities Au
O[(O,/at)--,(O,/At)]/x,/=O,...,N, and a,r=-O,(iax, T)/t, i=I,...,M-1,
are calculated as follows:

/u ’oi pi w i,
(24)

flit vic+2-1Atc2[1 ai(ui ui- )/2Ax](ui --2UiN+Ui_I,N)/Ax 2
+I,N 1,N +I,N

where Uon and utn denote the boundary values g, and hn, respectively.
In order to avoid instability in the above scheme, the (x, t) mesh must be capable

of transmitting information at least as fast as the characteristics of the nonlinear wave
equation, i.e.,

--sx [ 1 a (x) 0"]
1/2

(25)
A

>c"(x)
Ox

which implies that

(26) --x>a(x) 1- -c,(t)
Once , (x, t) has been approximated by the above scheme, (26) can be utilized as a
check of its validity. However, for waves of finite but moderate amplitude,
is no longer negligible, compared to 1, but can still be assumed to be less than 1.
Hence, a safe choice for the (x, t) mesh would be one such that

(27) (At)2 > 2 max c 2
i"

When an isolated wave pulse is introduced through one of the boundaries, the
above scheme tends to slightly "overshoot" the trailing end of the wave, where it
should end abruptly. This produces a small oscillating tail on the end of the traveling
wave pulse (numerically induced dispersion). In order to prevent these extra oscilla-
tions, artificial viscosity can be introduced into the nonlinear wave equation by the
inclusion of an additional term, producing the equation

(28) 02 [ 0] 02 .+_ ,y (X)
Ot
--=c2(X) 1--a(X)xx Ox--- Ot Ox------’

where y(x) is a small parameter controlling the amount of viscosity. This alteration
is ettected in the above scheme by replacing the last equation of (23) with

(29)
Vi,j+l Vii -]- ArC 2 [1 ai(wi+l,j if wii)/2](Wi+l,j wij)/Ax

+ Atyi(vi+a,i-2vii +vi_x.i)/Ax 2,

where yi =- y(i Ax), 1, , M 1.

(b) Finite sine transform. Once :.(x, t) has been approximated by the previous
scheme, its finite sine transform (12) is calculated under the assumption that , is a
linear function with respect to within each interval of the (x, t) mesh, i.e.,

N

(30) ,(iAx, t)= .. uiiLi(t), O<-t<-_T,
/’=0
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where Uio =- di and

1 -I] t/Atl, ] 1 < t/At <] + 1
(31) Lj(t)----

0, elsewhere.

The finite sine transform, ti(to)=-ff-n(iAx, to), for the above piecewise linear form of, reduces to

N

(32) ti(to) Y. uijSj(to)
j=0

where

(33)
T

S(to) Io L(t) sin tot dt.

Through integration by parts, it follows that

-1S0(to) to (1 -sin tot
(34) Si(to)=2to-lAt-l(1-costot)sintofAt, j= 1,... ,N-l,

-1S(to)=to-2At-[sintoT-sinto(T-Z,t)]-to cos toT.

Similarly, assuming that 0,(0, t)/Ox has an equivalent piecewise linear form,
Aa (to) 0’ (0, to)/Ox is approximated by

N

(35) Au; (to) Au ;j$i.(o).
/’=0

Due to the design of the scheme, (32) and (35) provide the exact finite sine transform
of any continuous function that, for fixed x, is linearly dependent upon within each
subdivision of the (x, t) mesh. For numerical use, this scheme is performed for the
set of frequencies {tok}, k 1, , K. The corresponding approximations of the finite
sine transforms are denoted by ki i ((-Ok) and At)k - A/) ((.Ok).

(c) Green’s function. Next, the Green’s function G.(to, x; y) of (15) and (16) is

found in order to obtain OG, (to, 0; y)/Ox for (20). Consider the formulation

ko(to, y)g(to, x), 0--<x =<y,
(36) Gn(to, x; y)=

k(to, y)h(to, x), y<-_x<--1,

where

c32g
+ to (x)g 0,2c2

c3X
2 0-<x =<1,

(37)

0g (to, 0)
g(o, 0)= 0, 1,

Ox

32h 2c2-O---x 2 + to x h =0, 0__<x__<l,

h(to, 1)=0,
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From the required conditions for Gn, it easily follows that

ko(to, y) h (to, y)/[g (to, y)0h (to, y)/0x h (to, y)0g (to, y)/0x ],
(38)

kl(to; y)= g(to, y)/[g(to, y)0h (to, y)/Ox-h(to, y)0g(to, y)/0x],

and hence

(39)
OG,, (to, 0; y)

k0(to, y).
0x

The simplest numerical scheme for calculating gkig(tok, iAx) and hk----
h(tok, iAx), i=1,...,M-l, would be to let g’k=’Og(tok,(i--1/2)Ax)/OX and h,i--
Oh(tok, (i +1/2)Ax)/Ox, 1,.. ,M- 1, and discretize (37) by

gk,i+l gki + AXgk,i+l,

,+ g’ Axo.,c :g,
(40) hk.i-1 hki Axh k,i-l

h k,i_l

gko hkl O, g’k h k,M-1 1.

A similar method was used by Pruess [13] to compute the eigenvalues of Sturm-
Liouville problems. The accuracy of this scheme is limited by the fact that Ax cannot
be chosen arbitrarily small, since Ax has already been set by the compactness of the
x grid on which C

2 2 2=--c,(iAx) was given. But if c n(x) is assumed to behave linearly
between neighboring nodes of the grid, then the accuracy can be improved by inserting
enough, (P-1), extra nodes between each neighboring pair of nodes of the grid and
using linear interpolation to evaluate c2, at each of these extra nodes. Then the
numerical scheme (40) can be applied to this new grid (containing MP subdivisions),
with Ax replaced by Ax/P (and minor subscripting adjustments).

Once g (to, x) and h (to, x) have been approximated by this finite difference scheme,
G’nOki-OGn(tok, 0; iAx)/OX is calculated from (39), i.e.,

(41) G’ok hk/(gkih ’k hkg’k).

The choice of frequencies, tog, should be such as to avoid those frequencies where
the Green’s function is singular or near singular. When such frequencies are used,
G, (to, x; y) becomes arbitrarily large, and hence the errors in approximating (20) are
magnified.

(d) Integral equation. The integrals of (20) are calculated below by the simple
"rectangular rule," summing over the M subdivisions of the x grid. Actually, only
M-1 subdivisions are summed over because the last addendum vanished since
limr_.l OG,(to, 0; y)/Ox 0, as can be seen from (38) and (39). The integral equation
(20) is then approximated by

M-1. AC2i C ?4 [--lJiT sin tokT -/- tok (UiN COS tokT di) -b to2ktki]G nOkiAX
i=1

(42)

AU’ok + C7,2 (aiT sin tokT--tokUiv COS tokT)G’,,OkiAX,
i=1

where Ac2 =-- Sc:Z (i Ax 1, M-1, is the unknown to be determined, and
k=l,...,K.
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In abbreviated form, (42) can be expressed symbolically by the linear system

(43) Ae =b,

where ei AC 2
i, 1, , M- 1, bk equals the right-hand side of (42), k 1, , K,

and the K by M-1 matrix A is composed of the coefficients Aki of Ac2 on the
left-hand side of (42).

Since (43) represents an ill-posed problem, the determination of e can now be
handled by Tikhonov’s regularization method [12] along with the error principle [14].
The regularized solution of (43) satisfies

(44) (A TA + I)u Arb,
where u Ac2=--6c2,(iAx), i= 1,... ,M-l, and the matrix A has the dimensions
of m’=K by n’=M-1.

The desired regularization parameter/ can be defined by setting, in advance,
the error level of u, e.g.,

(45) p()--[IAu bll, rllbll,, 0<r < 1,

where r is chosen in accordance with the level of errors within A and b. Given an
initial guess fl0 > 0, a sequence of improved estimates fli, converging to fl, is produced
by the modified Newton method,

Furthermore, A is decomposed into QDR; Q and R are unitary matrices, and D is
a bidiagonal matrix with nonzero elements on only the main diagonal and super-
diagonal; UR and u., satisfy (D 7"D + iI)uR, D7"Q 7"b and (D 7:D + iI)u ’n, --URn,,
respectively.

5. Numerical examples. Throughout the iterative solution of the remote sensing
problem, all quantities are considered to be dimensionless. For each example, the
wave propagation was solved on an (x, t) grid of size Ax At 0.025 with T 3 (i.e.
M 40 and N 120). The initial conditions are homogeneous since the medium is
initially at rest. The acoustic pulse is introduced into the medium through the boundary
condition at x 1. The pulse was chosen with the intention of holding down the size
of the neglected terms of (9) and the tail oscillations produced by the numerical
simulation. The use of artificial viscosity .s kept to a minimum. The pulse constructed
for this purpose is

f--sin
2 7r/(6.5t2 + 1)2, 0 --<_ <= 1,

(47) (1 t)
[0, l<t<-T.

This pulse propagates leftward and passes through the boundary at x 0, produc-
ing the left boundary condition, (0, t). Thus, for the examples of this section, (0, t)
and 0(0, t)/Ox were numerically constructed by simulating the propagation of the
pulse, using the true velocity profile g(x), from x 1, past x 0, to a boundary far
enough to the left of x 0 with homogeneous boundary conditions.

The number K of frequencies for use in the finite sine transforms was chosen to
be 39, thereby producing a 39 by 39 (K by M-I) linear system (42) for the
determination of Ac 2. The utilized frequencies were confined to the interval (0, 20)
since larger frequencies produce larger "phase differences" (i.e., errors), in Green’s
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function. The introduction of extra "nodes" (up to 20 for each Ax) into the scheme
improved accuracy notably, but smaller frequencies were still preferred.

For simplicity of analysis, the true solution of the following examples was set at
-2c (x)= 0.5. The basic differences among the examples are the initial guesses Co

z (x),
the chosen frequencies O)k, and r the proportion of error to be permitted by the error
principle in the regularization method. The nonlinearity parameter was set at a 0.05.
Considering the given pulse, true solution, and sizes of Ax and Zt, the nonlinearity
parameter was set nearly as large as possible without violating the wave simulation
stability criterion (25).

The first two examples demonstrate the effect of different choices of the error
level in the error principle. Figures 1 and 2 illustrate the results obtained from setting
r 50% and 75%, respectively. From the total number of iterations performed, it is
apparent that Example 1 converged nearly twice as fast as Example 2. This may be
expected since the latter example was not required to comply with the linear system
(42) as closely as the former example, i.e., 25% more error was permitted.

0,5

0,4

0,5

FIG. 1. Numerical Example 1.

0,5

0,4

C20
C5

0,5

FIG. 2. Numerical Example 2.

However, in exchange for the greater error allowance, the regularized solutions
of each iteration of Example 2 were smoother and less oscillatory. Thus, they could
be repeatedly added to the latest c 2 approximation for many more iterations before
the c 2 approximation became out of hand, e.g. too oscillatory. On the other hand,
the iterative regularized solutions of Example 1 were of greater magnitude, producing
faster convergence but at the risk of greater oscillations.
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The oscillations of Example 1 were partially corrected for in the subsequent
iterations. However, if r had been set much lower, e.g. 30%, the convergence might
have appeared to be faster in the first few iterations, but the accompanying oscillations
would have been too large to permit recovery in subsequent iterations. Hence, small
values of r, i.e., close adherence to the linear system, is advisable when the initial
estimate c20 is close enough to the true solution t?2, thereby limiting the possibility of
unmanageable oscillations. But for initial estimates which are not very close to the
true solution, a larger value of r is advisable, thereby producing slower convergence
but of a more stable nature.

In Fig. 3, Example 3, a poorer initial estimate was chosen. Instead of choosing
a single value of r for the whole algorithm, r was chosen individually for each iteration.
A few values of r were tested for each iteration, from which one was chosen with the
intention of achieving a favorable trade-off between the speed and stability of the
overall convergence of the algorithm. The values chosen ranged from 30% to 60%,
but there was no strong pattern to describe the choice of r aside from a slight decrease
in r in the later iterations.

0.5

0,4
C

C20
lO

0,5

FIG. 3. Numerical Example 3.

In all of the examples presented so far, the initial estimate c (x) was a constant.
In the following examples, the algorithm’s response to initial estimates of other forms
is examined. In Figs. 4 and 5, the initial estimate is still linear but crosses over the
true solution at the midpoint, x 0.5, thus requiring a different amount of correction
at every point of x. This initial estimate is tested with r 30% and 50% in Examples
4 and 5, respectively. Similarly, the former example converged about twice as fast as

0,5

0.4

0,5

FIG. 4. Numerical Example 4.
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0,5

0,q

0,5

FIG. 5. Numerical Example 5.

the latter. Due to the closeness of the initial estimate, the greater oscillatory nature
of the iterative regularized solutions of Example 4 could be "corrected" without
getting out of control.

The next three examples are tests of the resolving power of the algorithm. In
Figs. 6, 7, and 8, the initial estimates agree with the true solution everywhere except
in a "wide, medium," or "narrow" interval centered at x 0.5. For each example,
r was set equal to 50%. The algorithm performed quite well for these examples. The
"narrow" Example 8 converged the fastest of the three. However, the "medium"
Example 7 converged much closer after several more iterations.

0,5

0.5

FIG. 6. Numerical Example 6.

0.5

o.q

0,5

FIG. 7. Numerical Example 7.
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0,5

0,4

\j

0.5

FIG. 8. Numerical Example 8.

6. Discussion. The testing and analysis of many nonlinear numerical examples
has revealed those schemes of the algorithm which have a dominating effect upon its
effectiveness. The finite difference scheme for solving the nonlinear wave equation is
crucial in the preparation of the information, particularly 08n(0, t)/Ox, which will
determine 8c 2 Its effectiveness diminishes in the late iterations as c 2 approaches 2,
for then d;:, tends to vanish, allowing numerical errors to obscure the essential
information. This is especially true for the derivative 0d; (0, t)/Ox, which in addition
is very sensitive to the undesired tail oscillations trailing the wave pulse.

The accuracy of the numerical algorithm can be improved greatly if more efforts
are made in computing each individual step of the numerical algorithm and if a larger
number of tOk’S is used and their values are properly chosen according to either the
well-conditioned matrix criterion [15] or the minimum error criterion [16] in solving
the Fredholm integral equation of the first kind. Furthermore, another restriction
upon the choice of frequencies is the avoidance of neighborhoods of the singularities
(with respect to o) of Green’s functions. They-should be avoided, since in the
neighborhood of singularities, numerical errors are most likely to be disproportionately
large.

The numerical examples illustrate the effects of various values of r in the iterative
algorithm under different conditions. When smaller values of r (i.e., closer adherence
to the linear system) are permissible, their corresponding c 2 approximations improve
faster in the early iterations than those with larger values of r. However, for smaller
values, the regularized solutions Ac E have larger oscillations. Thus, the oscillations
can accumulate faster in the c 2 approximation, thereby making it useless in relatively
few iterations. Hence, smaller values of r are preferable when not many iterations
are expected, e.g. when the initial guess c(x) is close to the true solution 2(x).
But for initial guesses that are not so close to the true solution, it is advisable to
use the more stable approximations arising from the smoother regularized solutions
corresponding to larger values of r.

Aside from the above problem of accumulating oscillations, the regularization
method has performed well along with the iterative algorithm. For example, the
algorithm has performed successfully for both very close and very distant initial guesses.
Also, the algorithm possesses good "resolving power," as illustrated in Figs. 6, 7 and
8. The results here can be further improved if 8c2= 0 is imposed at least on one of
the boundaries, as it was in the case of inverse problems of the linear wave equation
[I], [2], [8].
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PITFALLS IN THE NUMERICAL SOLUTION OF
LINEAR ILL-POSED PROBLEMS*

J. M. VARAH

Abstract. Very special computational difficulties arise when we attempt to solve linear systems arising
from integral equations of the first kind. We examine here existence and uniqueness questions associated
with so-called reasonable solutions for such problems, and present results using the best-known methods
on inverse Laplace transform problems. We also discuss the choice of free parameters occurring in these
methods from the same point of view.
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1. Introduction. We are concerned with the numerical solution of the linear n n
system

(1.1) Kf =g

where K is inherently ill-conditioned because of the source of the system. We assume
for definiteness that the source is an integral equation of the first kind in one dimension"

I I(s, t)(t) dt(1.2)

We shall only consider the case when/ is a smooth kernel; then clearly the mapping
]’- by (1.2) "smooths out" functions, and even takes noncontinuous into smooth, so we can’t hope to solve (1.2) for arbitrary . In 2 we examine this problem in
more detail, in an attempt to specify when the given discrete problem (1.1) has a
reasonable solution.

Several methods have been developed for solving (1.1), and in 3 we consider
four of these" the truncated singular value decomposition method, the regularization
method, the modified regularization method, and a function expansion method. We
refer to Varah (1979) and Bj6rck and Elden (1979) for more details and references.
Each of these methods involves a free parameter, and for an appropriate choice of
this parameter each method is relatively stable with respect to perturbations in the
data, so that each is a reasonable computational method. As we shall see, however,
the solutions obtained may be very different from one another, so that it is extremely
dicult to say which is "the best" numerical solution. In 4, we examine several
numerical examples illustrating this behavior, all involving the inverse Laplace trans-
form operator in (1.2).

Finally in 5, we discuss the choice of free parameters in the methods. We find
that although reasonable choices can be made for the expansion methods, this does
not appear to be the case for regularization methods.

2. Existence of reasonable solutions. For the continuous problem (1.2), one way
of specifying the existence of a reasonable solution is the Picard condition" for L2
kernels/ with jJ R (s, t) ds dt < oo, there are orthogonal functions {$(s)}, {$(t)}, and

* Received by the editors September 25, 1981, and in revised form March 22, 1982. This material
was first presented at the Gatlinburg VIII meeting in Oxford, England in July 1981.

" Computer Science Department, University of British Columbia, Vancouver, British Columbia,
Canada V6T lW5.
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corresponding scalars h -’> 0 SO that

I I(s, t)Oi(s) ds hiSs(t), I g(s, t)$(t) dt hiO(s).

Then if (s) ’./3g&(s), then [(t) E (/hi)g/g(t) however,[L2 only if (,/hg < oo,
which is the Picard condition. This obviously restricts the class of data function ff for
the problem.

We should add at this point that the rate at which the hi- 0 depends directly on
the smoothness of the operator K" for example, when K is the (nonsmooth) Green’s
function

i(s, t)={s(1-t), s <t,
t(1-s), s>=t,

then A, r2/n 2. And, when/ is the (smooth) harmonic continuation operator

/(s, t)=1 1-02
22r 1 20 cos (s t)p

on (0, 27r), then A, pn (p < 1). Thus, smooth kernels lead to much more ill-conditioned
problems.

Now consider the discrete problem (1.1), which can be derived from (1.2) by
applying a specific quadrature rule in t, say

which, applied at n sample points st, gives the linear system Kf g. The discrete
analogue of the above expansions for the continuous problem is of course the singular
value decomposition (SVD)

K UDV,
where U and V are orthogonal, and D =diag(o’i) with o-x->_tr2=>’’ "->trn->0.
However, to derive some reasonable discrete version of the Picard condition is not
so straightforward--we need first of all to define what is meant by a reasonable solution
to (1.1).

To avoid scaling problems, we assume the discrete problem has been scaled so
that Ilgll O(1) and Ilgll o(x); we use. Z2 norms throughout the discussion (so that
Ilgll- and Ilgll=- Moreover, the O(1) notation means "about the same size
as", and does not refer to any kind of asymptotic behavior.

DEFINITION. The vector f is a reasonable solution to (1.1) with noise level e if

Ilfll-- o(1 and Ilgf g[I O (e).
The question of whether a given discrete problem (1.1) has a reasonable solution

can be decided by means of the SVD of K" if K UDV7" and we define y and/3 by
Vf y, UTg =/3, then

Ilgf-gll=(r,y,-/3,) and Ilfll=y.

Thus it is clear that for f to be a reasonable solution, the given data g must be such
that

(2.1) /3i O(o-/), i<=io,

with io chosen so that 1/3[ < e for > i0.
Notice that this is a condition on the discrete data g, and is in some sense a

discrete analogue of the Picard condition. Typically, in practice, if the data have noise
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level e, the Ii[ decrease to O(e) and remain at about this level for i0 < _-< n, whereas
the ri decrease to zero. Thus for there to be a reasonable solution, the I/3il must
decrease as fast as the o’i, down to the noise level.

Also, this condition (2.1) provides a basis for existence of a reasonable solution
f, but says nothing about uniqueness. Indeed, it is clear again from the SVD expansion
that there will be many reasonable solutions; for > i0 (assuming ri < e for > io as
well) the yi are essentially arbitrary. We will return to this point later when comparing
the solutions obtained by various methods. Here we wish to emphasize that all such
solutions are equally valid from a strictly computational point of view; in order to
obtain unique solutions, we must further restrict the problem using other means (for
example by restricting the class of solutions allowed or specifying a particular expansion
for the solution).

We also feel this approach (of reasonable solutions) is more appropriate than
that of conditioning given in Varah (1979), because it does not depend on the method
used to solve the problem.

One may well ask if the concept of "reasonable solution" introduced here is too
broad, leading as it does to nonunique solutions. We feel it is at least a starting point
for discussion of methods and solutions of discrete ill-posed problems. For particular
problems, it can be further restricted using the properties appropriate to that problem,
and in so doing may lead to unique solutions. For example, with inverse Laplace
transform problems (see the examples following), it may be appropriate to specify the
asymptotic nature of the solution.

As well, although we have used Lz and 12 norms because of the connection
between the L2 theory for the continuous problem and the singular value decomposi-
tion for the discrete problem, other norms may be more appropriate. Indeed, the
inverse Laplace transform which we use as the basis of our numerical examples is
such a case, since the kernel is not L2. This appears to be of little consequence,
however, as far as the discrete methods and solutions are concerned.

3. The numerical methods.
(a) SVD. This is the truncated SVD method, which produces f as f Y yiv

,
where yi g/o’i and k is the free parameter. If k is chosen as in 2 with noise level
e known, and if the problem has a reasonable solution, then it is easy to see that this
method always produces such a reasonable solution: []Kf- g[[2 O(e) and [[fl]2 O(1).
Since yg 0 for > i0, the SVD solution can be said to provide the minimal reasonable
solution possible.

Moreover, even if the noise level e is not known, one can examine the sequences
{o’}, {ill} and take k, the cutoff point, where the r become smaller than the Ii[" This
gives a reasonable solution for e chosen accordingly.

(b) LS. This is the original regularization method, which produces f as

f min (llKf- g1122 + a llfll)
f

or equivalently as the solution of the normal equations

K K + o, f g

In examining the nature of the solution f,, it is most convenient to again use the SVD
expansion; then

O’i t-ol. /O’i
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At first sight, it appears that this is rather different from the SVD solution in (a),
since all vectors v (i contribute. However for properly chosen values of the free
parameter a, most of these are damped, and we are left with a solution very much
like the SVD. To see this, consider the same situation as before, with tri 0, [//[ e
and fl O(e) for > i0. First, if a << e and we have some trg a, then the ith term in
(3.1) is (i/201.)V (i) and l,/2l >> 1 so we cannot have a reasonable solutionmso we
must choose a => e. Moreover if a is chosen roughly equal to e, then for =< i0, the ith

2/tr/2) fllo’i since tri > e and for > io, ([3i/cri)/(1 + o 2/0"/2 0coefficient (fli/O’i) / (1 q- Ot

since tr -> 0.
Thus the LS solution, with appropriate a, is close to the SVD solution, and this

is certainly borne out by numerical experience. The most important connection is that
both give a solution in terms of the expansion of singular vectors {v ()} of K.

(c) MLS. This is the modified regularization method, which produces f as

or equivalently as the solution of the normal equations

(KTK + o2LTL)f KTg.

Here L is usually some discrete approximation to a derivative operator, and we in
fact use simple forward differences to get L in our numerical examples. However,
other choices of L may be appropriate in other cases" for example a discrete Sobolev
norm using a linear combination of differences of order 0, 1, and 2. Indeed, the
relation between the choice of L and the discrete solution generated is not well
understood and needs to be investigated further.

Here the appropriate expansion is not the SVD of K, but the generalized SVD
of the matrix pair (K, L) as in van Loan (1976):

K UDaX-1, L VDbX-1,

with U and V orthogonal, Da and Db diagonal, andX the matrix which simultaneously
diagonalizes the symmetric pair (KT"K, LT"L). Using this decomposition, the solution
f can be written as an expansion in the vectors x (i), the columns of X:

fo,
ai + ot /ai

where again/3 Ug and {ag}, {b} are the elements of Do, Db, ordered so that the
{ai} (which are the singular values of KX) are decreasing. Notice that this has the
same form as the LS solution, except that the {x (} have replaced the {v (}. We should
add that although the above expansion gives a nice way of representing the MLS
solution, it may be easier computationally to use the regular SVD method to solve
the system.

(d) KX. This is the truncated expansion method, using any set of vectors
k (i){x}kone asks for the best solution of Kf g using vectors of the form f CiX

Thus we find c as min [[KXC- gll, solving using the QR method or normal equations
on KX. In particular, using the x (i as above in (c) would give c i/a, in which case
this method would bear the same relation to MLS as SVD does to LS. Indeed, we
mention this method only for completeness, and do not include any numerical results;
it can be useful if we can restrict the form of the solution f to such an expansionagain



168 j.M. VARAH

this is adding more constraints to the problem than in the other methods, and may
result in there being a "unique" solution.

4. Numerical examples. All our examples stem from discretizations of the inverse
Laplace transform"

Io e-S’f(t) dt g(s).

This problem illustrates nicely all of the pitfalls associated with ill-posed problems
with smooth kernels, when different data g(s) are used. The integral is discretized
using n-point Gauss-Laguerre quadrature, so approximations are generated for f(t)
at the Gauss-Laguerre abscissae {t}7. The sample points {si} can vary, but normally
n points equally spaced in (0, n] gave the best results. Although all our examples
come from known and g, so that we can measure the "error" in , this is rather
artificial" in practical cases the data g will only be known at specific points {si}, and
we can only measure the error in the residual sense (ILK/ - gll). We should add that
results may be very different with nonsmooth kernels, and that more care may be
necessary in discretizing the problem.

()For this problem, the singular vectors v ( are asymptotic to zero (i.e., v 0 as
/’ n), whereas the X-vectors x( are asymptotic to 1.0. As well, both sets of vectors
satisfy the oscillation property: v and xi each change sign (i- 1) times.

Example 1.

g (s 1 -,/2

s + 0.5’ f(t) e

Here we used n 10 points with {s}7 equally spaced in [1, 10]. For SVD, it is instructive
to see the {try} and {/3} explicitly:

o- .74 .28 .055 .2910-2 .1710-4 .5710-8

-.92 -.018 -.014 .61 10-2 -.16 10-2 .57 10-2

.51 10-13 .52x 10-2 .36x 10--25 .99 10-29

.47x 10-2 -.34x 10-2 .19xlO-2 -.12xlO-:

Notice that although no noise level e is known, the I/1 decrease to about 10-2

while the o-i decrease to zero. Clearly we should take k 3; this gives a residual of
.012 and a maximum error of .1. For the LS and MLS methods, it is not so clear how
to choose a. Indeed it appears that for a large range of a, we can obtain reasonable
solutions, even though they may be very different. This is particularly true of MLS,
where the expansion vectors xi are asymptotic to 1, not 0, and the asymptotic nature
of the solution to the inverse Laplace transform is not well determined by the data
g(si). We give the basic results in Table 1 and the graphical results in Fig. 1 (for SVD
and LS) and Fig. 2 (for MLS). Notice that the discrete solutions generated have been
converted to continuous curves for the graphs. This has been done by cubic spline
interpolation, choosing the knots interactively so that the curves represent the solution
appropriately.
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TABLE 1

LS MLS

Ilgf- gll max [fi-f(t,)[ Ilgf- gll max Ifi-f(t,)l

.1 .023 .083 .017 .40

.01 .012 .17 .012 .22

.001 .010 1.7 .012 1.6

11.628 13.954

FIG. 1. SVD and LS solutions for Example 1.

Example 2.

1 1
g(s)=

s s+0.5’ ]’(t)= 1-e --t/2

Again we used 10 points with {si} equally spaced in [1, 10]. Of course the {tri}
are as in Example 1, and the {fli} are as follows:

.31 -.16 .034 -.32 x 10-2 .81 x 10-3 57 x 10-3

/3i -.34x 10-3 .17x10-3 -.59x 10-4 .49x 10-4
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MLS (a =. 1)

MLS (a .01)

ff(t)
6.977 9.302 1].628 13.954 16.279

FIG. 2. MLS solutions for Example 1.

In this case the i} decay more rapidly to about 10-4, so that it is appropriate to
take k =4 terms (or possibly k =3); this gives a residual of .0011, and an error of
1.0 because the solution f(t) is asymptotic to 1.0 (not 0 as in Example 1). However,
the SVD solution is still reasonable from the point of view of our definition, and it
can only be seen as incorrect if more information is supplied about the problem.

For LS and MLS, the same comments apply as in Example 1. Here, although
the MLS solution may look better (for some a) because of its asymptotic nature, there
is no way to guarantee this for a given practical problem, again unless more is specified
about the problem. We take the view that all solutions given here are reasonable.
We again give LS and MLS results in Table 2 and the graphical solutions in Figs. 3
and 4.

TABLE 2

LS MLS

ILK/’- gll max Ifi -f(t,)l IIKf- gll max Ifi

1 .032 1.0 .013 .39
01 .0033 1.0 .0017 .24
001 .0011 1.0 .0011 .22
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LS (a =.1)

# LS (a .01)

SVD (k 4)

[(t)

2.326 4.65] 5.977 9.302 1].628 13.954
.]

FIG. 3. SVD and LS solutions [or Example 2.

-.0

MLS (a =.001

f(t)

MLS (a .01)

MLS (c =. 1)

15.239

FIG. 4. MLS solutions for Example 2.

2.326 4.65] 5.977 9.302 1].628 13.954 16.279
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Example 3.

2
g(s)

(s + 0.5)3, f(t) t2e -’/2.

Here we used 20 points with the {si} equally spaced in [1, 10]. Truncating the
SVD expansion at k 7 terms gave a residual of .25 x 10-4 and an error of 0.17. The
LS and MLS solutions (for various a) are given in Table 3, with plots in Figs. 5
and 6.

TABLE 3

LS MLS

Ilgf- gll max Ifi -/(t,)l llgf- gll max Ifi- f(t,)[

10-2 .60 x 10-2 .54 .27 10-2 1.8
10-3 .28 10-3 .30 .27 x 10-3 1.3
10-4 .35 10-4 .17 .32 10-4 1.0
10-5 .21 10-4 .71 .24 10-4 .29

f(t)

SVD (k 7)

LS (a 10-4)

LS (a 10-3)

564 5.128 692 o. 257 12.821 15. 385 17. 949

FIG. 5. SVD and LS solutions for Example 3.
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MLS (a 10-3)

MLS (a 10-4)

2.564 S.128 7.692 10.257 12.821 15.385 17.949

FIG. 6. MLS solutions for Example 3.

Example 4.
-2s

{0, t<_-2,
g(s)

e
f(t)

s 1, t>2.

Here is one example of a discontinuous transform. The best SVD solution (with
k =4) had a residual of .79 10-4 and an error of 1.0. The LS and MLS solutions
are given below in Table 4, and graphically in Figs. 7 and 8.

Of course, the SVD and LS solutions are asymptotic to zero, and again the MLS
solutions can be asymptotic to almost anything, depending upon the value of a. We
feel that the most important point here is that all the solutions given here are
reasonable, and can only be specified more precisely if more constraints are put on
the problem.

TABLE 4

LS MLS

IIg- gll max Ifi -f(ti)l IIg- gll max ITi -f(t,)[

.1 .03 1.0 .021 .65

.01 .38 10-2 1.0 .23 10-2 .45

.001 .42 10-3 1.0 .33 10-3 .34

.0001 .77 10-4 1.0 .99 10-4 .31
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f LS (a 10-3)

,-2)
SVD (k -4)

4.65] 6.97"/ 9. 302 628

FIG. 7. SVD and LS solutions for Example 4.

13.954

MLS (a 10-4)

f(t)

MLS (a 10-3)

2. 326 4.65] 6.97"1 9. 302 ]. 628

FIG. 8. MLS solutions ]’or Example 4.

13. 954 16.279
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$. Choice of the free parameter. As we indicated earlier, the choice of k in the
SVD method is fairly clear from the decay of the {fli} and {tri}. Unfortunately, this
does not appear to be the case for choosing c in the LS and MLS methods. Various
strategies have been put forward for specifiing c, notably the technique of generalized
cross-validation (GCV), which has been successfully used for problems with nonsmooth
kernels (see Golub, et al. (1979)). Here a is chosen to minimize the function

1 /n IIg gf,,, .
v()

(1/n tr (l-A(o)))

where A(c)=K(KK +o2LL)-K. Except for the 1/n factors, the numerator is
just the square of the residual, and when L =I (i.e., LS method) the denominator

2 2 2can be expressed as (Y a /(a + cri ). In this case, notice that when some o- are very
small (as for our smooth kernel), the corresponding terms in this sum will be very
close to 1.0 for large ranges of a; as well we have found that the residual is also
nearly constant for large ranges of a, so that V(a) will be very fiat and it will be very
difficult to minimize. As an example of this, we plotted V(a) on a log-log scale for
0 => log ce =>-20 for Example 1 above, and present the results in Fig. 9. Similar results
were obtained for the other examples.

fl_ST1 11.429 14.Eft6 17.1 E0.0 2.8fi7 S.714
’--. __..._____1

FIG. 9. Log-log plot of GCV function for Example 1.

Thus it seems impossible to choose a using this technique. However, we feel this
is not due to any intrinsic fault with the technique, but because reasonable solutions
in our sense can be obtained over a wide range of the parameter a, even though they
may look very different.
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Abstract. The method of normal equations, the Peters-Wilkinson algorithm and an algorithm based
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tion matrix is sparse and well conditioned. For ill-conditioned problems, the algorithm based on Givens
rotations is preferable.
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1. Introduction. Let A be an m n sparse matrix with m _-> n, and consider the
system of linear equations

(1.1) Ax =b,

where b and x are vectors of length m and n respectively. In general, there may not
exist a solution x such that (1.1) is exactly satisfied. Thus, (1.1) is usually solved in
the least-squares sense; that is, the solution x is chosen to minimize the Euclidean
norm of the residual vector

(1.2) r =Ax -b.

Throughout this paper, we will assume that the columns of A are linearly independent.
Under this assumption, it is easy to show that the solution x is unique and satisfies
the symmetric positive definite n n system of linear equations

(1.3) AT"Ax =AT"b,
which is referred to as the system of normal equations.

When A7"A is sparse, the normal equations in (1.3) can be solved efficiently since
the problem of solving large sparse symmetric positive definite systems is already well
understood [7].

However, it is well known that computing A7"A explicitly may not be desirable
since the condition number of ATA is the square of that of A. Thus the matrix ATA
may be quite ill-conditioned if A is poorly conditioned, and the solution x will be
sensitive to perturbations in the data. Moreover, severe numerical cancellation and
roundoff may occur in computing A 7"A [10].

Several numerically stable algorithms have been proposed for solving (1.1) without
computing A 7"A explicitly. In this paper, we will compare two such algorithms. In
addition to being numerically stable, the two algorithms also attempt to exploit sparsity
in A.

The first algorithm was originally proposed by Peters and Wilkinson for solving
(1.1) without considering the sparsity of A [13]. Recently, Bjfrck and Duff have

* Received by the editors October 6, 1981, and in revised form May 25, 1982. This research was
sponsored jointly by the National Geodetic Survey of the National Ocean Survey, NOAA, U.S. Department
of Commerce, under Interagency Agreement 40-1108-80, by the Applied Mathematical Sciences Research
Program, Office of Energy Research, U.S. Department of Energy, under contract W-7405-eng-26 with
the Union Carbide Corporation, and by the Canadian Natural Sciences and Engineering Research Council.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Mathematics and Statistics Research Department, Computer Sciences Division, Union Carbide

Corporation, Oak Ridge, Tennessee 37830.
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advocated its use for sparse A [2]. The algorithm is based essentially on Gaussian
elimination with complete pivoting. The second algorithm is due to George and Heath
[6], and is based on the use of Givens rotations. As a basis for comparison, we have
also included results for a conventional normal-equations implementation.

An additional algorithm for least-squares problems, the augmented matrix or
sparse tableau method, has been proposed in the sparse case by Hachtel [8]. This
algorithm was included in the earlier comparisons of Duff and Reid [3], but in our
tests it required considerably more storage than competing methods (4 to 8 times as
much) and has therefore not been included in our final tabulations.

An outline of the remainder of this paper is as follows. In 2 and 3, we review
briefly the two algorithms. Then some numerical experiments are provided in 4 and
some concluding remarks appear in 5.

2. The Peters-Wilkinson (P-W) algorithm. The first step of this algorithm is the
computation of an LU-decomposition of A using both row and column interchanges.
Thus, we have

(2.) PAQ LU,

where P and Q are respectively m m and n n permutation matrices, L is an m n
unit lower trapezoidal matrix and U is an n n upper triangular matrix. When A is
sparse, the matrices P and Q are chosen to maintain numerical stability and preserve
sparsity simultaneously. Then (1.1) can be written as

(2.2) PAQQx eb or LUQx Pb.

If y Qx and d Pb, then (2.2) becomes

(2.3) LUy d.

When m n, the matrix L is unit lower triangular, and the solution x can be
obtained by solving two triangular systems

Lz=d and Uy=z

and then computing

x Oy.

However, if m > n, then z is the least-squares solution to the overdetermined system

(2.4) Lz =d.

Apparently, nothing has been gained so far. However, experience has shown that by
using an appropriate pivoting strategy, the condition of L can be controlled and any
ill-conditioning can be isolated in U [13]. Thus (2.4) can safely be solved via the
normal equations; that is, we can solve

(2.5) L’Lz L’d.
Then the solution x can be obtained by solving

Uy=z and x=Qy.

This algorithm is an attractive candidate for solving (1.1) when A is sparse,
because there already exist efficient sparsity-exploiting algorithms for computing the
LU-decomposition of A [4] and for solving (2.5) [5].
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3. An algorithm based on Givens rotations. The basic step in this algorithm is
to determine an m m orthogonal matrix O which reduces A to an upper trapezoidal
matrix

where R is an n x n upper triangular matrix. Then (1.1) can be written as

(3.2) OAx =Ob,

and the least squares solution is unchanged due to the orthogonal invariance of the
Euclidean norm. Let

where c and d are vectors of length n and (m-n) respectively. Then (3.2) becomes

and the solution x can be obtained by solving a triangular system

(3.3) Rx c.

Note that if m n, the vector d will be null.
Even though it is well known that application of orthogonal transformations is

numerically stable, this approach has not been popular for solving (1.1) when A is
sparse. Apparently it has been assumed that orthogonal transformations will cause
unacceptable fill-in during the reduction of A.

Recently, George and Heath have proposed a new efficient way to compute R
based on Givens rotations [6]. They observe that the upper triangular matrix R is
mathematically equivalent to the upper triangular Cholesky factor of the matrix ATA.
Furthermore, any column permutation on the columns of A induces a symmetric
permutation on the rows and columns of ATA, and vice versa. Thus one can choose
a column permutation P for A so that the Cholesky factor of pTATAp suffers low
fill-in. Note that since no row or column interchanges are necessary during the Cholesky
decomposition [14], the pivotal sequence is known once the permutation matrix P
(or ordering) has been determined. Thus the positions of the nonzeros, and the storage
requirement for the Cholesky factor (hence R) can be determined before the actual
numerical decomposition begins. These two steps can be done without actually carrying
out the transformation on A; only the nonzero structure of A is required. The reader
is referred to [6] for more details.

After the data structure for R has been determined and set up, the rows of A
can then be rotated one by one into R using Givens rotations. Thus, this algorithm
has the advantage that the storage requirement can be determined and fixed before
any numerical computation is carried out. The orthogonal matrix Q is usually dense
and therefore is not stored, but rather the Givens rotations are simply discarded as
they are used. If it is anticipated that additional problems will be solved with the same
matrix A but different right-hand sides b, then the rotations could be written onto an
external file, or the system R TRx A Tb could be solved using the already computed
R. Assuming Q is not stored, the Givens algorithm requires no more storage than
the normal equations.
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Although the sparsity of A TA, and hence R, is not affected by the order in which
the rows are processed, the number of arithmetic operations needed to carry out the
numerical factorization is dependent on the row ordering. A heuristic row ordering
strategy such as that proposed in [6] can substantially reduce the numerical factoriz-
ation time for some classes of problems. However, this gain is at least partially offset
by the time required to compute the row ordering, and also, depending on implementa-
tion, increases in storage or I/O traffic. For these reasons, in our tests the original
row ordering was used for all problems.

4. Numerical experiments. Two sparse matrix packages were used to implement
the P-W and Givens algorithms. The first package was MA28 from Harwell [4], which
was designed to solve general sparse systems of equations. It was used to compute
the LU-decomposition of A in the P-W algorithm (2.1). The pivoting strategy, due
to Markowitz [11], attempts to maintain numerical stability and preserve sparsity at
the same time. This involves the use of a so-called threshold pivoting technique;
during the decomposition, an element of the partially reduced matrix may be con-
sidered as a pivot if its magnitude is larger than the product of a user-specified
threshold parameter and the absolute value of the element with the largest magnitude
in that row. Unfortunately, such a pivoting strategy controls the condition of U rather
than that of L. Bj6rck and Duff [2] suggest instead a complete threshold pivoting
strategy. In order to avoid modifying MA28, however, and in view of the greater
expense of a complete pivoting strategy, we followed the simple expedient of applying
MA28 to A r, which leads to a satisfactorily conditioned L. In order to show how
much difference this makes, we also present the results obtained when MA28 is
applied to A. The threshold parameter we used in the experiments was 0.1.

The second package, SPARSPAK, developed at the University of Waterloo [5]
and designed to solve sparse symmetric positive definite systems, was used to determine
the nonzero structure of the Cholesky factor R in the Givens algorithm and to solve
the normal equations in (2.5) in the P-W algorithm. In both cases, the orderings (i.e.
the column and row permutations) used were provided by a minimum-degree algorithm
[7], which is a symmetric version of the Markowitz pivoting strategy.

The experiments were performed on an IBM 4341 and all times reported are in
seconds. The storage requirements reported were provided either explicitly or
implicitly through some variables appearing in the internal labelled common blocks
used by the two packages. The programs were written in FORTRAN and compiled
using the IBM Extended Optimizing Compiler and single precision floating point
arithmetic. Single precision was used in order to emphasize any numerical differences
among the algorithms.

Our test set consists of ten problems, some of which are real and some of which
were artificially generated. We believe all of them are representative of problems
arising in finite element applications and in surveying. Table 1 contains some charac-
teristics of each of the ten problems, and some more details about the artificially
generated problems follow.

One type of artificially generated problem involves a network, typical of those
arising in geodetic adjustment applications [9]. Each network may be regarded as
being composed of q2 "junction boxes", connected to their neighbors by chains of
length 1. An example is shown in Fig. 1 with q 3 and 2. In our test problems,

5. There are two variables associated with each vertex in the network. There are
tz observations involving four variables associated with each pair of vertices joined
by an edge, and there are/x additional observations involving six variables associated
with each triangle in the network. In our experiments/z 1 or 2.
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TABLE
Characteristics of the test problems.

Problem number

6
7
8
9
10

rOWS

313
1033

1033

1850
1850

784
1444
1512
900
9OO

Number of

columns

176
320

320

712
712

225
400
402
269
269

nonzeros

1557
4732

4719

8755
8636

3136
5776
7152
4208
4208

Remarks

Sudan survey data.
Least-squares problem in the analysis of
gravity-meter observations provided by
M. A. Saunders (well-conditioned) [12].
Problem similar in structure to Problem
2 but ill-conditioned.
Similar to Problem 2, but larger in size.
Problem similar in structure to Problem
4, but ill-conditioned.
Artificialml5 x 15 grid problem.
Artificialm20 x 20 grid problem.
Artificial3 3 network, 2.
Artificial---4 x 4 network, p, 1.
A geodetic network problem provided
by the U.S. National Geodetic Survey
(ill-conditioned).

ORNL- DWG 8’1- 2.1 2 7’ 5

FIG. 1. A 3 x 3 network with 2.

The second class of artificially generated problems consists of some simulated
least-squares problems on q q square grids. These problems are typical of those
arising in the natural factor formulation of finite element methods [1]. Each grid
consists of (q 1)2 small squares. An example is shown in Fig. 2 with q 3. Associated
with each of the q2 grid points is a variable, and associated with each small square
are four observations involving the four variables at the corners of the square.

The numerical values in the observation matrices and the right-hand sides of the
artificial problems were generated using a random number generator.

For completeness, we include a summary of the actual computational phases for
the methods under study, along with some remarks about the implementation when
it has implications with regard to the reporting of storage requirements. As a basis
for comparison, our numerical experiments include the solution of the test problems
using the conventional normal equations approach (1.3), using SPARSPAK.
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ORNI: DWG 8-21 274

FIG. 2. A 3 x 3 grid.

Method of normal equations. There are four distinct phases in the method of
normal equations:

(1) Ordering phase. This determines a symmetric permutation P for the matrix
ArA via a minimum degree algorithm.

(2) Storage allocation phase. After the permutation (or ordering) is determined,
the data structure required to store the nonzeros is determined and set up.

(3) Numerical computation phase. ArA and Arb are computed numerically. It
is assumed that the rows ofA reside on an external file. Thus the time required
for this phase includes some I/O overhead.

(4) Solution phase. Factor the matrix PrArAP and solve for the solution x.
The algorithm based on Givens rotations. There are three phases in the Givens

algorithm, and they are similar to those in the method of normal equations:
(1) Ordering phase. This determines a symmetric permutation P for the matrix
ArA via a minimum degree algorithm.

(2) Storage allocation phase. After the permutation P is determined, the data
structure for the nonzeros is determined and set up.

(3) Solution phase. The rows of AP are rotated into R using Givens rotations
(which are also applied to the right-hand side b), and the solution x is
computed.

Note that in phases 1 and 2 of both this scheme and the normal equations scheme,
only the nonzero structure of A is required. The numerical values of A are used in
the last phase (last two phases for normal equations).

The Peters-Wilkinson algorithm. The P-W algorithm is more complicated than
the method of normal equations and the Givens algorithm in terms of implementation.
There are six phases:

(1) Initial LU-decomposition. This computes an LU-decomposition of A (or
AT) as in (2.1).

(2) Ordering phase. This determines a symmetric permutation S for the matrix
LTL using a minimum degree algorithm.

(3) Storage allocation phase. After the symmetric permutation is determined,
the data structure for storing the nonzeros in STLTLS is determined and set
up.

(4) Numerical computation phase. The matrix sTLTLS and vector STLTd are
computed numerically.

(5) Solution phase. The matrix STLTLS is factored and the solution to the normal
equations in (2.5) is computed.
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(6) Back substitution phase. The solution to the original least-squares problem
is finally computed using the upper triangular matrix obtained in the first phase.

Note that the numerical values of A are required only in the first phase. In phases
2 and 3, only the nonzero structure of L is needed. Thus the storage required for the
initial LU-decomposition can be released by writing it onto an external file and
reading it back when it is needed in phases 4 and 6. This means that the storage
required in the solution phase need only include the storage required for L7"L; it need
not include any storage required for the upper triangular matrix U which is obtained
in the initial LU-decomposition. The matrix U remains on external storage, and is
read back in the back substitution phase. Thus, the time reported in Table 2 includes
some I/O overhead.

The package MA28 has the property that its execution time varies with the
amount of storage provided to it. For any given problem, it requires a certain minimum
amount s, which it reports, but it also may execute substantially faster if more than
s is provided. This presents us with a reporting problem that is not present with the
other methods under study. In order to be scrupulously fair to the P-W scheme, we
have reported s under "max. store", but in order to obtain execution times we pro-
vided enough storage so that providing any more made no appreciable difference to
execution time. The extent to which this might favor the P-W results is illustrated in
Table 2, which contains results for Problem 1 of our test set. Much more sensitive
examples can be found.

TABLE 2
Execution time versus storage for MA28 applied to

Problem 1.

Storage

1.0s

1.1s

1.2s

1.5s

Problem time

4.61

3.74

3.54

3.62

Total time

5.68

4.85

4.62

4.75

The "max. store" reported in Tables 3-6 is the maximum number of storage
locations required for any phase in each method. It includes the space required to
store the numerical values, the permutations, and pointers for accessing the numerical
values. In our implementation, both floating point numbers and integers occupy one
storage location. In the normal-equations and Givens schemes, the factor-solve phase
requires the most storage, while in the P-W scheme it is the initial LU-factorization
which requires the most storage.

The "problem time" reported in Tables 2-6 is the total time in seconds required
to carry out the major steps in each method. The "total time" includes additional
overhead time such as disk I/O (but excludes time required for computing the relative
error and residual). It should be noted that this overhead time is larger for P-W using
A T than for P-W using A. The difference is due to the time required in the former
case to rearrange the data structure from column to row orientation.

The relative error reported in Tables 3-6 was determined by comparing the single
precision results with a double precision solution computed using Givens rotations.
The relative error is computed as IIx-x*ll/llx*l[, where x* is the double precision
solution. The residual reported is lib-Axllz.
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Problem

5

TABLE 3
Method of normal equations.

Max. store

6821

23233

23105

Problem time

2.46

14.08

25.85

25.23

Total time

2.46

14.08

25.85

25.23

Rel. error

2.02E-5

3.86E-3

1.95E-3

2.09E-

Residual

3.62E+0

8.51E-

1.43E+0

4.02E+0

10

5753

11706

12103

23729

4.25

8.17

8.67

10.08

4.25

8.17

8.67

10.08

1.53E-5

2.47E-5

1.17E-5

3.76E-5

8.27E+0

1.11E+I

1.22E + 1

1.01E + 1

method failed due to zero or negative pivot in Cholesky decomposition phase.

Problem

2

3

4

5

6

7

8

9

10

Max. store

6821

10181

23233

23105

5753

12103

23729

12662

TABLE 4
Givens transformations.

Problem time

2.86

15.53

15.66

40.32

39.88

Total time

3.49

17.51

17.62

43.91

43.36

10.50

34.30

Rel. error Residual

1.71E-5 3.62E+0

1.00E-4 7.53E-

7.63E-3 7.53E-

9.06E-5 1.28E+0

2.48E-3 1.29E+0

8.04E 5 8.27E + 0

6.45E- 5 1.11E+ 1

2.98E- 5 1.22E +

1.53E- 5 1.01E + 1

3.50E- 4 2.35E +

13.48

13.50

26.04

16.57

16.39

27.75
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TABLE 5
Peters-Wilkinson method (using the LU-decomposition ofA ).

Problen

2

4

6

Max. store Total time

4.63

35.01

105.96

Rel. error

3.33E-4

1.63E-2

1.82E-2

9594

34519

Problem time

3.55

31.58

66329 99.59

65932 97.63

20404 5.20

37564 9.44

104.05

7.66

13.97

2.15E-1

2.99E-5

3.62E-5

Residual

3.62E+0

3.08E+0

7.35E+0

6.70E +0

8.27E+0

1.11E+I

8 42786

45228

19.13 23.95

35.25

2.70E-4

5.48E--4

1.22E + 1

1.01E+I

TABLE 6
Peters-Wilkinson method (using the LU-decomposition ofA

Problem Max. store

9669

2 37564

3 35939

4 73011

5 74950

6 20424

7 37584

8 42836

9 45253

10 31523

Problem time

3.59

50.59

41.31

190.08

217.58

4.98

9.18

16.59

23.06

42.96

Total time

5.54

47.66

203.27

231.16

8.88

16.08

24.22

32.43

48.34

Rel. error

3.38E-4

2.67E-3

9.74E-2

3.39E-4

6.63E-2

3.78E-5

5.77E-5

1.04E-4

5.97E-3

1.57E-3

Residual

3.62E+0

8.04E-

1.19E+0

1.34E+0

1.70E+0

8.27E+0

1.11E+I

1.22E + 1

1.01E+I

2.35E + 1
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$. Concluding remarks. Following are some observations about the experiments,
some of which we include for interest even though we did not regard them as important
enough to illustrate via tables.

(1) The storage requirements for the normal equations and the Givens algorithm
are the same. This is not surprising since the basic steps in these two algorithms are
the same. Recall that the Givens rotations are not saved.

(2) The storage requirements for the method of normal equations and the Givens
algorithm are better than the P-W scheme. The minimal storage required to execute
successfully the P-W algorithm can be 2 to 3 times that required for the other two
methods.

(3) The method of normal equations executes faster than the other two methods.
(4) Whether the P-W algorithm or the Givens algorithm is faster seems to be

problem-dependent.
(5) In the P-W algorithm, the most expensive phases are the computation of the

LU-decomposition of A and the formation of LT"L. The storage requirement and the
execution time are large in the initial LU-decomposition phase. On the other hand,
the most expensive phase in the Givens algorithm is the orthogonal reduction phase.

(6) The normal-equations and P-W methods are comparable in accuracy to the
Givens algorithm for the well-conditioned problems. Both fail or give poor results on
the three ill-conditioned problems. In order for the P-W algorithm to produce
acceptable results for ill-conditioned problems, a pivoting strategy which yields a
well-conditioned L must be used.

(7) It was interesting to note that the storage required to determine the nonzero
structure and store the nonzeros of the Cholesky factors of the normal equations in
(1.3) and (2.5) are very close. This suggests that ATA and LT"L may have similar
structures.

The above observations suggest that for well-conditioned problems the method
of normal equations should be seriously considered because of its small storage
requirement and execution time. However, since there exist problems for which the
normal equations will fail due to numerical difficulties, the Givens algorithm should
be used in those situations if the available storage is restricted and time is not a major
issue.

Note that it is assumed in the method of normal equations and the Givens
algorithm that if the matrix A is sparse, then the matrix product ATA is also sparse.
If it is not the case, these two methods are likely to be inefficient. However, in most
of the latter cases, this phenomenon is due to the presence of a few relatively dense
rows in A. In [6], George and Heath have proposed a way of circumventing this
problem. Those dense rows are temporarily discarded, yielding a problem for which
ArA is sparse. After the solution x to the modified least squares problem is determined,
the solution to the original problem can be obtained by modifying x using those
discarded rows (see [6, 5] for details). The presence of a few dense rows causes
similar difficulties for the P-W algorithm, and an updating method for that case is
given by Bj6rck and Duff [2].
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AN INITIALIZATION PROGRAM FOR SEPARABLY STIFF SYSTEMS*

DAVID S. WATKINS"

Abstract. Initialization of a separably stiff system of ordinary differential equations consists of readjust-
ing certain initial values, while holding the others fixed, in such a way that the solution of the system does
not have an initial transient. This paper discusses the features of a FORTRAN program which solves the
initialization problem. The algorithm used is simpler and faster than those used previously. Numerical
results are given for a simple test problem and more complex problems which arise in the physics of the
upper ionosphere and the solar wind.

Key words. ODE, stiff, initialization, invariant subspace

1. Introduction. A stiff system [15] of ordinary differential equations is said to
be separably stiff if the eigenvalues of the Jacobian matrix can be partitioned into two
well-separated .sets, one consisting of large or stiff eigenvalues, the other consisting
of (comparatively) small eigenvalues. In a stiff system all large eigenvalues have large
negative real part. Throughout this paper the adjective large, when referring to an
eigenvalue, will mean "having large negative real part". The initialization problem is
to readjust some of the initial values, while holding the others fixed, in such a way
that the solution does not have an initial transient. In [22] the author has briefly
described a class of ionospheric physics problems in which the initialization problem
arises. In general, initialization is important in problems for which some of the initial
values are not known with confidence, but where it is known on physical grounds that
the correct solution does not have an initial transient.

In this paper we discuss the features of a FORTRAN program, written by the
author, which will solve a large class of initialization problems. The program embodies
a number of improvements in speed, reliability and generality compared with the
procedures described in the author’s previous papers [22], [23]. The program is
available from the author.

Previous literature on the initialization problem includes [22], [23], [7], and [1].
Kreiss [7] considered the initialization problem for systems having purely imaginary
eigenvalues for which the solutions oscillate on two different time scales. The problem
was to suppress the rapidly oscillating components associated with large, imaginary
eigenvalues. The program discussed in this paper could be modified to handle problems
of this type. Alfeld [1] showed how to obtain a transient-free solution but did not
consider holding some of the initial values fixed.

2. The linear case. We will first show how to initialize the linear initial value
problem

(1) y’=b +cx +Ay, y(xo) w.

Suppose A has k stiff eigenvalues and n- k small eigenvalues. In typical applications
k << n, although this is not necessary. There exists a (nonunique) orthogonal transforma-
tion Q such that

(2) QTAO =B [Bo1 B121
B22J

* Received by the editors November 16, 1981, and in revised form March 29, 1982. This work was
supported in part by the National Science Foundation under grant MCS-8102382.- Department of Pure and Applied Mathematics, Washington State University, Pullman, Washington
99164.
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where B22 is k k and has stiff eigenvalues, and Bll has small eigenvalues. Section
3 explains how this transformation is carried out in practice. For now it suffices to
note that the last k columns of Q must be an orthonormal basis for the dominant
space of A T, the invariant subspace of A 7- associated with the stiff eigenvalues. Letting
y Q3, w Q, b Q/, etc., (1) can be transformed to

(3) 33’ =/+x +B, )(x0) ,
or, in partitioned form,

(4a) ) =/;1 +’lX +Bll)1 +B12)2, (Xo) ff,,

(4b) Y 2 /2 -" 2X "- B22Y2, 2(Xo) 12.
The general solution of (4b) is

3?2 exp (xB22)v -B(B-I+g+x)
where v is an arbitrary constant vector. Since all eigenvalues of B22 are stiff, will
have an initial transient if (and only if) v 0. Thus, the unique value of 2 which
gives a transient-free solution is that for which v 0, namely

(5) ff, -B2 (B -1
22 C2 -"/2 -1" 2X0).

If this value of 12 is chosen, then (4a) will be transient-free, regardless of the choice
of x, since Bll has no stiff eigenvalues. Thus there is an (n -k)-dimensional manifold
of initial conditions w Q for which the solution is transient-free, namely the set
of w for which 12 satisfies (5). To specify a unique transient-free solution, n-k
conditions must be placed on w. There are numerous ways one might do this, depending
on the requirements of the particular problem. The needs of our problems dictated
that n k components of w be held fixed. Thus our code will hold any n k components
of w fixed and adjust the others.

To see how this can be done, consider first the homogeneous case

(6) y’= Ay, y (Xo) z.

The choices of z which lead to a transient-free solution are those which lie in the
codominant space of A, the invariant subspace of ,4 associated with the small eigen-
values. It is easy to show that this space is the orthogonal complement of the dominant
space of AT. Recalling that the latter is spanned by the last k columns of Q, and
writing Q [Q1Q2], the transient-free choices of z are just those for which Qz O.

For notational convenience suppose that the components of z which are to be
held fixed are the first n- k. Let z- [z rz 2T], where z consists of the components

[Q12QE2], the conditionwhich are to be held fixed. Making the further partition Q2 T T

O2Z --0 can be rewritten as

(7) QT T
22Z2 -Q 12z1.

For any choice of zl, Z2 can be determined uniquely from (7), provided that Q22 is
nonsingular.

The nonhomogeneous case can be reduced to the homogeneous case by subtrac-
tion of an arbitrary transient-free solution from the nonhomogeneous problem.

T T’TSpecifically, let w [w WE where w is to be held fixed and WE is to be adjusted.
Let 1’2 be given by (5), and let s Q212. Then y(xo) s gives a transient-free solution
to the nonhomogeneous problem (the one given by w =0). Let z w-s. The
components of z are determined by z w1-sl, where s has been partitioned
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conformally with z and w. For this fixed z 1, Z2 may be adjusted so that the homogeneous
problem (6) has a transient-free solution. Then w2 (= z2 + s2) gives a transient-free
solution of the nonhomogeneous problem. To get an explicit formula for w2, note
that w =z +s, whence Qw TQz + Qs 0 +. Thus

(8)

and we can solve uniquely for w2 if Q22 is nonsingular. The steps in the calculation
of w. can be summarized as follows"

1. Determine an orthonormal basis of the dominant space of A r. (Let Q2 denote
the n x k matrix whose columns are the basis.)

2. Compute B22 QAQ2.
3. Compute 2 using (5).
4. Solve for WE using (8).
Step 4 is different from the corresponding step in the procedures outlined in [22]

and [23]. The new approach, which may be regarded as the dual of the older procedures,
has a significant advantage. The earlier procedures require the full transforming matrix
Q, whereas the present one uses only the last k columns Q2. If k << n, this allows
substantial savings of space and time which will certainly prove decisive for large
problems.

For future reference we combine (8) and (5) into a single equation:

(9) W2 -(Q2)-l(O2w1 -]--Bd (.B-dQ T T:zc + Qb + O2cxo)).

The main cost of the present procedure is that of calculating the dominant space.
This will be discussed in the following section.

The procedure requires the solution of three systems of linear equations involving
two k k coefficient matrices in Steps 3 and 4. Our program uses standard LINPACK
routines [3] to solve these systems.

3. Calculation of the dominant space. The program has two ways of calculating
the dominant space of AT: simultaneous iteration [24], which is fast if k << n, and the
QR algorithm [24], [17], which is slow but robust. The simultaneous iteration option
uses the basic orthogonal variant (Wilkinson [24, p. 607]): Starting with k orthonormal
vectors, V=[vl" "vk], the algorithm calculates W=ATV, then performs a QR
decomposition to orthonormalize the columns of W. These orthonormalized columns
are taken as a new V, and the process is repeated. The span of the columns of V
converges to the dominant space of AT. The rate of (linear) convergence is
where Ak and A/I are the kth and (k + 1)st largest eigenvalues of A. Therefore
convergence is fast if the k stiff eigenvalues are well separated from the small ones.
More sophisticated versions of simultaneous iteration have been developed [21], [9],
18]. We have not used any of these algorithms because they do not improve the
accuracy of the invariant subspace. They do improve the accuracy of individual
eigenvalues and eigenvectors, but these are not needed by the algorithm.

If the simultaneous iteration option is used, the user must specify k in advance.
However, the routine does have a limited ability to adjust the value of k in the event
that convergence is too slow. Estimates of Ihl[ and [li+l/Ai[ i-- 1,’’’, k, can easily
be obtained from simultaneous iteration with k vectors. If [h+l/hk] is unsatisfactory
and Ihg/hk-X[ or [hk-1/hk-2[ is substantially better, then k is reduced by one or two.
Otherwise, if [h+l[ is judged to be large, k is increased by 1. (The question of what
constitutes a large eigenvalue is addressed below.) The user must specify minimum
and maximum permissible values of k. The program will not make a change in k
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which violates these bounds. If k is increased, the number of initial values to be
adjusted must also be increased. A confidence hierarchy, supplied by the user, is used
to decide which values are to be adjusted. Those k values in which the user has least
confidence are adjusted.

Simultaneous iteration cannot distinguish between large negative and large posi-
tive eigenvalues. The presence of an eigenvalue with a large positive real part would
indicate that the system is unstable rather than stiff. Applying the initialization
procedure to such a system would have an unintended ettectmrapidly growing com-
ponents of the solution would be suppressed, whereas the intention is to suppress
rapidly decaying components. Therefore, after the calculation of B22, the code per-
forms a crude test to detect positive eigenvalues. Since the transformed matrix tends
toward (block) triangular form, the main diagonal entries of B22 should roughly
approximate the stiff eigenvalues. In order to take into account complex eigenvalues,
the program actually examines the 2 x 2 blocks along the main diagonal. If any of the
eigenvalues of these blocks has a positive real part, a warning message is produced,
stating that the system is unstable, not stiff. While this test is not foolproof, it should
detect large positive eigenvalues in the vast majority of cases.

If the OR algorithm option is used, the user does not specify k in advance. The
OR algorithm determines how many stiff eigenvalues there are and whether or not
the system is separably stiff, based on gaps in the spectrum and the length of the
interval of integration specified by the user. Two positive numbers m <M are used
to specify whether the system is separably stiff. Any eigenvalue satisfying
max (IRe ()1, Im ()1) < m is considered small, while an eigenvalue with Re ()<-M
is considered stiff. Values which seem to work well are m lOlL and M 100/L,
where L is the stated length of the interval of integration. If the matrix fails this first
test but has stiff eigenvalues, a second test is performed. The intermediate and stiff
eigenvalues are searched for gaps such that -Re (,)/IRe (/x)l >M/m for all on the
"stiff" side of the gap and all/x on the "small" side. If such gaps exist, the system is
considered separably stiff and the eigenvalues are partitioned at the first such gap
from the origin. Once the value of k has been determined, the confidence hierarchy
is used to decide which initial values will be adjusted.

The OR routine differs from standard OR programs in several details. As usual,
the matrix is initially reduced to upper Hessenberg form, but this is preceded by a
symmetric row and column interchange which moves the most negative main diagonal
element to the bottom right corner of the matrix. That entry then remains undisturbed
as the Hessenberg reduction is done by rows from bottom to top. Since the shifts for
the OR algorithm are taken to be eigenvalues of the trailing 2 x 2 principal submatrix,
the large negative element in the bottom corner makes it likely that large negative
shifts will be chosen, and that, consequently, the stiff eigenvalues will emerge first.
As each eigenvalue emerges, the 1-norm of the remaining deflated matrix is calculated.
If that norm is less than m, the OR algorithm is terminated, as all remaining eigenvalues
are small. The exact shifting strategy is to take a double implicit OR step if the
eigenvalues of the trailing 2 x 2 matrix are complex and a single implicit step if they
are real. In the latter case the shift is taken to be that eigenvalue which is closer to
the (n, n) entry of the matrix. The single steps are clearly superior in some situations,
for example, if k 1. An eigenvalue swapping facility in the spirit of Stewart [19] is
built in for use in the unlikely event that the large and small eigenvalues are intermixed.

The costs of the OR option are as follows. The initial Hessenberg reduction costs
35-n 3 multiplications, plus the cost (32-n 3) of updating the transforming matrix. The OR
steps are implemented in fast, scaled plane rotations [4], [5], [8], so the cost of each
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single QR step is only 2n 2. Updating the transforming matrix costs another 2n 2. Still,
even if only one step were needed for each eigenvalue, the total cost of the QR
portion of the routine would be n 3. A more realistic figure is three times that. Of
course much is saved if k << n and the routine is able to stop early. Unfortunately,
stopping early does not decrease the cost of the Hessenberg reduction.

If k is known and k << n, the simultaneous iteration option is economical. In this
case the costs of orthonormalization and testing for convergence are negligible. The
cost of each power iteration is nEk multiplications. The number of iterations is
reasonable if the small eigenvalues are much smaller than the stiff on.es. The cost of
calculating B22 is nk (n k) multiplications. (BEE is produced automatically by the QR
option.)

4. Sensitivity of the initialization problem. In 2 we saw that WE can be calculated
from (8) provided that Q22 is nonsingular. If Q22 is singular, the initialization problem
does not have a unique solution" For most choices of w there is no choice of WE for
which the solution has no transient, while for the remaining choices of w there are
infinitely many WE for which the solution is transient-free. It is extremely unlikely
that Q22 will be exactly singular. What isnot quite so unlikely is that Q22 may be
ill-conditioned, in which case the computation will be inaccurate.

It is clear from (9) that the condition number of Q22, K(QE2), is a condition
number for the initialization problem. (The likelihood that BEE is ill-conditioned is
small because BET has no small eigenvalues.) Actually we prefer to use IIQ]2 instead
of K(O2), as the former also gives an indication of the rate of convergence in the
nonlinear case (discussed below). In the spectral norm it is always true that [[Q]g [[->
/ (Q22), because 11Q221[ 1.

The program includes an option to calculate I[Q II. When k 1 the estimate is
free, since Q22 is then I x 1. If k > 1 the LINPACK routine DGECO supplies, at
small cost, an estimate of /(I22) [2]. We have modified the routine slightly so that
it returns an estimate of instead of ,< (Q22).

In [23] we showed that IIQi- is a condition number for the initialization problem,
where

O_[Oll Ol.]O O

By [20, Thm. A.1, p. 657], Qlx and Q22 have the same smallest singular value.
Therefore, in the spectral norm, ]IQ2 II- lit)Y II.

5. The nonlinear ease. The nonlinear initial value problem

(10) y’ =f(x, y), y(x0) w

can be initialized by iteration on a sequence of linear problems. Let w
be a starting guess, and linearize the problem about w():

(xo, w xo)y’= f(xo, w.

(11)
+ of (xo, w (o))(y w (o)), y (xo) w (o).
Oy

This system has the form y’ b + cx +Ay, whereA Of/Oy (Xo, w ()), c Of/Ox(xo, w()),
and b =f(Xo, w())-Cxo-Aw (). It can be initialized by the method of 3 to produce
W

(1) [W T, (1)T’IT
1- 2 such that the solution to the linearized problem does not have an



INITIALIZATION OF STIFF SYSTEMS 193

initial transient. Now the problem can be relinearized about w 1), the process can be
repeated to get w 2), and so on. For the range of problems which we have considered,
the sequence (w ")) nearly always converges to a w for which the solution to (10) is
transient-free. In [22] and [23] we discussed the convergence of the method. We
found that convergence is aided by stiffness and lack of severe nonlinearity and
impeded by severe nonlinearity and ill-conditioning of the initialization problem.
These conclusions need not be justified anew here, but it is at least worth mentioning
that (9) is better suited for the analysis of convergence than any of the equations in
[22] or [23].

At each step the program has to compute a new Jacobian, then find the associated
dominant invariant subspace. If the simultaneous iteration method is used, the final
vectors from the previous step are used as starting vectors for the power iterations in
the current step. Since the Jacobian changes little as convergence approaches, fewer
iterations are required in the later steps. The user has the option of specifying that
the OR method be used on the first step and that simultaneous iteration be used on
subsequent steps.

People who work with stiff systems are conditioned to the idea of working with
an old Jacobian, not updating it except when absolutely necessary. This conditioning,
together with the resemblance of the procedure to Newton’s method, suggests that
the iterations could be done without updating the Jacobian on each step. The savings
would be large. Unfortunately, the procedure is not Newton’s methodthe Jacobian
is not used in the same manner here. If the Jacobian is not updated regularly, the
outcome will be worse than convergence failurethe iterations will converge to the
solution of the wrong problem. Therefore, in order to get an accurate solution, the
Jacobian must be kept up-to-date. While our program updates the Jacobian on every
iteration, it might be enough to update it every second or third iteration. Then the
iterations would be less expensive on the average, but more iterations would be
required. We have not studied this question systematically.

While the Jacobian must be kept fresh, we have found that the program works
well with Jacobians evaluated by numerical differentiation, in spite of the fact that
numerical Jacobians are notoriously inaccurate. The good performance of the
algorithm under these conditions is probably due to the fact that the dominant space,
which is what matters, is generally insensitive to perturbations of the Jacobian. By
[16] an invariant subspace S of A will tend to be stable whenever the spectrum of
A Is is well separated from the rest of the spectrum of A. This condition is certainly
satisfied in the case of a separably stiff system.

The iterations evidently converge linearly. This suggests that some relaxation
technique or Aitken acceleration could profitably be used to accelerate convergence.
This is another area which warrants study.

6. Numerical results. The program has been tested on numerous small linear
problems of the form y’ b + cx +Ay, with various numbers of stiff eigenvalues, with
the expected results. In all cases the program found the transient-free solution in one
iteration. The Jacobian matrices for these problems were generated by applying
random orthogonal similarity transformations to (block triangular) matrices with
known eigenvalues. A user with problems of the special form y’ b + cx +Ay has the
option of having the program halt after one iteration without testing for convergence.

Example 1. Consider the simple nonlinear problem

y k3y3Y4-klyy2, yl(0) 1,

y k4y4y- k2y2y3, y(O) ,
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Y’3 klyly2-k3yay4, y3(0) 1,

Y k2y2y3- k4y4yl, y4(0) 1,

where kl 1.0, k2 104, k3 2.0, k4 105, and the interval of integration is [0, 1].
Use of the QR option reveals that the system has one stiff eigenvalue A -1.100 x 105.
On deflation the remaining matrix has norm less than 10 (= m), so the remaining
eigenvalues are not calculated. If yl, y3, and y4 are held fixed while y2 is adjusted,
the successive iterates are as shown in Table 1. The QR and simultaneous iteration
options give identical results, as expected. The eigenvalues on the final iteration do
not differ much from those on the first iteration. They are A1 =-1.100 x 105, 12
-17.46, 13 10-11, 14 10-11. The condition number is 17.4.

TABLE 1
Example 1.

Iteration

0 1.0
10.00080012366

2 10.00145509914
3 10.00145514681
4 10.00145514681

Example 2. This is a system of five differential equations describing steady state
density, velocity, temperature, temperature anisotropy, and heat flow of electrons in
the solar wind, as a function of distance from the sun. The system is the object of a
study currently being conducted by R. W. Schunk and the author. Unfortunately, the
equations are too complicated to be listed here. The reader is referred to [10], [11],
[12], [13], and [14] for more information about this example and Example 3.

The system has one stiff eigenvalue. The initial temperature anisotropy is not
known with confidence, so it is allowed to vary. The successive iterates are as shown
in Table 2. On the final iteration the eigenvalues are -1.706 10-1, -4.044 10-12,
-3.432 10-12, 5.641 10-14, and 1.238 10-12. The units of the eigenvalues are

-1cm The length of the interval of integration is about 1013 cm. Therefore the stiffest
eigenvalue gives rise to a transient whose length (roughly 101 cm) is approximately
one-thousandth that of the interval of integration. The condition number for the
problem is 180. In this and the next example the Jacobians were evaluated numerically.

Example 3. This is a system of eight equations describing density, velocity,
temperature, temperature anisotropy, and heat flow of electrons and protons in the

TABLE 2
Example 2. Solar wind problem.

Temperature
Iteration anisotropy

0 1.0
100306.4158

2 94697.6769
3 94774.2620
4 94773.0612
5 94773.0800
6 94773.0797
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topside ionosphere [12]. There are eight equations, not ten, because electron and
proton densities are equal, as are the velocities. The electron and proton temperature
anisotropies are allowed to vary. The results are given in Table 3. The eigenvalues
are h -6.067 10-3, /2 -5.001 10-5, h3 -1.612 10-6, /4 -7.164 10-7,
Ihi[ <2 10-, 5,..., 8, so it would be legitimate to take either k 1 or k 2.
The length of the interval of integration is 109 cm. The condition number estimate is
9 105, which is high but not intolerable on the sixteen-digit computer (Amdahl 470
V/8, double precision) which we used.

Iteration

TABLE 3
Example 3. Topside ionosphere problem.

Temperature anisotropy

Electrons Protons

0 -700 -1300
-697.30957084 1282.4621540

2 -697.31041331 1282.4027314
3 -697.31041310 1282.4027607
4 -697.31041310 1282.4027614

It is important that the transient-free solution be determined very accurately,
simply because the code will be used as a module in much larger programs which
depend on accurate output from their subroutines. Another reason for insisting on
an accurate solution can be illustrated by comparing the stepsize which can be taken
by an automatic ODE solver on a carefully initialized problem against that which can
be taken if the problem has not been initialized accurately. We integrated the system
of Example 3 twice, once using the accurate temperature anisotropy values
-697.310... and -1282.402... and one using the inaccurate values -700.0 and
-1300.0. Note that the inaccurate values are off by only about one percent. We used
the ODE solver LSODE [6], which automatically chooses the (initial and subsequent)
stepsizes. With the accurate initial values the initial stepsize was 3 x 106 cm, whereas
with the inaccurate values the stepsize was 70 cm. Only after about 25 steps did the
stepsize reach 106 cm. Thus even a slight inaccuracy in the initial values leads to a
significant (and potentially costly) transient.

7. Conclusions. We have described an initialization program which calculates
the dominant space of a stiff system in order to determine initial conditions which
give rise to a transient-free solution. The program uses either simultaneous iteration
or the OR algorithm to calculate the dominant space. The strength of the QR option
is that it automatically decides whether or not the problem is separably stiff and
determines the number of stiff eigenvalues. On the other hand, the simultaneous
iteration option is faster if the dimension of the dominant space is small. If the stiff
system is linear with constant coefficients, the initialization is done by a direct pro-
cedure, whereas for all other types of problems iteration must be employed. The code
optionally estimates a condition number which provides a measure of the sensitivity
of the initialization problem. We have given some sample numerical results illustrating
the performance of the algorithm. The sample problems include systems which model
phenomena in the topside ionosphere and the solar wind.
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A LANCZOS ALGORITHM FOR COMPUTING SINGULAR VALUES
AND VECTORS OF LARGE MATRICES*

JANE CULLUM, RALPH A. WILLOUGHBY# AND MARK LAKE]"

Abstract. Any real matrix A has associated with it the real symmetric matrix

whose positive eigenvalues are the nonzero singular values of A. Using B and our Lanczos algorithms for
computing eigenvalues and eigenvectors of very large real symmetric matrices, we obtain an algorithm for
computing singular values and singular vectors of large sparse real matrices. This algorithm provides a
means for computing the largest and the smallest or even all of the distinct singular values of many matrices.

Key words, singular value decomposition, Lanczos bidiagonalization algorithm, large matrix

1. Introduction. The singular value decomposition of a real x n matrix A is the
natural generalization of the corresponding eigenvector decomposition one obtains
for real symmetric matrices. The singular value decomposition of A has the form

(1.1) A =X.,YT

where X and Y are orthogonal matrices, X is ll, Y is n n, and E is an ln
rectangular diagonal matrix with nonnegative diagonal entries. The columns of X and
of Y are called respectively the left and the right singular vectors of A. See e.g.
Stewart (1973, Chap. 6). Without loss of generality in the discussion we assume that
>= n. In this case

where E1 isann x n diagonal matrixwith entries o-1 _->o’z ->" _->err > O’r+l O’, 0
called the singular values of A. We have the following well-known lemma.

LEMMA 1.1. Let A XZyr be a singular value decomposition of the x n matrix
A with >-_ n. LetX (X1, Xa) where X1 is x n and X2 is x (l n). Then

(1.3) A Y XIEI, ArXI YE and ATx2 o.

If A has rank r <n, let Y (Y, Ya) where Y is n x r and Ya is n x (n-r). Then
A Ya O. In fact, singular vectors x X and y Y corresponding to any singular value
rj, including any zero singular values, are characterized by the conditions"

(1.4) Ay o’jx, A =ry, x#0, y#0

The remaining left singular vectors Xa can be any orthonormal set of (1-n) vectors that
is orthogonal to X1.

Proof. The proof follows directly from (1.1) and (1.2) and then (1.3). l-]

Singular values and vectors are useful tools in many applications, providing, for
example, measures of the sensitivity of solutions of given problems to errors in the
information provided (see e.g. Lawson and Hanson (1974)), ways of stabilizing compu-
tational methods for ill-posed problems (see e.g. Hanson and Phillips (1975)), and
data reduction schemes useful for example in pattern recognition (see e.g. Andrews
and Hunt (1977)).
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Reliable programs for computing singular values and vectors of matrices of
moderate size are available in the LINPACK (1979) and EISPACK (1976) Fortran
libraries. These procedures are based upon the algorithm given in Golub and Kahan
(1965) which explicitly transforms the given matrix A into a bidiagonal matrix. The
amount of computer storage required is proportional to the product In of the
dimensions of A. The corresponding arithmetic operations count is proportional to
[max (l, n)][min (/, n)]. In addition, these programs compute all of the singular values.
Thus they are not very practical for large matrices.

The Lanczos singular value procedure which we describe below can be very
efficient for large matrices and can be used to compute a few or many of the singular
values in any portion of the spectrum. For this to be true it must be possible for the
matrix-vector products Au and Av to be computed with computer storage require-
ments and arithmetic operation counts which are linear in max (l, n). This is true
for example for sparse A. For the computation of q distinct singular values of A, the
computer storage required by the algorithm is then linear in l, and the total operation
count is linear in ql where q _<-n min (l, n). In addition to the above, the efficiency
and in fact the practicality of this algorithm depend upon the distribution of the
singular values, that is, upon how clustered they are, and upon which subsets of the
singular values are to be computed. Generally, the denser or more clustered the
desired singular values of A are, then the more difficult it is to compute them. Examples
are provided in 4.

We use an idea from Lanczos (1961, Chap. 3). This idea has also been used
elsewhere; in particular, Golub and Kahan (1965) and Paige (1974) are relevant for
the discussion here. Associated with any real n matrix A is the symmetric (1 + n)
(l + n) matrix

(1.5) B= Ar
It is straightforward to demonstrate that the distinct eigenvalues of B are 0 and +k,
l _-< k _-< s -<_ r, where r is the rank of A and the i with 1>2>"" #s >0 are the
distinct nonzero singular values of A. The multiplicity of the 0 eigenvalue of B is
+ n -2r. In fact, we have the following lemma, which states that the singular values

and corresponding singular vectors of A form an eigenvalue eigenvector decomposition
of/3. The proof of Lemma 1.2 follows directly from the definitions.

LEMMA 1.2. Let A be a real x n matrix with >= n and B be defined by (1.5).
Let trl >_-tr2 _>-" >_-trr > o’r+l o-n 0 be the singular values ofA corresponding to
the singular value decomposition A XEyr. Define XI, X2 and as in Lemma 1.1
and let Z be the following (l + n) x (l + n) matrix:

(1.6) Z=- V -r

Then (i) Z is orthogonal and if
o o 1(1.7)

A --,,1 0
0 0

then/3Z ZA.

That is, Z is an eigenvector basisforB, and the eigenvalues orb are lust +o-j,/" 1, , n,
together with l-n zero eigenvalues corresponding to n.
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(ii) Zero eigenvalues o] B that correspond to zero singular values o1 A are charac-
terized in B by eigenvectors (x, y )t with x 0 and y O.

In the above we have used (x, y)t as an abbreviation for the awkward notation
(x r, y T)T. We have the following converse of Lemma 1.2, which allows us to obtain
suitable sets of singular vectors of A from the computed eigenvectors of B. Observe
from (1.3) that the vectors X2 perform no real function in the singular value decomposi-
tion of A; therefore we will not compute these singular vectors. We only compute
right singular vectors Y and a suitable set of left singular vectors for X1.

LEMMA 1.3. Let A be a real x n matrix with >-n, and let B be defined by (1.5).
(i) For any positive eigenvalue

norm /-, ,i is a singular value o] A, and xi and yi are respectively leJ’t and right
singular vectors o] A corresponding to

(ii) I{ 0 is an eigenvalue o]B and there is a corresponding eigenvector olCB, (xi, yi)t
with xi 0 and yi O, then 0 is a singular value o) A; otherwise, A has )ull rank.
Appropriate leJ’t and right singular vectors o]A can be obtained by computing orthogonal
eigenvectors (xi, yi)t, 1, 2, , n r, olCB with xi 0 and yi 0 and then orthogonaliz-
ing the xi and the yi, respectively.

Proo] Part (i) is a direct consequence of (1.3). Part (ii) follows from Lemma 1.2
and the fact that these y and x must lie respectively in the null spaces of A and of
A r.

Thus, we can generate a singular value decomposition of a given x n matrix A
by computing the eigenvectors of the related symmetric matrix B given in (1.5). Golub
and Kahan (1965) pointed out that the Lanczos recursions together with the matrix
B in (1.5) could be used to obtain a Lanczos bidiagonalization algorithm for computing
a singular value decomposition of a matrix. However, they chose to use Householder
transformations to reduce the given matrix A to bidiagonal form because of their
inherent stability. Paige (1974), in the context of developing a Lanczos procedure for
solving the linear least squares problem for large sparse matrices, elaborated upon
the Lanczos bidiagonalization algorithm proposed by Golub and Kahan (1965).

Recently, Golub, Luk and Overton (1981) have applied an iterative block Lanczos
version of the Lanczos bidiagonalization to the matrix B to compute a few of the
largest singular values of a real matrix A and corresponding singular vectors. Block
Lanczos procedures are procedures for maximizing sums and differences of Rayleigh
quotients of B (see Cullum (1978), Cullum and Donath (1974)), and are therefore
very suitable for computing a few of the largest singular values (and corresponding
vectors) since these appear on the extremes of the spectrum of B.

In some applications, more than just a few singular vectors may be required, or
singular vectors may be needed from some other portion of the spectrum than the
large end. In some data reduction schemes a few of the singular vectors corresponding
to the largest singular values may suffice. However, in other problems one may need
more vectors to reproduce a reasonable facsimile of the given pattern. In stabilization
schemes for solving ill-posed problems, the singular values of primary interest are
those at the lower end of the spectrum. In replacing A by the symmetric matrix B,
the smallest singular values of A become the middle of the spectrum of B and thus
are as far from the extremes of the spectrum as possible. It is very difficult, if not
impossible, for a general block Lanczos procedure that starts from a set of randomly
generated vectors to compute these smallest singular values. The algorithm that we
present can be used to compute either a few or many distinct singular values at the
ends of or on interior portions of the spectrum.
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In 2 we briefly summarize the Lanczos eigenvalue/eigenvector procedures for
real symmetric matrices that are described in Cullum and Willoughby (1979), (1980a),
(1980b), (1981). In these references it was demonstrated that for many symmetric
matrices a single-vector Lanczos procedure with no reorthogonalization could be used,
not only to reliably compute the distinct, extreme eigenvalues, but to compute the
distinct eigenvalues in any portion of the spectrum. The amount of computation
required is a function of the denseness of the desired eigenvalues, of their relative
locations in the specrum of the given matrix (i.e., extreme or interior) and of the gap
stiffness, the ratio of the largest gap between two neighboring distinct eigenvalues to
the smallest such gap. The gap stiffness is a measure of the maximum variation in the
spacing between successive eigenvalues of B. If this stiffness is "not large"; then the
Lanczos tridiagonalization procedure can readily compute all of the eigenvalues of
the given matrix.

In 3 we apply these Lanczos procedures to the symmetric matrix B in (1.5),
incorporating savings in operation counts that are outlined in Golub and Kahan (1965).
We summarize the special properties of the resulting symmetric tridiagonal matrices
that are generated and consider the question of suppressing the extra zero eigenvalues
of B which occur whenever n.

In 4 we apply the resulting Lanczos singular value procedure to several test
problems and illustrate both its performance and the differences between our proposed
algorithm and the one proposed in Paige (1974). Examples illustrate that our procedure
provides the user with a look-ahead capability and superior resolution power, and
eliminates much of the ambiguity that could arise in picking a convergence tolerance.
Corresponding singular vectors are computed. Estimates of the errors of all of the
computed quantities are given. Fortran code implementing the algorithm described
here is given in Cullum, Willoughby and Lake (1982).

2. Lanczos tridiagonalization without reorthogonalization. We briefly summarize
the eigenvalue and eigenvector algorithms for real symmetric matrices described in
Cullum and Willoughby (1979), (1980a), (1980b), (1981). Lanczos tridiagonalization
transforms a real symmetricN N matrix B into a family of real symmetric tridiagonal
matrices T,, m 1, 2, ... We select a unit N-vector tT randomly. There is an implicit
assumption in these Lanczos procedures that the starting vector has a nontrivial
projection on some eigenvector of B corresponding to each eigenvalue that we want
to compute. We than use the following Lanczos recursion for 1, , m with tT0 0,
3 0 and

(2.1) i+ i+ Bi Olii ii-1,

with the coefficients recommended by Paige (1972):

(2.2) oi=(Bi-Bi_l) and

to generate symmetric tridiagonal matrices T, of order m with

(2.3) rm(i,i)=oti and T,,(i,i+l)=rm(i+l,i)=i+l.

This generation requires only the matrix-vector products Bi, and only the two most
recently generated Lanczos vectors must be kept in fast storage. The subsequent
eigenvector computations use the Lanczos vectors generated in the Lanczos eigenvalue
computations. The user can either store these vectors off-line as they are generated,
to be recalled for the eigenvector computations, or regenerate these vectors for the
eigenvector computations.
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For each m we define the related symmetric tridiagonal matrix of order rn- 1,

(2.4) :z(i, i) oi+ and 2(i, + 1) z(i + 1, i) i+2,

obtained from a given T, by deleting the first row and column. This definition should
include the parameter m, but for simplicity we have left it out. The eigenvalue
computation proceeds as follows.

LANCZOS EIGENVALUE PROCEDURE FOR SYMMETRIC MATRICES.

Step O. Set tT0 0 and/31 0 and generate a random unit vector g of order N.
Step 1. For some suitable M generate for/"-_M, the scalars aj and/3.+1 using

(2.1)-(2.2). Store the aj, 1 _<-/" _-< M, the flj, 2 _-</" -<_M + 1, and the last two
Lanczos vectors tt and gt+ off-line.

Step 2. For some m <- M, compute the eigenvalues of T,, in the intervals of interest
where convergence has not yet been established. Determine the numerical
multiplicities of each of these eigenvalues. Accept numerically multiple
eigenvalues as converged eigenvalues of B. Test each simple computed
eigenvalue of Tm to determine whether or not it is pathologically close
to an eigenvalue of the corresponding z matrix. If so, reject that eigen-
value as spurious. Otherwise, accept it as an approximate eigenvalue of B.

Step 3. Compute error estimates for the simple "good" eigenvalues obtained in
Step 2. If convergence is indicated, terminate. Otherwise increment m,
if necessary enlarge TM, and go to Step 2.

If Sturm sequencing is used to calculate the eigenvalues of T,,, then the multiplicity
test and the test for rejection in Step 2 are done simultaneously, so there is no extra
cost incurred in doing the rejection test.

LANCZOS EIGENVECTOR PROCEDURE FOR SYMMETRIC MATRICES AND CON-

VERGED EIGENVALUES.

Step O. The matrices T,, m <=M, generated in the Lanczos eigenvalue computa-
tions are read from storage.

Step 1. Using Sturm sequencing (see for example Jennings (1977)) determine,
for each eigenvalue/x being considered, the first value m 1 (/x) of m for
which / appears as an eigenvalue of T,, to within a given accuracy,
typically e (/x) max (10-1, 10-[tz 1). Also if possible compute the first
value m2() of m for which/x appears as a double eigenvalue of T,, to
within e ().

Step 2. For each/x, define ma (Ix) m 1(ix + (rn 2(/x m 1 ()) unless m 2(/x >
M, in which case set ma(tx)= M. (See comments below.) For each /

compute a unit eigenvector w of T,a(,) and use it to compute the following
error estimate for the accuracy of the corresponding Ritz vector.

(2.5) e e l[3+ w (m )l.
In (2.5) m ma (Ix) and w (m) is the ruth component of the corresponding
eigenvector w. If this error estimate is small go to the next/x. Otherwise,
use Sturm sequencing to determine if there is a spurious eigenvalue close
to/x. If not go to the next/x. If there is, then change ma (l) and repeat
the tridiagonal eigenvector computation for that/. Note that the associ-
ated expensive Ritz computation is not performed until Step 3.
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Step 3. For each relevant eigenvalue Ix and corresponding T,, eigenvector w, we
calculate the corresponding normalized Ritz vector

(2.6) z fw/ll
where I7" =---{LI, 2,""",/-rn} and m ma(ix) is a function of Ix. A single
pass through the Lanczos vectors tTk is all that is required to generate a
whole set of Ritz vectors. Note that the number of Lanczos vectors actually
used varies with Ix.

Step 4. Compute the corresponding error estimates for each Ritz vector z con-
sidered as an eigenvector of B"

(2.7) e =-IIBz zll.

Details of the eigenvalue and eigenvector computations and Fortran code are given
in Cullum and Willoughby (1980a), (1980b), (1981), (1982).

In Cullum and Willoughby (1980a) we saw empirically that for a given eigenvalue
Ix almost any choice of ma (Ix) within a very broad centralized range between m 1 (Ix)
and m2(Ix) is suitable for the eigenvector computation. When rn2(Ix) is not known
and we set ma (Ix)= M, it is of course possible that ma (Ix) is not large enough. This
can be checked by looking at the error estimate obtained from (2.5). This quantity
gives an excellent a priori estimate of the accuracy of the corresponding Ritz vector
considered as an eigenvector of B. If for some tx this estimate is poor, we can, as
indicated in Step 2, modify the order ma (Ix) even to the extent of enlarging TM and
repeating Step 2.

Step 3 indicates that all the Ritz vectors are computed with one pass through the
Lanczos vectors. Whether or not this is feasible of course depends upon the storage
available, since for each computed Ix both the computed eigenvector of T,,a(,) and
the corresponding Ritz vector are kept in main storage for this computation. The
point is that an entire set of eigenvectors can be computed simultaneously.

The eigenvalue/eigenvector computations occur in two stages. The eigenvalues
are computed first, and then for a selected subset of the eigenvalues, corresponding
eigenvectors are computed. In order for the eigenvector procedure to work properly
each eigenvalue for which an eigenvector is to be computed must have converged as
an eigenvalue of the tridiagonal matrices T,, m 1, 2,.... It is not sufficient for the
error estimates in (2.5) to be small, because this could be due to a small/3i/1. The
last component w (m) of the associated eigenvector of Tm must be small. This of course
occurs when the error estimate is small as long as the corresponding /3,,+1 is not
abnormally small.

The amount of computation required to compute the desired eigenvalues and
eigenvectors of a given matrix B depends directly upon the denseness of the desired
eigenvalues, on the relative locations of these eigenvalues in the spectrum of B and
on the gap stiffness. Given an eigenvalue on the extreme of the spectrum and an
eigenvalue in the interior of the spectrum but with the same eigenvalue gaps, the
extreme eigenvalue will converge first. However, an interior eigenvalue with a larger
gap than a particular extreme eigenvalue may converge sooner than that extreme one
does. Since there is no reorthogonalization, eigenvalues that have converged by a
given m may begin to replicate as m is increased. The degree of replication that
occurs depends upon the gap ratios: the larger the ratio, the more the replication.
The more replication there is the more difficult it is to compute small dense eigenvalues.
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Examples of the convergence achievable for matrices with different eigenvalue
distributions are given in Cullum and Willoughby (1979), (1980a), (1980b), (1981).

3. Singular value and singular vector computations. We obtain a Lanczos singular
value algorithm for any real x n matrix A by applying the Lanczos procedures
described in the preceding section to the corresponding matrix B in (1.5) with a
particular choice of starting vector suggested by Golub and Kahan (1965). First, in
Lemma 3.1 we summarize the recursions that result from applying the Lanczos
recursions given in (2.1)-(2.2) to the matrix B in (1.5).

LEMMA 3.1. Let A be a real n matrix and let B be the associated symmetric
matrix defined in (1.5). Apply the Lanczos tridiagonalization recursion specified in
(2.1) and (2.2) to B with the unit starting vector (v, O) where v is 1 or (0, u)’ where
u is n x 1. Then in either case the diagonal entries ol the symmetric tridiagonal matrices
generated are all identically zero, the Lanczos vectors generated alternate between the
two lorms (v, 0)’ and (0, u)’ and the Lanczos recursions in (2.1) and (2.2) reduce to
the lollowing

(i) For a starting vector ol the ]orm (v, 0)’, define va-=v, uo=O and [3---0. For
1,..., m/2 we obtain the Lanczos recursions

(3.1)
[2iui A TI) --[32i--lUi--1,

2i+lVi+l Aui [2iui.

(ii) For a starting vector of the form (0, u) define u =-u, Vo=-O and [3 =-0. For
1,. ., m/2 we obtain the Lanczos recursions

(3.2)
[32iVi Aui 2i--1Vi--1,

[2i+1Ui+ A%i [2iUi,

where in each case in (3.1) and (3.2) the i are chosen to normalize the ui and vi vectors.

Proof. The proof consists of directly writing down the Lanczos recursions for B
and then observing that they reduce to either (3.1) or (3.2) above. 71

Lemma 3.1 tells us that as long as the starting vector is of the form (v, 0) or
(0, u)t, then successive Lanczos vectors are of the form (0, ui) or (vi, 0) or vice versa.
Thus the total storage required for two successive Lanczos vectors is only + n. The
Lanczos symmetric tridiagonal matrices T,n generated are for 1,. ., m/2,

(3.3)
T,(2i l, 2i -1) O, T,(2i l, 2i) zi,

T,(2i, 2i) O, T,(2i, 2i + l) ei+a.
Since each diagonal entry of the tridiagonal matrices generated is 0, only one long
vector array is needed to store these matrices. At each iteration either Au or Av is
computed, not both. Thus, although the order of/3 may be as much as twice that of
A, the computational requirements per iteration of the Lanczos recursion do not
increase proportionally when we replace A by/3 in (1.5). However, we should repeat
that B has twice as many distinct nonzero eigenvalues as A has distinct nonzero
singular values, since each singular value of A (including also any zero singular values)
appears as a + pair of eigenvalues of B. Moreover, the + pairs of the small singular
values of A become the center of the eigenvalue spectrum of /3. Thus the small
singular values are the most difficult singular values for our Lanczos procedure to
compute if these values are small in magnitude or very densely packed. Therefore,
even though the cost per iteration may not be more than working directly with a
symmetric matrix whose order is (! + n)/2, the number of iterations required to get
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the desired eigenvalues of B may be considerably more than what would be required
with a symmetric matrix with an eigenvalue distribution that matched the distribution
of the singular values of A. in 4 we present one such specific comparison.

An obvious question to consider is whether or not it matters which choice of
starting vector (v, 0) or (0, u) that we use and whether or not we will lose any part
of the desired eigenspace of B if one of these special forms is used. A related question
for the case n is what effect does one of these choices have on one’s ability to
compute the zero singular values of A (if there are any) without being confused by
zero eigenvalues of B arising when n. The following lemma provides an answer
to these questions.

LEMMA 3.2. LetA be a real x n matrix. Let B be the associated symmetric matrix
given in (1.5).

(i) If > n then the eigenvectors orb corresponding to zero eigenvalues orb resulting
from n have no projections on vectors of the form (0, u)’ where u is n x 1. Ifl < n
then this statement holds for vectors of the form (v, 0)’ where v is x 1.

(ii) If > n and u is generated randomly, then in exact arithmetic the expectation
that u will have a projection on each desired right singular vector of A is the same as
it would befor computing the distinct eigenvalues ofthe symmetric matrixA 7‘A. Similarly,
for < n, the expectation that v will have a projection on each of the desired left singular
vectors is the same as it wouM be for computing the distinct eigenvalues of the symmetric
matrix AA 7-.

Proof. The proof of (i) is immediate from Lemma 1.2 and its analogue for the
case < n. Lemma 1.2 states that for > n the eigenvectors of B corresponding to
the extraneous 0 eigenvalues due to n are of the form (x, 0) where x is of length
l. Similarly when < n, these eigenvectors are of the form (0, y)’. To prove part (ii)
we show that in exact arithmetic the Lanczos vectors ui generated using (3.2) are the
Lanczos vectors obtained by applying the symmetric Lanczos recursions to A T‘A.
Applying (3.2) and rearranging we obtain the following recursion:

2i2i+1//i+1 ATAu ([3 i -+- [3 i-1 )Ui 2i-12i-2U/-1

where/ =- 0. Using the fact that in exact arithmetic the vectors b/i are orthonormal,
it is straightforward to show that the coefficients in the above recursion are precisely
the corresponding a and/3 coefficients or AT‘A defined by (2.2). (3

Restating Lemma 3.2 we have that if A has more rows than columns, then the
appropriate vector is of the form (0, u)’ where u has the same dimension as the number
of columns, and if A has more columns than rows, then the appropriate starting vector
is of the form (v, 0) where again v has the same dimension as the number of columns.
These choices minimize our chances of introducing any of the eigenvectors of B
associated with any zero eigenvalues of B arising from n.

Lemma 3.2 raises the obvious question of computing the singular values of A by
computing the eigenvalues of the smaller of the two corresponding symmetric matrices
A 7‘A or AA T, instead of working with A directly. This is not a good idea for several
reasons. The nonzero eigenvalues of either of these matrices are the squares of the
nonzero singular values of A. So, in particular, very small singular values may appear
numerically as zero eigenvalues in ATA orAA T, and very large singular values become
even larger. The squares of any such small singular values are also closer together
than the singular values themselves are, and the squares of any large eigenvalues are
further apart. Thus, the gap stiffness of the eigenvalues of AT"A may be much worse
than that of the singular values themselves. However, the smallest and the largest
singular values of A become the extremes of the spectrum of either A 7‘A or AA T,
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and in some cases that may yield a significant advantage in terms of how our Lanczos
algorithm converges. In fact, if A is a well-conditioned matrix in the sense that there
are no singular values whose squares are too near "zero", then it may be possible to
compute good approximate singular values and vectors by computing the eigenvalues
and eigenvectors of either one of the above matrices. However, even in this case there
can be degradation of the accuracy over what is achievable if A is used directly.
Cullum and Willoughby (1980c) give some examples illustrating such differences.
Moreover, there is no a priori test to determine whether or not a given matrix is
well-conditioned in the above sense, so it is not possible to recommend this approach.

The following lemma tells us that the Lanczos tridiagonal matrices T,, generated
using the Lanczos recursion in (3.1) or (3.2) retain some of the properties of the
original B matrix.

LEMMA 3.3. (i) For even orders m 2f, f 1, 2,. ., the eigenvalues of T, occur
in + pairs.

(ii) For odd orders m 2f 1, f 1, 2, , the eigenvalues of T, occur in + pairs
together with an extraneous 0 eigenvalue.

Proof. For any 3’ let di(3")-- determinant (T-yI). We prove by induction that
for any 3’ and for any/"

d2j(3,) d2j(-y) and d2i-l(y) -d2-1(-3’).
That is, for any order m if 3" is an eigenvalue of T, then -3" is also an eigenvalue of
T,,. In addition, for odd orders m, d,, (0) -d, (0), so therefore 0 must be an eigenvalue
of such Tin. Set d0(3") 1. Clearly, d(3") -3" -d(-3") and d2(3") 3"2-fl22 d2(-3").
For symmetric tridiagonal matrices with 0 diagonals we have the determinant recursion
di(3") =-3"di_l(3")-flaidi_2(3"). Now assume (i) and (ii) are true for/’= k. Then using
this determinant recursion we get that d2k+l(--3")=3"d2k(--3")--’22k+1dEk_1(--3")
3"dEg(3")+flk+ld2k-(3" -dEg+(3"). Similarly, we get dEk+2(--3") d2+2(3").

By direct substitution it is easy to show, for any order m and any positive
eigenvalue /z of T, with eigenvector w-(Wl, WE,’’’, W,)t, that the vector
(w, --WE," ", (--1)’-lw,) is an eigenvector of T,, for the corresponding eigenvalue
-/. Theoretically, we know that the matrices Tm cannot have multiple eigenvalues
unless one of the fl vanish. In practice, however, numerically multiple eigenvalues
are obtained. If A does not have full rank, then for large enough m, T,, should have
some very small eigenvalues corresponding to the zero singular values of A. These,
however will occur in + pairs. For odd order T,,,, as Lemma 3.3 demonstrated, there
is an extraneous 0 eigenvalue. By direct substitution it is easy to demonstrate that
the even-numbered components of any eigenvector corresponding to such a 0 eigen-
value must all vanish. Lemma 3.3 tells us that we need only compute the nonnegative
eigenvalues of each T,, and that to avoid confusion with an extraneous zero eigenvalue
due only to the peculiar form of T,, we should use only even ordered T,.

Before proceeding we make one more observation related to part (ii) of Lemma
3.2 and to our comments about the matrix ArA. Consider for example (3.2). We can
write the first equation in matrix form as

(3.4) AU VJ
where U={ul,..., ui}, V={vl,..., vi} and J is the ixi bidiagonal matrix with
J(], ])=/32i and J(j, f + 1)=/32i+. The nonzero singular values of J are the same as
the positive eigenvalues of
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But there is a simple permutation of J that maps J into T2i. Thus, since singular values
are preserved under permutations, we could compute the singular values of A by
computing the eigenvalues of the smaller symmetric tridiagonal matrix jTj where
jTj(j, f) fli +2i- and jTj(j, j + 1) 2j2j+l. (Note that theoretically this is just
the matrix obtained earlier when we considered ATA in the proof of Lemma 3.3.)

This raises the possibility of computing the singular values of A by computing
only with the smaller but nonsymmetric bidiagonal matrix J. The singular value code
in LINPACK uses a modified QR algorithm that works directly with J. Golub, Luk
and Overton (1981) also use the J matrices instead of the corresponding. T-matrices.
In our implementation we work directly with the symmetric tridiagonal matrices
These matrices are needed for our classification test (see Step 2 of our algorithm in

4), and are needed for computing the error estimates for the computed singular
values and vectors.

In order to study the behavior of the proposed algorithm systematically, it is
desirable to have a family of test matrices whose singular values and vectors are known
and such that various types of singular value distributions can be considered. Lemma
3.4 tells us that the family of rectangular diagonal matrices given in (1.2) is a suitable
family since these matrices are equivalent, in the sense specified in this lemma, to any
other family of matrices except for the way in which the roundoff error incurred in
evaluating Au or ATv propagates. This proof is straightforward.

LEMMA 3.4. Given any real x n matrix A with l- n, in eact arithmetic there is
a member of the family of rectangular diagonal matrices in (1.2) which has the same
singular values as A and generates the same Lanczos tridiagonal matrices T,, m
1, 2, ., as A does when the recursions in (3.2) are applied to it using a starting vector
(0, u) for the rectangular matrix E, and using the corresponding starting vector (0, Yu)
for the matrix A. A similar result holds when <-_ n with 5; [E 0],

Lemma 3.4 is valid only in exact arithmetic, which of course we do not have.
However, it does indicate that we should be able to obtain some understanding of
how our Lanczos singular value procedure functions by running numerical tests on
members chosen from this very special family of matrices. Numerical results are
discussed in the next section.

4. Numerical results. The following Lanczos singular value procedure which is
based upon Lemmas 1.2-1.3 and 3.1-3.3 was programmed in Fortran and exercised
on an IBM 3033. The Fortran code is available in Cullum, Willoughby and Lake
(1982). We outline this procedure for an n real, rectangular matrix A with >-_ n.
The analogue for the case _-< n is easily obtained and the computer program directly
handles either case.

LANCZOS SINGULAR VALUE/VECTOR PROCEDURES (l t/).
Step O. Set v0 0 and/3 0 and generate a random unit vector u of order n.
Step 1. For some suitable M, generate for 1 <_-i _<-M the scalars 2i and 2i+1 and

unit vectors vi, b//+l such that

2iVi Aui 2i-.1ui-1,

/32i+ ui+ A 7"vi 2iui.

Store the scalars/3., 1 _-</" _-<2M + 1, and the last two Lanczos vectors
and /AM+1.

Step 2. For some even m _-< 2M, compute the nonnegative eigenvalues of T,, in
the intervals of interest on those subintervals where convergence has not
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Step 3.

Step 4.

Step 5.

yet been established. T, is the symmetric tridiagonal matrix of order m
given in (3.3). Determine the numerical multiplicities of each of these
eigenvalues. Accept each numerically multiple eigenvalue as a converged
singular value of A. Test each simple computed eigenvalue/z of T, to
determine whether or not it is also an eigenvalue of the corresponding
2 (the matrix obtained by deleting the first row and column of T,,). If
it is, reject that eigenvalue as "spurious"; otherwise, accept it as good
and label it as an approximation to a singular value of A. (Note that if
the Sturm sequencing version of the symmetric tridiagonal eigenvalue
subroutine is being used then the test for numerical multiplicity and the
2 test for spurious eigenvalues are done simultaneously, so no extra cost
is incurred.)
Using inverse iteration on (T,-/zI) compute an error estimate (cf. (2.5))
for each/x which is an "isolated" (considered as an eigenvalue of T,n)
approximate singular value of A.
Test for convergence of the computed approximate singular values using
the error estimates. If convergence of all the desired singular values is
observed, proceed to the singular vector computations. Otherwise incre-
ment m, return to Step 2 and generate additional/i. Depending upon
the original choice of M, this may mean using m > 2M, so that additional
/3 must be generated. If so go to Step 1 instead of Step 2.
Compute left and right singular vectors for each of a user-selected subset
of the computed converged singular values by computing the correspond-
ing eigenvectors of B using the Lanczos eigenvector procedure described
in 2 appropriately modified to incorporate the special structure of the
tridiagonal matrices T,, and of the Lanczos vectors.

An important and unique feature of our algorithm is the determination (see Step
2) of the "good" eigenvalues of T, on the intervals of interest. In exact arithmetic,
for >= n, each tridiagonal matrix T, (for small enough m) is the orthogonal projection
of the corresponding B matrix (1.5) onto the subspace spanned by the Lanczos vectors

{(0, u)’, (v, 0)’, (0, u)’, (v., 0)’,..., (v,,/, 0)’}.
Therefore, in exact arithmetic every nonzero eigenvalue of T,, can be considered as
an approximation to an eigenvalue of B and thus to a singular value of A. However,
in practice, due to roundoff errors, the Lanczos vectors generated are not globally
orthogonal, so that the matrices T,, are not orthogonal projections of B, and in fact
some of the eigenvalues of a given T,, may be extraneous. Our selection as stated in
Step 2 is based upon the identification and subsequent rejection of these "spurious"
eigenvalues of T,,. This selection is made prior to and independent of the computation
of the error estimates in Step 3. This list of "good" singular values at a given value
of m provides a look-ahead capability. It identifies which of the eigenvalues of T,
can be expected to persist as we enlarge m and gives estimates for the singular values
of A on the intervals of interest long before convergence has occurred.

In Step 3 the error estimates e,, in (2.5) are calculated for a selected set of the
isolated "good" eigenvalues of T,; these estimates are then used in Step 4 with a
weak convergence tolerance to determine whether convergence has occurred. An
eigenvalue of T,, is considered to be isolated if it is a simple eigenvalue of T, and
the minimal gap between it and the eigenvalues of T, closest to it is larger than a
tolerance which depends upon the eigenvalue in question. See Cullum, Willoughby
and Lake (1982) for details.
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An alternative approach for determining which simple eigenvalues of T, represent
singular values of A has been used elsewhere (cf. Paige (1974)) and is based upon
computing the error estimates e, defined in (2.5) for every simple eigenvalue of
and then testing these estimates relative to a user specified tolerance, e tol. Before
proceeding we give examples that illustrate possible difficulties that can result from
using this latter classification scheme, and that illustrate the look-ahead capability of
our procedure and its superior resolution power.

Table 4.1 illustrates the sensitivity of the eigenvalue selection process to the
user-selected tolerance e to. It also illustrates that, given only a list of eigenvalues of
T, together with their corresponding e, error estimates, one cannot necessarily make
statements about the actual overall distribution of the singular values of A. The A
matrix for Table 4.1 is only of order 20, and one would expect the situation to be
much more complicated if we were working with a larger matrix. Following Lemma
3.4 we use rectangular diagonal matrices as test problems, and we will treat each
example as though it were unsymmetric.

Example 4.1. LetA be the rectangular 20 20 diagonal matrix with the diagonal
entries

0.1, 1.7,
0.2, 1.8,
O.3, 1.9,
1.0, 6.9,
1.000001, 6.9001,
1.2, 9.9001,
1.3, 9.900101,
1.4, 9.900111,
1.5, 10,
1.6, 100.

We applied our Lanczos singular value procedure to A 1, letting m 40, 60, and
70. Table 4.1 lists corresponding computed eigenvalues of T,,, the accuracy of those
eigenvalues which are approximate singular values of A 1, and the computed error
estimates. In each table the column labeled "Our class" contains our classification of
the corresponding eigenvalue. If the eigenvalue is "good", then this classification is
just the multiplicity of that eigenvalue as an eigenvalue of the corresponding T,,. if
the eigenvalue is "spurious", then this classification is 0. The column labeled "Com-
puted amingap" contains the minimal computed gap between the corresponding
computed good eigenvalue (singular value) and the good eigenvalues (singular values)
that are closest to it. An * means that the estimate of the error in that singular value
indicates 12 or more digits of accuracy. In the tables the eigenvalues are numbered
according to their position as an eigenvalue of T,,. Observe that the order N of B1
in (1.5) corresponding to A is 40 and that B1 has 40 nonzero eigenvalues. Hence
the orders of the tridiagonal matrices being considered are respectively rn N, m
1.5N and m 1.75N, orders that are quite reasonable.

From Table 4.1a we see that at m 40 our algorithm labels all of the 17 computed
positive eigenvalues of T, as "good", giving us an overall picture of the singular value
spectrum of A. From Table 4. l a we also see that a classification procedure which was
based purely on the size of the error estimates and used any convergence tolerance
of between 7 and 10 digits would identify at most the five singular values 6.9, 6.9001,
9.900111, 10 and 100 as converged and would provide no overall estimate of the rest
of the singular value spectrum. Note that the computed error estimates for the singular
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TABLE 4.1a
Example 4.1. Identification of computed eigenvalues at m 40.

No. Computed Our Computed Error True
in Tm eigenvalue class amingap estimate error

.1530 .138 9 10-2 5 10-2

2 .2914 .138 5 10-2 9x 10-3

3 .9987 .09 6 10-2 1 10-3

4 1.089 1 .09 4 10-1 1 10-2

5 1.281 .1 1 10-1 2 10-2

6 1.384 1 .1 2 x 10-1 2 10-2

7 1.580 .064 2 10-1 2 10-2

8 1.644 1 .064 2 10-1 6 10-2

9 1.800 .1 1 10-2 2 10--4

10 1.900 .1 7 x 10-4 4 10-7

11 6.900 1 10-4 8 10-11 *
12 6.9001 10-4 2 10-1 *
13 9.9001 10-6 2 10-6 *
14 9.900101 10-6 1 10-6 *
15 9.900111 10-5 5 10-7 *
16 10.000 .1 * *
17 100.00 4 90. * *

values near 9.9 do not reflect the fact that these singular values have actually converged
because these values are very close together.

At rn 60 all of the singular values of Example 4.1 have been computed accurately
but the error estimates for the singular values 1.0 and 1.000001 do not clearly indicate
their convergence. In Table 4. lb we list only those eigenvalues of T, near 1 and near
9.9. All other error estimates clearly indicated convergence. Note the two spurious
eigenvalues.

TABLE 4.1b
Example 4.1. Identification of converged singular values, m 60.

(All singular values have converged.)

No. Computed Our Computed Error True
in T,, eigenvalue class amingap estimate error

3 .3000 1 .1
4 1.000 1 10-6 3 10-8 *
5 1.000001 10-6 3 10-7 *
6 1.200 1 .1 *

15 6.9001 2 10-4 * *
16 9.817 0 9 10-1

17 9.9001 10-6

18 9.900101 1 10-6 *
19 9.900102 0 4 10-5

20 9.900111 1 10-5

From Table 4.1b we see that the singular values 1.000 and 1.000001 would only
be identified by error estimate tolerances of 6 digits or less, but such a weak tolerance
can lead to serious misclassification. We give an example of this type of misclassification
in Table 4.1c. Since both singular values near 1.0 would be missed with a reasonable
test based only on error estimates, one would have to enlarge m and recompute the
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eigenvalues on this interval. The question one must then consider is: What other
intervals should also be included when we enlarge m? If one uses just the error
estimates as a guide in making this selection then one obtains two possible intervals
of nonconvergence (.99, 1.01) and (9.9, 9.90015). Our algorithm, on the other hand,
would know to consider only the former interval since the other eigenvalue with the
small error estimates has been labeled spurious. If in fact we do take both of these
intervals and enlarge to T70, we get the quantities given in Table 4.1c. Here we have
listed only those portions of the spectrum of TT0 in the intervals (.99, 1.01) and (9.9,
9.90015).

TABLE 4.1C
Example 4.1. Identification of computed eigenvalues at m =70 on the subintervals

(.99, 1.01) and (9.9, 9.90015).

No. Computed Our Computed Error True
in T,, eigenvalue class amingap estimate error

4 1.000 10-6 10-1

5 1.000001 10-6 10-9

19 9.9001002 1 10-6

20 9.9001007 0 7 10-7

21 9.900101 1 10-6 * *
22 9.9001110 0 2 10-6

23 9.9001112 1 10-5 * *

These values agree with the machine representations of these eigenvalues to more
than 12 decimal digits.

From Table 4.1c we see that a weak identification test based only on the error
estimates such as that needed to identify the singular values 1.0 and 1.000001 in
Table 4. lb can lead to the mislabeling of spurious eigenvalues as good. With an error
tolerance of 10 digits, eigenvalues 1.0 and 1.000001 are not accepted; with a tolerance
of 9 digits, 1.0 is accepted, and with a tolerance of 8 digits both 1.0 and 1.000001
are accepted. However, we also note that with an error tolerance of 7 digits we would
get a total of 21 eigenvalues accepted because eigenvalue =9.9001007 would be
mislabeled as converged, when in fact it is extraneous. If we drop the tolerance to 6
digits 22 eigenvalues are accepted.

Table 4.1 clearly illustrates the sensitivity of an acceptance test which is based
purely on the size of the error estimates to the choice of that tolerance. If the tolerance
is tight, not much of the spectrum is seen initially; if it is loose then one may incorrectly
label extraneous eigenvalues as converged singular values, thereby reducing the
resolving power of the algorithm. Thus, if one wanted to have an algorithm based
purely on the error estimates, then the only safe choice for e tol would seem to be a
strong convergence tolerance of 9 or 10 digits, which as we have seen limits one’s
ability to obtain an overall picture of the spectrum at an early stage in the computations.
However, we can easily demonstrate that a tight convergence tolerance can also lead
to problems with such an approach.

In Cullum, Willoughby and Lake (1981) we gave a small 20 20 example where
with a tight error tolerance the number of eigenvalues identified as good actually
decreased when the order m of the Lanczos tridiagonal matrices T, was increased.
For this example at m 80 with a convergence tolerance of anywhere from 6 to 10
digit accuracy, 18 eigenvalues were labeled as "good". At m 90, however, with a



COMPUTING SINGULAR VALUES OF LARGE MATRICES 211

10 digit tolerance only 16 eigenvalues were "good". If the convergence tolerance was
relaxed to 9 digits, then 17 eigenvalues were "good", and if the tolerance was relaxed
further to 8 digits or less, then 18 eigenvalues were "good". Similar behavior occurred
at other values of m. This happens because the computed error estimates can vary
due to the clustering of eigenvalues of T,. This clustering can be due either to the
appearance of extraneous eigenvalues near the ones of interest or to the presence of
genuine clusters of singular values in A. In either case the sizes of the error estimates
can fluctuate as m is varied.

One other passing comment with respect to our classification procedure versus
one based purely on the size of the computed error estimates: We only have to
compute error estimates on those eigenvalues of T, that have been classified as
"good", whereas a classification procedure based solely on the size of the error
estimates requires the computation of estimates for each (nonmultiple) computed
eigenvalue of T,.

It is interesting to note the difficulties that one encounters with an odd order T,
that are caused by the extraneous 0 eigenvalue. Several examples are given in Cullum,
Willoughby and Lake (1981). For odd m, problems can occur with either classification
scheme. Initially our algorithm will label the extraneous 0 eigenvalue of any odd order
T, as "good" because the corresponding ]bz matrix is of even order and does not
have a 0 eigenvalue. Eventually, however, as m is increased our algorithm will discover
that the 0 is not related to A and eventually will relabel "0" as spurious. What happens
in practice is that as the order m is increased a pair of the eigenvalues of T2 coalesces
to 0. On the other hand, the error estimate approach successfully labels "0" as not
converged for any m; however, it cannot identify very small singular values (until
they become double) unless the convergence tolerance is weakened.

Now we apply our algorithm to a fairl3/large n 411 test matrix, Example
4.2, which was generated in a power system study. The matrix A2 is a symmetric
negative definite matrix, and in practice we would use the program in Cullum and
Willoughby (1980b) to directly compute the eigenvalues and eigenvectors. We can,
however, for test purposes treat A2 as an unsymmetric matrix, computing the eigen-
values as singular values and the eigenvectors as singular vectors, and then compare
the cost of those computations with the cost of computing the eigenvalues and
eigenvectors directly. This gives us one estimate of the cost of transforming a given
matrix into the B-format in (1.5). A has eigenvalues that range from -2.365 to
-1.46 10-8. The gaps between successive eigenvalues vary from .746 at A -2.365
to 1.04 10-5 at A58 =-.65344. Most of the gaps vary between 2 10-3 and 10-4.

In the given application the small eigenvalues (singular values) and corresponding
eigenvectors (singular vectors) are of interest. However, for completeness we consider
the convergence of both ends of the singular value (eigenvalue) spectrum. First consider
the convergence of the 6 largest singular values as rn is increased. The observed
convergence is summarized in Table 4.2a. The true error is not tabulated in any of
these tables because the eigenvalues of A2 are not known analytically.

Table 4.2a illustrates that the largest singular values, those in the interval (1.3, 2.5),
can be computed easily. By m 60 .073N, where N 822 is the order of Bz, all
six have been computed accurately. In fact many of the large singular values can be
computed easily. For example, by m 80 .097N the 13 largest singular values are
obtained.

Now consider the convergence of the six smallest singular values, those in the
interval (0, .02) (see Table 4.2b). These values are in the absolute center of the
spectrum of B2 which has 822 distinct eigenvalues, twice as many as A2, since each
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nonzero eigenvalue of A2 appears in B2 as a - pair of eigenvalues. Convergence of
the smallest singular values is achieved by m -2N 1644 which is quite reasonable
relative to the size of B2.

TABLE 4.2a
Example 4.2. Convergence of largest singular values. Interval

(1.3, 2.5).

Order Computed Computed Error
of T,, singular value amingap estimate

20 2.36524 .76 410-7

1.60550 .04 5 10-2

1.56259 .04 4 10-2

40 2.36524 .746 I x 10-13

1.61887 .045 2 x 10-5

1.57375 .037 5 x 10-5

1.53648 .037 2 10-4

1.44614 .02 2 10-3

1.42350 .02 10-3

60 1.61887
1.57375
1.53648 8 x 10-12

1.44615 6 x 10-1

1.42350 4x10-1

TABLE 4.2b
Example 4.2. Convergence of smallest singular values on the interval

(o.o, .o2).

Order Computed Computed Error
T,, singular value amingap estimate

412 .5N .2236 10-3 4 10-2

.1295x 10-1 210-2

822 N .4159 10-4 6 10-2

.33 x 10-2 x 10-2

.129x 10-1 5x10-3

.143x 10-1 5x10-2

1234 1.5N .233 10-6 .0027 2 x 10-1

.27129 x 10-2 .0007 9 x 10-4

.34476 x 10-2 .0007 4 x 10-4

.12839 x 10-1 .0003 6 x 10-5

.13140 10-1 .0003 I x 10-4

1644 2N .1457 10-7 .0027 2 10-6

.27128 x 10-2 .0007 2 10-9

.34467 X 10-2 1.1X 10-5 6 X 10-8

.34579X 10-2 1.1X 10-5 2X10-7

.12838 10-1 .0003 7 x 10-12

.13140 10-1 .0003 I x 10-11

1850 2.25N .1457 x 10-7 3 x 10-1

.27128x 10-2

.34467 x 10-2 8 x 10-12

.34579 x 10-2 3 x 10-11

.12838x 10-1 ,

.13140 10-1
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Tables 4.2c and 4.2d allow us to compare the observed convergence of the singular
values ofA2 obtained using the Lanczos singular value procedures with the correspond-
ing observed convergence of the eigenvalues of A2 obtained when we apply our
symmetric Lanczos procedure directly to A2. Such a comparison gives us some
understanding of the penalties incurred in working with a nonsymmetric matrix versus
a symmetric matrix of the same order and whose eigenvalue distribution matches the
singular value distribution of the nonsymmetric matrix.

TABLE 4.2C
Example 4.2. Convergence of eigenvalues largest in magnitude. Interval

(-2.5, 1.3).

Order Computed Computed Error
T, good eigenvalues amingap estimate

18 .044N -2.36524 .764 3 x 10-9

-1.61827 .046 210-2

-1.57266 .043 210-2

-1.52928 .043 510-2

-1.4252 .104 210-2

-1.240 .127 210-1

30=.073N -2.36524 .764 210-12

-1.61887 .045 210-6

-1.57375 .037 510-6

-1.53648 .037 210-5

-1.44615 .023 310-4

42=.102N -2.36525 *
-1.61887 *
-1.57375 *
-1.53648 310-1

-1.44615 2x10-1

-1.42350 8x10-8

TABLE 4.2d
Example 4.2. Convergence of eigenvalues smallest in magnitude on the

interval (-0.013, 0.0).

Order Computed Computed Error
T,n "good" eigenvalues amingap estimate

104=.25N

206=.50N

14576x 10-7 .0027 210-8

-.27128 10-2 .0007 2x 10-5

-.344762x 10.2 .0007 3 x 10.5

-.48854x 10.2 .0014 2x 10.2

12839x 10-1 .0003 4x 10-4

-.13144x 10-1 .0003 8x 10.4

-.14576x10-7 .0027 *
-.27128x10-2 .0007 *
-.34467x10-2 1.1x10-5 ,
-.34579x10-2 1.1xl0-5 ,
-.12839x10-1 .0003 *
-.1314x10-1 .0003 *

We observe from Tables 4.2a and 4.2c that the large singular values converged
even better than might be expected. Less than 50% more work was required to
compute these quantities than is required when they are considered as eigenvalues
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of the symmetric A2. This is understandable since B2 has twice as many eigenvalues
as Ae and the relative positions of these eigenvalues in the spectrum of B are the
same as in A., i.e., they are still extreme and with the same local gap structure. The
convergence of the smallest singular values is, however, very different from the
convergence of these values when they are generated as the smallest eigenvalues of
A.. These values appear at the exact center of the spectrum of B2, so we get a pair
of tiny eigenvalues +10-8 instead of an isolated tiny eigenvalue on the extreme of
the spectrum of A. Thus, we see from Table 4.2d that .145 x 10-7 appeared as an
eigenvalue of T, for A. as early as m 104, whereas when it is considered as an
eigenvalue of B it doesn’t appear accurately as an eigenvalue of a corresponding Tm
until somewhere between m 1234 and m 1644. This clearly illustrates the effect
of the transformation from A2 to B on any very small singular values. However, if
we use the more reasonable comparison of the size of B2 to the values of m used:
m 2N 1644 and m 2.25N 1850: then the observed convergence is very reason-
able since B2 has N 822 nonzero eigenvalues.

We note for this particular example that by m 1850 2.25N we actually have
all of the singular values of A accurately. Thus, a user could compute any portion
of the spectrum that is of interest, not just a few of the smallest or largest singular values.

To demonstrate the corresponding Lanczos singular vector computations, we
computed 12 singular vectors, six for the six smallest singular values and six for the
six largest singular values. The orthogonality factors for each subsequent pair of
singular vectors were computed and all were less than 2 x 10-9. Furthermore, for all
of the singular vectors, the error estimates IIBz-o’zll were all less than 3 x 10-1.
The corresponding quantities

IB2Z O’Z I[/minimal gap

were all less than 10-6. The corresponding error estimates for computing the eigenvec-
tors of A2 by treating A2 directly as a symmetric matrix [[Azx -hxll, were all less than
2 10-1, and the corresponding quantities

[ZixzX hx[l/minimal gap

were all less than 5 10-6. Note that since A2 is symmetric the left and the right
singular vectors should be identical, and in fact equal to the corresponding eigenvectors
of A2. We used this fact to compare the Lanczos generated eigenvectors of A2 with
the corresponding computed singular vectors. In all cases except for the smallest
singular value tr the norm of the difference between the eigenvectors and the singular
vectors was less than 4 10-9. For O’1 this quantity was 1.4 10-6.

The cost of this Lanczos singular value procedure is directly proportional to the
degree of difficulty in resolving the desired singular values. Therefore, this procedure
is not always practical. However, there are many matrices for which it can provide
accurate singular values and corresponding singular vectors with a nontrivial but still
reasonable amount of work. We emphasize the very important fact that this singular
value Lanczos algorithm requires a minimal amount of storage, less than 51/2 vectors
of length m plus whatever is required to generate the products Au and Av. For a
matrix of order N 411 such as A2 with m 2.25N, this is 5.5 m 8 41K bytes
of storage plus whatever is needed to generate the matrix-vector products versus
storage requirements of the order of N2, 1.35M bytes for the LINPACK singular
value subroutine. Obviously, for a given amount of computer storage, one can use
this singular procedure on much larger matrices.
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Abstract. A gain of about 50% in the CP-time required for the calculation of the singular value
decomposition of a general matrix can be achieved by not forming the orthogonal factors explicitly, but
storing the Householder reflections and Jacobi rotations that compose them. An efficient method for storing
the Jacobi rotations is given. The storage required for the resulting decomposition is, for general matrices,
about 1 times what is usual, but it is not larger than usual for matrices arising in ill-posed problems. The
storage required for the decomposition of a general matrix can be reduced to what is usual by giving up
part of the gain in efficiency and applying an "ultimate shift" strategy.

Key words, singular value decomposition, product form, ultimate shifts, ill-posed problems
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Introduction. The singular value decomposition (SVD) of an m n matrix A is
given by

(1) A UEV:r,
where U and V are square orthogonal matrices and is an rn n diagonal matrix
(i.e., a matrix having nonzero elements only in the diagonal positions (i, i) for
1, 2, , min (m, n)). If m > n, we may also write

(2) A (U[Uz)(-)VT= UaEa VT,

where 1 is a square diagonal matrix and U1 is an rn n column-orthogonal matrix.
The high quality algorithms presently available for the calculation of the SVD

(Golub and Reinsch [1970], Lawson and Hanson [1974] (IMSL) and Dongarra et al.
[1979] (LINPACK)) first transform A to bidiagonal form using Householder transfor-
mations:

()

where

(4)

A U()BV()T

TU(x) (I--2UlU’()’’’(I--2UnU,),

TV() (I-2vxv)’’’ (I-2v,,-zv,,-z),

and then apply a QR-iteration to B during which B converges to diagonal form"

(5) B()=B, u(i)=Li L(i)u(i-)U(1i) R (i, i=2 k.ri

(i) (i)Here L. and R are Jacobi rotations which have the form

I +(p[q)(CSs1 s) 2 2

c-1
(Plq)’ c +s =1,
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where p and q are unit basis vectors. If

B(k),
k l.

(6) U I’I2 ( I_1
i=

V= R) V(),
i=2

then (1) holds.

The proposed modification. In the algorithms mentioned above V is formed by
multiplying the Householder reflections (I- 2viv) after the bidiagonalization is com-

(i)pleted and then applying the rotations R to the product as they emerge during the
OR-iteration. U is formed either the same way (except that the calculations may be
restricted to U1) and U1) or an option is provided (cf. Lawson and Hanson [1974])
to premultiply a given vector or matrix by the transformations composing U.

The proposed modification is to avoid the calculations involved in forming U
and V explicitly by storing the transformations which compose them. The multiplica-
tion of a vector by U, U, V or VT" can then be performed by applying the stored
transformations in their correct order.

For the Householder transformations, determined by the vectors ui and vi, this
approach is standard. The vectors ui and v can be stored in the array originally
containing the matrix A (m n places). With respect to the Jacobi rotations some
difficulties have to be solved.

Firstly, the number of locations required for storing one rotation shall be con-
sidered. In the next section it is shown that storing one real per rotation is sufficient,
besides one index vector of length n- 1 describing the convergence history of the
OR-iteration.

Secondly, it is not known in advance how many rotations will be generated during
the decomposition. Denoting the number of rotations by rn 2 it shall be shown that r
depends on the type of matrix, the required accuracy, and the shift strategy used in
the OR-iteration. In general r is about 2, but for a special class of problems, or if an
ultimate shift strategy is applied, r is about 1 or smaller.

The amount of storage required for the complete decomposition thus amounts
to mn +rn2+ n- 1 locations, compared to mn + n 2 locations required for the usual
approach.

Storing the ]acobi rotations. The OR-iteration that diagonalizes a bidiagonal
matrix B (described in more detail by Dongarra et al. [1979]) operates in a sequence
of sweeps (cf. (5)); sweep transforms a bidiagonal matrix B<i-1, say, into a bidiagonal
matrix B <i). It consists of a sequence of Jacobi rotations of the form

(7) j I + (eil[ ej2)(C --s1 s) 7. 2

c 1
(el ej2) c + s 1.

Normally,/2 --/1 -[- 1 and/’1 and f2 pass through the index range spanning the trailing
diagonal submatrix of B(-1) of dimension two or larger, separated from the rest of
B(-1) by off-diagonal elements that have become negligible in earlier sweeps. The
only exception is that if diagonal element/" becomes negligible during a QR-sweep,
the sweep is stopped at that point and a special deflation sweep (cf. Dongarra et al.
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1979]) is applied which immediately transforms to zero the/’th and (/’4-1)st off-
diagonal elements. In the present approach, deflation is not applied to a negligible
last diagonal element of the current submatrix.

The Jacobi rotation (7) is defined by the indices/’1 and/’2, the sine s and the
cosine c. Stewart [1976] has remarked that c and s can be stably recomputed from
the single number z defined by z 1 if c =0, z =s if Isl<lcl and z 1/c otherwise.

If the numbers z characterizing the consecutive Jacobi rotations are stored in a
linear array (or on a file that can be read both forward and backward), then the
complete transformation is determined once the index ranges of the QR- and deflation
sweeps are known. This is achieved by storing, in an index array c of length n- 1,
the number of the sweep in which each off-diagonal element converges:

i) if off-diagonal element/" is initially negligible then c (/’)= 0;
ii) if deflation is applied.to an initially negligible diagonal element/" (/" < n) then

c(i) -;
iii) if off-diagonal element / has become negligible after initial deflation then

c(/)-- l;
iv) if deflation is applied to a negligible diagonal element/" during QR-sweep

then c (/’) -i;
v) if off-diagonal element j has become negligible in sweep then c (/’) i.
From the information stored in c it is not difficult to calculate, both in forward

and backward directions, the index ranges traversed by the consecutive QR and
deflation sweeps and thereby to determine the index pair (]1, ]2) belonging to each
stored rotation. An example of a convergence pattern as it occurred in an experiment
is given in Table 1 below. This example, arising from a matrix which belongs to an
ill-posed problem, shows some off-diagonal elements which were initially negligible
(after Householder reduction), and much early convergence in the middle of the
matrix. This seems to be typical for matrices arising in ill-posed problems.

TABLE
Convergence pattern electrocardiography problem, m 283, n 50, precision 10-6

11
21
31
41

c(i),. ., c(i+9)
37 36 12 35 34 32 14 31 31 30
29 26 28 27 26 25 24 23 23 22
18 21 20 19 18 17 17 16 14 14
15 14 13 12 8 11 10 9 9 8
6 7 6 5 4 3 2 0 0

Performance. The proposed modification must be judged by the amount of work
involved and the amount of storage required. The accuracy of the calculated decompo-
sition is not affected since the numerical properties of the algorithm are not changed.

In Table 2 an outline is given of the leading terms of i) the number of storage
locations required, ii) the floating point multiplication count for the decomposition
and iii) the floating point multiplication count for solving a single least squares problem
once the decomposition has been calculated. The first column applies to the usual
approach (cf. Dongarra et al. [1979]), the second column to the modified approach.
The number r is the average number of QR-sweeps per singular value. For general
problems r is around 2.

There would be no room in the index vector containing the convergence pattern to store this;
moreover, the next regular QR-sweep will perform the required deflation.
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TABLE 2

Standard SVD Proposed modification

i) storage locations
ii) decomposition’ # mults

iii) solstep: # mults (sqrts)

2mn + n mn + rn
3mn2-n +2r(m + n )n 2mn2-n

mn + n 2 2ran + 6rn 2 mults + rn sqrts

An experiment was performed for a series of randomly generated matrices and
for a series of matrices arising from the (ill-posed) "inverse problem of electrocar-
diography" (cf. Cuppen [1981b]). Tables 3 and 4 display the CP-times required by
Linpack’s SSVDC (Dongarra et al. [1979]) and the same routfiae modified as described.
The average number r of QR-sweeps per singular value, more precisely defined as
the number of Jacobi rotations divided by n 2, is also given for each matrix treated.
The experiments were performed on a CDC Cyber 170-750, machine precision 10-14,
compiler FTN5, opt 3.

TABLE 3
Ill-posed problem

SSVDC Modified Modified
req. acc. 1/2 10-14 req. acc. 1/2 10-14 req. acc. 10-6

m n CP-time CP-time CP-time

25 25 .15 .07 .85 .05 .32
50 50 .74 .30 .75 .24 .21
100 100 4.26 1.56 .64 1.31 .16
283 25 .61 .27 1.24 .24 .66
283 50 2.37 1.02 1.08 .93 .40
283 100 9.14 3.98 .85 3.44 .19

TABLE 4
Random matrix

SSVDC Modified Modified
req. acc. 1/2 10-14 req. acc. 1/2 10-14 req. acc. 10-6

m n CP-time CP-time CP-time

25 25 .20 .09 1.96 .08 1.48
50 50 .98 .42 1.88 .36 1.44
100 100 5.97 2.03 1.85 1.85 1.44
283 25 .75 .29 2.31 .28 1.77
283 50 2.98 1.11 2.21 1.05 1.63
283 100 12.21 4.15 2.12 4.01 1.61

The great difference between Tables 3 and 4 is caused by the phenomenon that
matrices arising from ill-posed problems have a cluster of singular values at zero. This
causes the matrices to split repeatedly during the QR-iteration (intermediate off-
diagonal elements becoming negligible, cf. Table 1). For randomly generated matrices
intermediate splitting was not observed.

For ill posed problems r is relatively small and the time spent in the QR-iteration
is insignificant for both the standard and the modified approach. Consequently the
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modification gives a gain in the CP-time of 50% or more, which agrees with the
operation counts given in Table 2. The storage used is, due to the small r, about the
same for the two approaches (equal if r 1). For randomly generated matrices r is
about 2 as expected. The gain in CP-time when using the modified approach varied
between 50% and 65% for the very largest matrix used. Up to 11/2 times as much
storage as usual was required.

The amount of work necessary for solving, using an already calculated decomposi-
tion, one or more least squares problems can be compared for the two approaches
by means of the operation counts given in Table 1, for example counting one square
root as six multiplications. For three representative values of r, i.e., r 2 for general
matrices, r 1 for matrices arising from ill-posed problems and r .2 for the same
matrices in case a lower precision is required, Table 5 gives the ratio by which such
a "solve step" (as opposed to calculating the matrix decomposition) is more expensive
with the modified approach in columns 1 and 2 (for rn n and m >> n respectively).
In columns 3 and 4 the number of right-hand sides (to the same matrix) is given for
which the joint loss in efficiency of the solve steps approximately counterbalances the
gain that is achieved by calculating the decomposition with the modified approach.

TABLE 5

Solve step Efficiency
modified/standard cross-over point

mn mn mn m n

2 13 2 1/2n 5n
rl 7 2 n 3n

.2 2.2 2 n n

Under certain circumstances, the larger amount of storage that is required for
the modified approach, when applied to general matrices, might be prohibitive. It is
then possible to write the vectors and rotations on files as soon as they are generated,
but it is also possible to reduce the number of rotations required by using a more
precise, but also more expensive, shift strategy in the QR-iteration. This shift strategy
is described in the next section.

The ultimate shifts. It was observed by Parlett ([1980, p. 164]) that for the
symmetric tridiagonal eigenproblem the use of the "ultimate shifts" strategy may
decrease the number r of required QR-sweeps per eigenvalue to 1. Applied to the
standard algorithms for calculating the singular value decomposition this would save
a substantial part of the work required for updating U and V during the QR-phase.
It means that one first calculates one or more of the singular values of B by the usual
methods without accumulation of the transformations and then, using these found
values to determine the shifts, performs a second QR-iteration on the original B with
accumulation. This second iteration converges, at least in exact arithmetic, in one
sweep for each singular value. In the usual algorithms this would save up to 3/8 of
the work required as can be seen from Table 2, since r would be 1 instead of 2.

However, for the obvious implementations of this method, a simple experiment
shows that, in the presence of round-off errors, the second QR-iteration does very
often not converge in one sweep per singular value. To be more precise, for an
unreduced bidiagonal matrix one sweep of QR, with an exact singular value determin-
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ing the shift, and performed in exact arithmetic, transforms the last off-diagonal
element into zero. In practice it most often occurs that even if one uses the machine
number closest to some exact singular value for the shift, the last off-diagonal element
is transformed into a small but nonnegligible quantity (say 103 or 104 times machine
precision for matrices of order 20). This phenomenon can be understood by considering
the approximate singular value which is used, as an exact singular value of a bidiagonal
matrix with a perturbed last diagonal element. It then turns out (cf. Bunch et al.
[1978] and Cuppen [1981a]) that a small perturbation of the singular value may
correspond to a large perturbation of the diagonal element. Because only the last
rotation in a QR-sweep is influenced by this diagonal element, it can then easily be
seen that a large change in the value of the last off-diagonal element results (which
would otherwise become zero). This does not contradict the stability of the QR-
iteration since this large change is not an error in the sense of backward error analysis.
Within the machine precision the resulting matrix is orthogonally similar (or is
equivalent for the present transformations) to the original one, it only has not yet
converged as one would have expected.

The conclusion which can be drawn is that the precision of the ultimate shifts
and the precision of the arithmetic with which the QR-transforms are carried through
on one hand as compared to the requested accuracy of the decomposition (the relative
tolerance to judge convergence) on the other hand, are crucial. If the requested
accuracy is distinctly less strict than the precisions mentioned, then the ultimate shift
strategy may be expected to give convergence in one sweep mostly (cf. Tables 6
and 7).

However, the accuracy of an ultimate shift based on a precalculated singular
value is also influenced by the cumulative effect of rounding errors in the preceding
QR-sweeps. Therefore when an initially calculated singular value is to be used for an
ultimate shift it is best first updated in an extra QR-iteration on a copy of the matrix
as it then stands.

In many practical situations the accuracy requested will be less than the machine
precision, for example, if the matrix to be treated is known only in a low precision.
However, if full precision is required we may either allow for extra iterations to be
made which will cost extra space for storing the rotations, or use extended precision
arithmetic for the calculation of ultimate shifts and the QR-sweep (not for the stored

TABLE 6
Ill-posed problem

Modified method

single prec. ult. shift ext. prec. u.s.
SSVDC

req. ace. 1/2 10-14 req. acc. 1/2 10-14 req. acc. 10-6 req. acc. 1/2 10--14

m n CP-time CP-time CP-time CP-time

25 25 .15 .15 .86 .10 .31 .19 .74
50 50 .74 .66 .75 .47 .20 .88 .64
100 100 4.26 3.38 .65 2.20 .16 5.16 .55
283 25 .61 .35 1.24 .33 .64 .40 .92
283 50 2.37 1.46 1.08 1.41 .40 1.76 .99
283 100 9.14 6.97 .85 4.90 .20 6.45 .76
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rotations!). This will introduce overhead costs, but the computations involved are of
the order of n 2 in total as compared to n 3 for the complete SVD.

The results of a series of experiments with the matrices also used above are given
in Tables 6 and 7. These show that ultimate shifts indeed reduce the amount of storage
required, but that they involve a great loss in efficiency. Ultimate shifts should only
be used in case of large matrices which are not of the type as given by the examples
arising from the ill-posed problem.

TABLE 7
Random problem

Modified method

single prec. ult. shift ext. prec. u.s.
SSVDC

req. acc. 1/2 10- req. acc. 1/2 10- req. ace. 10-6 req. acc. 1/2 10-14

m n CP-time CP-time CP-time CP-time

25 25 .20 .17 1.31 .16 .96 .25 .96
50 50 .98 .70 1.33 .68 .98 .98 .98
100 100 5.97 3.17 1.31 3.12 .99 4.31 .99
283 25 .75 .37 1.40 .36 .96 .43 .96
283 50 2.98 1.44 1.44 1.40 .98 1.72 .98
283 100 12.21 5.51 1.45 5.33 .99 6.55 .99

Discussion. The numerical experiments show that the proposed modification can
give a substantial gain in CP-time when computing the singular value decomposition.

The method can very well work with files if storage in core is so restrictive or
expensive that the usual approach cannot be used.

The approach is also applicable to the eigenvalue decomposition of symmetric
matrices.

REFERENCES

J. R. BUNCH, C. P. NIELSEN AND D. C. SORENSEN, Rank one modification of the symmetric eigenproblem,
Numer. Math., 31 (1978), pp. 31-48.

J. J. M. CUPPEN [1981a], A divide and conquer method for the symmetric eigenproblem, Numer. Math., 31
(1981), pp. 177-195.
[1981b], Calculating the isochrones of ventricular depolarization, submitted for publication.

J. J. DONGARRA, J. R. BUNCH, C. B. MOLER AND G. W. STEWART, LINPACK Users’ Guide, Society
for Industrial and Applied Mathematics, Philadelphia, 1979.

G. H. GOLUB AND C. REINSCH, Singular value decomposition and least squares solutions, Numer. Math.,
14 (1970), pp. 403-420.

C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ,
1974.

B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.
, The economical storage ofplane rotations, Numer. Math., 25 (1976), pp. 137-138.



SIAM J. SCI. STAT. COMPUT.
Vol. 4, No. 2, June 1983

1983 Society for Industrial and Applied Mathematics

0196-5204/83/0402-0007 $01.25/0

ORTHOGONAL ROTATION TO A PARTIALLY SPECIFIED TARGET*
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Abstract. This paper addresses the problem of finding an orthogonal transformation of an arbitrary
factor solution that will lead to a least squares fit of a partially specified target matrix. An iterative computing
procedure is presented.

Key words, orthogonal rotations, factor analysis, least squares, partially specified target, Procrustes
problem

1. Introduction. We consider the problem of orthogonally rotating a given factor
matrix to a least squares fit to a partially prescribed factor pattern. The special case
where all the target elements are zero has been solved by Lawley and Maxwell [5],
albeit not in the least squares sense. The general case remains an open problem and
Browne [2] presents perhaps the only attempt at computing an approximate solution.
He constructs an orthogonal transformation as a sequence of plane rotations. The
rotations are determined by Newton’s method which requires very good initial guesses.
In this paper we shall show that these planar rotations are expressible as solutions to
linear least squares problems with an equality constraint. Effective numerical tech-
niques are therefore applicable, and a procedure based on the singular value decompo-
sition (cf. Golub [4]) will be presented. We shall also give an example for which
Browne’s method fails to compute a least squares fit to the target.

2. The algorithm. Our problem is frequently referred to as a Procrustes problem,
a term borrowed from Greek mythology in which a highwayman named Procrustes
is supposed to have made all his victims fit his bed, cruelly stretching the short ones
and lopping off the tall ones. Mathematically, our problem is to determine an m m
orthogonal matrix Q that will transform a given n m factor matrix A to best fit a
partially prescribed n m target factor pattern B in the least squares sense. Let I(/’)
represent the set of row indices corresponding to specified elements of column/" of
B. If F -AQ, the criterion to be minimized is

’r- E E (fii-bi])2
j=l iI(j)

where F (fij) and B (bij).
Following Browne [2] we shall approximate Q by a product of plane rotations.

Designate by A the current rotated factor matrix at an intermediate stage, and let
Ac= (a.)= (a , a2,"" ", am). We now consider a rotation over the plane defined by
the ith and/’th factors:

(cos0 -sin00)(2.2) (a i, a
\sin 0 cos

Suppose that S(i)=lI(i)[ and S(/)=II(f)[. Let i(1),i(2),...,i(S(i)) and
/’(1),/’(2),...,/’($(/’)) denote the row indices of the specified elements of columns

* Received by the editors September 28, 1981, and in revised form June 18, 1982. This research was
supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124.

5- Department of Computer Science, Cornell University, Ithaca, New York 14853.
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and j, respectively, of the target B. Our goal is to determine a rotational angle 0 to
minimize the euclidean length of the vector

(2.3)

a i(1),i

i(2),i a 7(2),j

i(S(i)),i a i(s(i)),j

j(1),j --a/(1),i

a j(2),/ --a j(2),i

a_a j(s(j)),j i(s(j)),i_

cos 0

sin 0 )

bi(1),i
bi(2),i

bi(s(i)),i
bi(1),j
bj(2)d

bi(s(i)),i

In other words, we want to solve the constrained least squares problem"

(2.4) [ICx- dll2 minimum,

subject to

(2.5) ilxll . ,
Effective algorithms for solving this problem are well known. We shall describe one
based on the singular value decomposition (cf. Golub [4]).

The singular value decomposition of an n 2 matrix C is readily computable.
First, two Householder transformations, say HI and HE, can be applied to reduce the
matrix to upper triangular form, i.e.,

(2.6) H2HaC

p q R
0 r

0 0 -= 0

0 0 ;
We are interested in orthogonalizing the two rows of R. As this problem is trivial if
pqr 0, we assume that all three elements are nonzero. As in Luk [6] we construct
an orthogonal rotation Q such that Q’R has orthogonal rows. Let us define

(2.7) a =-2qr, =--p2+q2-r2, ]/(02"+-2) 1/2.

If/3 > O, we compute
1/2

(2.8) c s =2Tc’
else we compute

1/2

o(2.9) s c
2Ts

Defining

we have

( cp cq+sr :(?(2.11) OrR
-sp -sq + cr/ \U12
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where 0.1 --> 0-2 > 0 follows from the condition pqr rs 0, and

O"1 [2p2 + (cq + sr)2]1/2 2 2
0-2 [s p + (-sq + cr)2]1/2,

cp
/)11 V22 m /)12 uY21

0.1

The singular value decomposition of C is then given by

c=u v(2.12)

where

We shall use the notations

(2.13)

and

(2.14)

U (u,

sp

(2.19)

where

(2.20) g=EUrd
g2

Although (2.19) is quartic, it can be shown (cf. Forsythe and Golub [3]) that we need
the largest real root A 1. Furthermore, if

then A is the unique root in the open interval (0, Ilgll=); otherwise, except for a singular
case, A is the unique root in the semiopen interval (-0-22, 0]. There are many methods
with assured convergence for this zero-finding problem. For example, we may use the

v (v, v:).

Let us now consider the constrained least squares problem (2.4) and (2.5). For
a zero matrix C, we choose the solution x (1, 0)T, i.e. the null rotation. If C 0 but
d=0, then the solution is x=v2 (we let v2= (1, 0)T if o-1=o-2). Henceforth we shall
assume also that d 0. If C is of rank one, then

(2.15) C+d (U 1Td/0.1)Vl --V1.

For i] < 1, we let

(2.16) x :vl + (1 :)l/v,
else we let

(2.17) x sign ()vl.

If C is of full rank, we consider the matrix equation

(2.18) (C’C +M)x= CTd,

where A is a Lagrange multiplier. The proper value for A is a solution to the nonlinear
equation

det [(Z + AI)2 -ggr] 0,
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method in Brent [1, Chap. 4] to compute A 1. The solution vector is then given by

(2.21) x
2The singularity occurs when o.1 > o.2, g2 0 and ]gll--< (o. -o’2 ). We then have A --o’E

E

and

V1 + ’l V2,(2.22) x o’ -o’2

where
Browne [2] proposes that the ith and/’th columns ofA be considered for reflection

before the rotation. For example, the ith column would be reflected (a :=-a,
k=l,...,n)if

(2.23) Y. a kibi < O.
kI(i)

The additional work for (2.23) is minimal, for the result can be used in the computation
of the vector g in (2.20). The value of reflection is apparent from this simple example:

A= 0 -1 and B= 0 1

1 0 x x

This procedure of reflections and plane rotations is applied to the factor matrix
in a systematic order. Transformations are made on factors 1 with 2, 1 with 3,..., 1
with m, 2 with 3, , (m 1) with m to constitute a cycle. The cycle is repeated until
either there is one consisting of all null transformations or the criterion - of (2. l) fails
to decrease.

3. Discussion. In [2] Browne also offers some guidelines on the reordering of
columns of A. His procedure is expensive and may not be worthwhile. Consider this
examplein[2]’the givenfactor matrixis

.664 .322

.688 .248

.492 .304

.837 -.291
A= .705 -.314

.820 -.377

.661 .397

.457 .294

.765 .428

and the partially prescribed targetis

x 0

x 0

x 0

X X

X X

X X

.7 X

1 .7 X

-’075
192
224
.037
.155

-.104
.077
.488
.009
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We have performed the transformations with no column reordering. A rotation is
considered null if Isin 01_-<.001. After six cycles, our procedure produces the final
rotated matrix

AO=

.611 -.023

.734 -.055

.607 .086

.608 -.622

.549 -.564

.499 -.713

.705 .069

.235 -.024

.768 .039

The criterion - of (2.1) decreases as follows:

-.420
173

-.093
-.176
-.017
-.261
-.314
-.691
-.422

Cycle Criterion

0 .583264
1 .182168
2 .113184
3 .110034
4 .109858
5 .109852
6 .109852

Our results thus compare favorably with those given in [2].
Finally, we present one example for which the plane rotations fail to minimize

the criterion z. Let

3 -2 -2 1 0 0

A=-2 3 -2
and B=

0 1 0
-2 -2 3 0 0 1
-2 -2 -2 x x x

so that r equals 36. Browne’s procedure will stop because only null rotations are
generated. However, the Householder matrix

O I 2ee 7"

where e7"= (1, 1, 1)/x/, will produce the transformed matrix

AQ= 4 4
--3

2 2

for which - equals 32.

Acknowledgment. The author is deeply grateful to C. F. Van Loan for many
valuable suggestions, including the nonconvergence example.
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Abstract. An accurate and efficient numerical method has been developed for a nonlinear stiff second
order two-point boundary value problem. The scheme combines asymptotic methods with the usual solution
techniques for two-point boundary value problems. A new modification of Newton’s method or quasilinear-
ization is used to reduce the nonlinear problem to a sequence of linear problems. The resultant linear
problem is solved by patching local solutions at the knots or equivalently by projecting onto an affine
subset constructed from asymptotic expansions. In this way, boundary layers are naturally incorporated
into the approximation. An adaptive mesh is employed to achieve an error of O(1/N2)+O(/e). Here,
N is the number of intervals and e << is the singular perturbation parameter. Numerical computations
are presented.

Key words, projection method, quasilinearization, asymptotic expansions, boundary layers, singular
perturbations, two-point boundary value problems, y-elliptic splines

1. Introduction. We treat the following stiff boundary value problem:

ey" =f(x, y), a <x <b,

f(x, y)>0, O<e << 1,

with boundary conditions:

(1.2)

f(x, y) C[(a, b) x R],

(1.3)

aoy(a)-aly’(a)=a,

boy(b + bly’(b fl.
Under the assumptions that aoa >0, bobl >0 and la01/lb01 >0 Keller [26] and

Bernfield and Lakshmikantham [8] have shown that the boundary value problem
(BVP) has a unique solution. Using singular perturbation theory, O’Malley [31], [32]
has proved that boundary layers occur at either or both boundaries depending on
whether the solution of the reduced problem:

f(x,z(x))=O

satisfies the boundary conditions (1.2) and (1.3). In particular, Fife [18] and Bris [12]
show that for a Dirichlet problem there are boundary layers at both boundaries.

This class of stiff or singular perturbation boundary value problems appears in
many physical applications, for example, the confinement of a plasma column by
radiation pressure (Troesch [42]), the theory of gas porous electrodes (Gidaspow et
al. [22], Markin et al. [28]), the performance of catalytic pellets (Aris [3]) and in
geophysical fluid dynamics (Carrier [14]).

Our method combines quasilinearization (Newton’s method) in function space,
asymptotic expansions and patching of local solutions. Quasilinearization is applied
to reduce the nonlinear problem to a sequence of linear problems (Ascher, Christiansen
and Russell [4], deBoor and Swartz [10], Russell and Shampine [40]). This is achieved
in our scheme by interpolating f(x, y) by a piecewise linear function of y for fixed x.
This step differs from the usual quasilinearization in that the resulting BVP has

* Received by the editors January 4, 1981, and in revised form June 7, 1982. This work was performed
under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory
under contract No. W-7405-ENG-48.

University of California, Lawrence Livermore National Laboratory, Livermore, California 94550.
t Graduate student, Department of Mathematics, University of California, Berkeley, California 94720.
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discontinuous coefficients. We use asymptotic methods to construct the local solutions
in each subinterval. This should be compared with other asymptotic methods which
also seek to capture the essential behavior of the differential equation (Flaherty and
Mathon [19], Flaherty and O’Malley [201, deGroen and Hemker [23], deGroen [24],
Hemker [25], Yarmish [45]). The local solutions are patched together by requiring
that the computed solution and its derivative be continuous at the knots (Rose [38],
Shampine [42]). This assures the computed solution is globally twice differentiable in
an asymptotic sense.

This patching process for solving the linearized BVP is equivalent to a modified
Galerkin method. This involves projection onto an affine subset constructed from the
y-elliptic splines of Schultz [41]. The computed solution, however, is based on
y-splines which are asymptotic approximations of these. The y-splines become more
accurate as e 0 with no corresponding increase in calculational expense. This property
is inherent in methods based on asymptotic expansions and is absent in finite difference
and finite element methods based on polynomials (Abrahamsson [1], Berger et al.,
[6], Kellogg and Tsan [27], Osher [34]).

Another novel feature of our method is the mesh selection strategy. The interpola-
tion error is proportional to fyy(Ay)2 which leads to a criterion for how the y-mesh
should be chosen. This contrasts with the usual methods which specify the x-mesh.
We consider both a uniform y-mesh and a y-mesh resulting from equally distributing
the interpolation error (deBoor [9]). In either case, an iteration is introduced to
construct the numerical solution and the grid structure. The resulting error depends
only on the number of intervals O(1/N2) rather than their size. This facet of the
method appears to be new.

Our study has been influenced by Pruess’ method of solving linear boundary
value problems by approximating the coefficients [36]. The essence of Pruess’ method
lies in the ability of the approximation to capture the essential behavior of the solution.
This is because the coefficients of the DE can be well approximated locally by
polynomials while the solution cannot. In this light, our method may be viewed as
solving nonlinear boundary value problems by approximating terms of the differential
equation.

A detailed numerical analysis of the error and convergence properties will be
presented in a forthcoming paper. However, some of the preliminary error analysis
is presented to motivate the adaptive mesh selection. In 2, we describe the numerical
algorithm. In 3, we discuss the error introduced by quasilinearization. In 4, we
present the adaptive mesh technique and the solution of the algebraic system. In 5,
we describe the construction of the y-elliptic splines using asymptotics. In 6, computa-
tions are presented. Finally, conclusions and generalizations are presented in 7.

2. Derivation of the numerical method. We begin by replacing f(x, y) by It(x, y),
its piecewise linear interpolant with respect to a y-mesh (Yi, =0, 1,’’" ,N) for
fixed x"

It(x, y)=f(x, yi-1) + (y yi-1)[yi-1, yi]f, yi-1 < y < yi,

g0,(x yi-1, yi) + gl,(x yi-1, yi)y, 1, , N,

where

[Yi-1, Yi]f= (f(x, yi)--f(x, Yi-1))/(Yi- Yi-1).

We will solve the linear BVP ey"-Ir(x, y) together with boundary conditions
(1.2)-(1.3) by a "patching" or multiple shooting process. With respect to an x-mesh,
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a x0 <xl <’’’ <xN b, define the following elliptic differential operators, Eiy
-ey"+ gl,y, for xi-1 <x <Xg. On each interval we consider the linear BVP:

(2.1) Egy -go,
with boundary conditions given by

aoy(a)-aly’(a)=a, y(x:)=yx, 1,

(2.2) y(xg_l) yg-x, y(xg)= yi for =2,.. ,N-l,

boy(b)+bly’(b)=, y (xN-) yr_ for =N.

It will sometimes be convenient to write these equations collectively as

(2.3) Ey -ey"+ gly -go.

Let ug(x), vi(x) be the basis for the null space for Eg normalized so that

Ui(Xi--1) Vi(Xi) 0 and Ui(Xi) Vi(Xi--1)

Let yo, be the particular solution of the nonhomogeneous BVP

EiYt:, --go
(2.4)

Ypi(Xi-1): yp,(Xi):O, Xi-1 <X <Xi.

Then the solution of (2.1) is given by:

(2.5) y(x Yi-1, Yi) yiui(x) ff Yi-llAi(X) q- Ypi(X),

There are 2N degrees of freedom from {yi} i=0, 1,...,N and {x}k k
1, 2, ., N- 1. By requiring that the solution (2.5) satisfies the boundary conditions
(2.2) and is continuously ditterentiable at the knots xi, 1,..., N-1, we obtain a
nonlinear algebraic system relating the xi and yi. With the remaining N-1 degrees
of freedom we may prescribe N-1 additional relations to uniquely determine the
2N quantities. This prescription should achieve the goal of improving efficiency and
accuracy and will be discussed later.

The condition that y s C[a, b] is equivalent to equality of the derivatives from
adjacent intervals at the knots"

y’(xi Yi-1, Yi)--y’(x-f yi, Yi+I).

Differentiating (2.5) we obtain"

’(xi)Yi-lq-gl’(Xi)--13 (Xi)]yi--U’ (Xi)Yi+l/)i i+1 i+1

(2.6)
YPi+l’ (Xi)--y, (Xi), 1, 2,... N- 1.

At the boundary nodes x0 a and xN- b we require that the boundary conditions
(1.2)-(1.3) be satisfied. This gives:

(a),[a0 alV’l(a)]yo au’(a)y=a+ay,l
(2.7)

VN-1 (b)yN-1 +[bo + blUN(b)] bly pN(b).

Equations (2.6)-(2.7) can be written in the form:

(2.8) A(x, y)y=h(x, y),

where y (yo, yl, ",

Here h is an N + 1 component vector and A is a symmetric diagonally dominant
tridiagonal matrix of dimension N+ 1. A has positive diagonal and negative off-
diagonal elements and accordingly is a Stieltjes matrix. These properties follow from
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fy > 0 and from the construction of the basis functions b/i and vi. Symmetry of A may
be demonstrated by noting that the Wronskian of u, v is constant in each interval
xi-1 < x < xi. Moreover, y C2[a, b since It(x, y) C[a, b ]. It should also be noted
that the linearized problem (2.2)-(2.3) is solved exactly by the above patching pro-
cedure.

The particular solution yp, may be expressed by the usual variation of parameters
formula since the Green’s function for the Dirichlet problem for (2.1) exists. Thus
we have:

l)i Ui
Uigoi dj +- vigo, dj(2.9) YP’ c x,_l c

where c e Wronskian (ui, vi).
We now describe how (2.8) can be obtained by a Galerkin procedure. Let S(E, {xi})

be the space of y-elliptic splines generated by the basis wi:

x (xo, x),
w0(x)

0 otherwise,

u,(x),
w,(x) v(x),

0

X (Xi-1,
x (xi, xi+),
otherwise,

i=1,2,...,N-I,

wu(x)
0

x (xu_, x,),
otherwise.

Schultz [41] considered the problem of interpolating in spaces generated by such
splines called y-elliptic splines, where y is the smallest eigenvalue of the operator E.
Note that our splines depend on both the x and y meshes.

Consider the problem of finding an element y contained in the affine subset
[yp]$(E, {x/}), which satisfies (2.1) along with the boundary conditions (2.2). Let

(eu’v’ + gluv) dx, (u, v) uv dx.

A discretized weak form of this problem is: Find y e [yp]$(E, {xi}) such that

(2.10) a(y, w)= (go, w)+(-aoy(a)+a)w(a)/a-(boy(b)+)w(b)/b

for all w $(E, {xi}).
In case a or b 0, we have Dirichlet boundary conditions and another appropri-

ate weak form (Aubin [5]) holds. In any case equations (2.10) form a nonlinear system
which is identical to (2.6)-(2.7). In verifying this, the following formulas are useful:

(x- + y(w (x-)- w (x + (x; ),a(y, Wi) Yi+lWi i+1 ))--Yi-lWi

(x-) fori=l N-1(X-)--yp(gO, Wi) Y Pi+l

with similar formulas for Wo, wN.
Thus the matrix elements in (2.8) are recognized as simply a(wi, wj), and it follows

that the matrix is symmetric, positive definite and tridiagonal.
The usual Galerkin method projects y onto a subspace of C[a, b]. We call our

procedure a modified Galerkin method because it projects y onto an affine subset,
i.e., a translated linear subspace. In other words, we can view our modified Galerkin
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method as applying the usual Galerkin method to y-yp. It is striking that since
a (yp, wi)= 0, both Galerkin and modified Galerkin give the same set of discretized
equations. The difference is that projecting onto the affine subset solves the linearized
problem (2.3) exactly.

The equivalence of the "patching" procedure and the modified Galerkin method
is another example of the interdependence of projection methods for two-point BVP
as discussed by Reddien [36].

3. Discussion of the error due to quasilinearization. In this section we briefly
discuss the error in order to motivate the mesh selection procedure. A detailed
numerical analysis of the method will be presented in a forthcoming paper. For present
purposes, a few of the preliminary results will be discussed.

For definiteness, let y denote the exact solution and let it satisfy ey" =f(x, y)
together with boundary conditions (1.2)-(1.3). Our method makes two main approxi-
mations to the original nonlinear BVP in order to arrive at the computed solution.
We list these approximations along with their defining properties:

1. Let z be the y-elliptic spline solution and satisfy

(3.1) ez" It(x, z; zi) together with boundary conditions,

where It(x, z zi) go(x z) + gl(x, zi)z is the linear interpolation of f with
knots z.

2. Let z be the actual computed solution, which is an asymptotic approximation
to z as will be explained in 5.

As seen in 2, an equivalent formulation of (3.1) is

A (x, z)z h (x, z), x {xi}T, z {zi}T,
(3.2)

Z(X)-" Zi-IWi-I(X)"I"ZiWi(X)"[-Zpi(X on [xi-l, Xi],

where w is the normalized ,-elliptic spline basis function at xg and zp, is defined as in
(2.4).

We will show that [y z[ < c/N2. This is the error from the linear interpolation. It
follows from asymptotic error bounds (Olver [29], [30]) that z z(1 + ’), where
ICI O(4) as e O.

Using these two bounds we conclude that the pointwise error in the method can
be bounded by a sum of two terms:

ly -z[< [y -z[/ [zllCl;

thus we have sup ]y z] < O(1/N2) + O(/). Two important special cases deserve to
be singled out"

(1) For an autonomous equation ey"=f(y), our method solves the linearized
problem exactly. Thus, z z, and the second term in the error bound is not present.
We expect our method to be competitive in this case even for e not small.

(2) For a linear BVP the first term in the error bound is not present. In this case
our method simply reduces to the Liouville-Green or WKB asymptotic solution (Olver
[29]).
We will discuss the first term now and reserve a discussion of the second term until the
asymptotics have been introduced.

Define y -z. Subtracting the two equations for y and z we get

" f(x, y)-t(x, z z,).
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The right-hand side can be written

f(x, y)-I:(x, z; zi)=f(x, y)-f(x, z)+f(x, z)-It(x, z; zi)

fy (x, y*)(y -z)+f(x, z)-Ir(x, z; zi)

for some y* between y and z. Thus 4 satisfies the singular perturbation problem with
homogeneous boundary conditions,

ecD"-fy(x, y*)6 f(x, z)-Ir(x, z; zi).

The driving term on the right-hand side is simply the error due to the linear
interpolation and can be bounded by a standard result of approximation theory. For a
Dirichlet problem, we can use the maximum principle (Dorr, Parter and Shampine
[16], Protter and Weinberger [35]) to obtain the following a posteriori error bound.

LEMMA 1. Let

Then

D [a, b range of exact solution,

M=maxlLy(x,z(x))l on [a, b],

2rn =minfy onD,

n(x)= 1-{sinh [m(x- [m(b-x/ a).] + sinh
x/ x)]}/sinh [m(b-a)]

LEMMA 2.

Ib (x)[ < (M/8m)Az2K (x).

/fLy(x, z(x)) >0 on [a, b] then >0.

IfLx(x,z(x))<Oon [a,b]then <0.

The comparison function K(x) is the solution of e"-mz =-m2 with
homogeneous Dirichlet boundary condition. It is strictly less than 1 and has boundary
layers at x a, b. Thus we expect a smaller error closer to the boundary. With further
assumptions on the boundary condition parameters a similar bound holds for the Robin
problem. Here, the function (x) must be modified to account for Robin boundary
conditions (Friedman [21], Stakgold [43]).

The form of the error bound suggests the following mesh selection strategy. For
a given number of mesh intervals N, uniformly spaced zi points will produce an error
bound of the form c/N2. Another possibility is to choose the zi points to equally
distribute the interpolation error in the sense of deBoor [9], which also gives a c/N2

bound. In either case the constant c depnds on fy, fyy but is independent of e.
In constructing the equidistributed interpolation error mesh, it is necessary to

apply an extension of de Boor’s theorem [9] to the present case of interpolating f(x, y)
with respect to y for each x. This is a trivial extension since the piecewise linear
approximation holds for any x. Thus the relation:

(3.3) If,,(x,u)l/=d-- ]fyy(X,)ll/Zd, i=1,2,...,N-1

generates a family of curves with an equidistributed interpolation error. The curves are
separated, and for any x, we have

zo < z (x) < z (x) < < <
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The choice of whether to use a uniformly spaced z-mesh or an equidistributed
z-mesh must depend on f(x, y). If f is quadratic in y, the two criteria agree. In
de Boor [11] it is shown that in using the equidistributed knots, the optimal bound
O(1/N2) is attained in some cases where the uniform knots are less than optimal.
However, the uniform knots are easier to compute so we prefer them. This removes
the remaining N- 1 degrees of freedom discussed in 2.

In either case the mesh is determined by the solution and must be computed
dynamically. An iterative scheme is introduced in the next section to construct the
numerical solution and grid structure.

4. Adaptive mesh technique and solution of the algebraic system. We will now
discuss the solution of the nonlinear system of equations A (x, z)z h (x, z) subject to
N- 1 additional relations. In the error analysis of the previous section, we have seen
that it is desirable to have uniformly spaced zi points or to have equidistributed
interpolation error. We will present an algorithm which solves this system along with
the independent N- 1 constraints that the zi be equally spaced. We will also discuss
how to constrain the zi so that the interpolation error is equidistributed.

The first step is a fixed point iteration with a fixed x-mesh, say x k. The solution
z of the "inner" iteration

A (x k, zk’’)z k’m+l h (x k, z k’"

(where m is an iteration counter) is an "acceptable" numerical solution of the boundary
value problem. However, z k does not necessarily have the desirable error properties,
namely, ly-zl-O(N-2). To achieve a uniformly spaced zi, we update at the end of
each "inner" iteration the value x k /1. This entails the solution of a nonlinear equation"

k +1z

where

(4.1) z/ =/(max z k (x) min z k (x))/N.

This procedure is called an "outer" iteration and amounts to an adaptive mesh
technique. The {x k/l} is the new mesh. "Inner" and "outer" iterations are continued
until convergence, i.e.,

IX/k+l X/kl < eTol

and (4.1) holds within tTol, where 0<eTol<< 1. Similarly, for a solution with equidis-
tributed interpolation error we replace (4.1) by (3.3).

It remains to discuss how we obtain the initial guesses for x, z based onN intervals.
We do this by solving a sequence of problems based on an increasing numberof
intervals" N 1, 2, 4, 8, ., 2k, ...The initial guess for N 2k+l intervals comes
from the solution forN intervals, ty saving the previous solutions, we can perform
Richardson extrapolation conveniently. Note that if [ is convex then the linear
interpolations Ir approach [ monotonically as N increases. By Lemma 2, we then
have that the corresponding solutions z approach y monotonically.

5. Construction of the elliptic splines. In the nonlinear system A (x, z)z h (x, z),
the matrix and right-hand side depend upon the derivatives of the spline basis functions
wi. In order to carry through the iteration scheme previously described, it is necessary
to have a convenient and efficient way of computing these functions. The theory of
asymptotics for linear ODE gives analytic representations (w’,) which, for e --> 0 are
asymptotic to the exact w . The representations are in terms of exponential functions
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of the gx, and can be efficiently computed. Due to the asymptotic property, they
become more accurate as e becomes smaller.

The following result is called the Liouville-Green or WKB approximation (Olver
[29]). Let

{ 1 I /(x)dx}b : (x) g 1-,1/4 (x) exp +/-- g 1,

Then there exist error functions e /, e such that b/(l+e/), b-(l+e-) are exact
solutions of Eiy 0. On xi-1 < x < xg the error functions satisfy:

lei (x)l=<exp V+/-(F) -1, F(x)= 1/4 X2 dx

where V: is the variation of F(x) between xi-1 and xi. Using these explicit b: we
construct as before the approximations u,, v, and eventually get w,, which are
asymptotic approximations to the y-elliptic splines wi. These functions can be
differentiated analytically and the results used to compute A (x, z).

We introduce S (E, {xi}), the space of y- elliptic splines, generated by the set {w,;
0, 1, , N}. In general, S (E, {x}) approximates S(E, {x}). In the important special

case of an autonomous equation (ey" =/(y)), gl is independent of x and the integration
in (5.1) can be carried out exactly. Then the WKB approximation reduces to the
familiar exponential basis (Berger et al., [7], deGroen and Hemker [23], deGroen
[24], Hemker [25]) for a constant coefficient equation and is an exact solution of
Eiy ---0. For this case we therefore have S(E, {x})=-S(E, {xg}). If the integral in (5.1)
cannot be evaluated exactly, a quadrature can be used. Since for many interesting
problems gl fy (x, y) is a nice function of x this quadrature can be done cheaply.

5.1. Construction ot y,. The asymptotic representation of the particular solution
yp, can be calculated by substituting the WKB representations of the local solutions
into (2.9) and by performing integration by parts. This procedure yields a consistent
expansion to all orders, but the amount of algebra to do these calculations can become
prohibitive (Eckhaus [17]). However, the leading term is easily obtained:

where

YPi -Gpi (x + Gpi (Xi-1)Vei (X -Jr" Gpi (Xi )ble (X -Jr- 0 (,8),

Gp, (x) g0,/g,.
Alternatively we may use the results of Flaherty and O’Malley [20], Olver [29],

O’Malley [33] in which the particular solution is decomposed into a solution zi of the
reduced problem and boundary layer corrections L, ni:

yp, (x) Li(x + zi(x "Je" Ri(X ).

The solution z is expanded as an asymptotic series in ,8 and the coefficients are
obtained recursively"

z= E "zo(x),
.=o

Z,o(X) -G, (x),

Z
tt

i-ln goi + gliZi.
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The boundary layer corrections Li, Ri are given by

ti(x --Zi(Xi-1)Ve (X ), Ri(x) -zi(xi)u,(x).

Note that Zio(X) is the outer solution of (2.1). For the computations we have used only
the leading term for yp. This allows us to efficiently compute the right-hand side h (x, y)
of the algebraic system.

6. Numerical solutions. In this section, we present numerical solutions to a
number of boundary value problems in the chemical and physical sciences.

Our first example is due to Carrier [14]. It arises in singular perturbation theory
and geophysics:

(6.1) ey,,=[l_2b(l_x2)y_y2] withy’(0)=0, y(1)=0.

Note that when b 0, if fy (1, 0)= 0 and, thus, x 1 and y 0 is a turning point
of the problem. Since the WKB approximation breaks down near a turning point our
method is, in principle, ineffective. However, because the chords which interpolate f
have nonzero slope, we can successfully compute the solution provided the number
of mesh points is not large. For b 0, (6.1) is autonomous and no such difficulties are
encountered. Plotted in Fig. 6.1 is the graph of the solution for e 10-6 and b 0
with N 4. For this problem, the equidistributed interpolation error mesh is identical
to a uniform y-mesh since f(x, y) is a quadratic function of y. In Table 6.1, the value
x (y =-.5) is given as a function of N, the number of intervals, using N 64 solution

-0.6

-0.8

1.0
.992 .994 .996 .998 1.0

FIG. 6.1. Solution of Carrier’s problem with e 10-6, b 0 and N 4.

TABLE 6.1
Carrier’s problem with e 10-6

N XN(Y 0.5) [XN --X64[ X 105 eN 105 N
Extrapolated

value

2
4
8
16
32
64

.99941385 2.29 9.16

.99943121 .554 8.86

.99943538 .137 8.77

.99943642 .033 8.43

.99943668 .007 7.17

.99943675 .0

.999437

.99943677

.99943677
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as a representation of the exact solution. The error in the location of x(y =-.5) is
tabulated in the second column. Column 3 shows that the error in locating y =-.5
is, indeed, O(1/N2). Finally, Richardson’s extrapolation is applied to the results and
is tabulated in column 5. For b 1, we plot the solution in Fig. 6.2 for e 10-6 and
N 8. Note that our method computes successfully the transition between the outer
solution and the boundary layer with only a few grid points (see Fig. 6.3). This attests
to the importance of using a local basis that captures the essential behavior of the
solution.

The second example is the Troesch problem modeling the confinement of a plasma
column by radiation pressure [44]:

y"=q sinhqy, o>0, y(0)=0, y(1)= 1.

FIG. 6.2. Solution of Carrier’s problem with e 10-6, b 1 and N 8.

o.o-

-0.2

-0.4

-0.6

-0.8

-1.o

-1.4

FIG. 6.3. An enlarged graph o) Fig. 6.2. for .90 --< x -< 1.00.
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This is a particularly difficult problem because of the strongly nonlinear right-hand
side. The problem of computing y’(0) and y’(1) has been used as a benchmark for
stiff boundary value problem algorithms (Roberts and Shipman [39], Troesch [44]).
The derivatives y’(0) and y’(1) have the following asymptotic expansion (Anglesio
and Troesch [2], Chin [15]):

(6.2) y’(O) y(O) { 1 +

where

and

(6.3)

y(O)2 [ cosh (q/2) ]} -3.),
4 o 1 +sinh2 ()j + O(qge

y 6 (0) 8e- tanh (o/4)

y’(1) 2 sinh (/2)[1- Iy’(O)/2 sinh (,/2)}2]/2.

We plot in Fig. 6.4 the relative error in the derivative y’(0) between the numerical
and the asymptotic solution (6.2) multiplied by N2 as a function of N for q 1, 5,
10, 20. The N2 normalization is suggested by the error analysis of 3. The computa-
tions are done with an uniformly spaced y-mesh. Also plotted in Fig. 6.4 is a calculation
for o 5 using a equidistributed interpolation error mesh. Figure 6.5 is a similar plot
for the derivative y’(1). It is seen from Figs. 6.4-6.5 that y’(1) is calculated more
accurately than y’(0) as o increases. This is because the mesh points collect in the
boundary layer with increasing o. Moreover, the equidistributed interpolation error

i00.

.I0

ioo IOOO

FIG. 6.4. Solution of Troesch problem" Relative error of y’(0), [z’(0)-y’(0)]N2/y’(0) as a function of
the number of intervals, N. Equidistribution of interpolation error is used (--).
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lm.01

IOOO

FIG. 6.5. Solution of Troesch problem" Relative error of y’(1), [z’(1)-y’(1)]N2/y’(1) as a function of
the number of intervals, N. Equidistribution of interpolation error is used (--).

mesh tends to locate more points in the boundary layer than the uniformly spaced
y-mesh. As a consequence, the equidistributed interpolation error mesh yields a more
accurate value of y’(1) while the uniformly spaced y-mesh gives a better approximation
to y’(0). Overall if both derivatives y’(0) and y’(1) are desired, the uniformly spaced
y-mesh tends to perform better.

Our final example appears in the theory of diffusion and reaction in permeable
catalysts (Aris [3]):

dx= q exp 3’ 1- f(c),
(6.4)

with boundary conditions

(6.5)

and

c’(0) T’(0) 0, c(1) 1- S- c’(1),

1
T’T(1) 1-uu (1).

Equations (6.4) may be combined with boundary conditions (6.5) to yield

(6.6) T(x)= l+/3uu+t3 1--u c(1)-c(x).

Substituting (6.6) into (6.4), we obtain an equation for c. However, the boundary
value c(1) appears in the differential equation and, thus, complicates the solution
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procedure. We solve (6.4a), (6.6) and boundary conditions (6.5) using the parameters
given by Carey and Finlayson [13]:

0.2, Sh/Nu=50, Sh=250, 0=14.44, 7=20 and f(c)=c.

The most important feature of the solution is the accurate computation of
dT/dx(1) (Carey and Finlayson [13]). In view of the results on the Troesch problem
and of the added expense in applying the equidistributed interpolation error mesh, a
uniformly spaced y-mesh is selected for this set of computations.

The solution for N =4 is plotted in Fig. 6.6. The value dT/dx(1) is tabulated in
Table 6.2 as a function of N. It is clearly seen from Table 6.2 that four place accuracy
in dT/dx (1) is obtained with just two intervals.

016-

0.14

0.12

010-

008

0.06

0.04

0.02

000
990 0.992 0.994 0.996 0.998 1.000

X

FIG. 6.6. Solution of a diffusion-reaction equation with N 4.

TABIE 6.2
Solution of a diffusion-reaction equation

N dT/dx(1)

-4.2586013
2 -4.2607540
4 -4.2612872
8 -4.2613201

16 -4.2614534
32 -4.2614617
64 -4.2614637

7. Conclusions and generalizations. It can be seen from the numerical examples
just how important is the use of a basis that captures the essential behavior of the
solution. The basis functions must reflect the rapid growth or decay of the solution.
This property is inherent in asymptotic methods and in solving boundary value
problems by approximating the coefficients.
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Since the class of problems we have considered is rather restricted, we close with
some suggestions about extensions of the method to a wider class. For problems with
f depending on y and y’, a multivariate interpolation with respect to y and y’ on a
triangular domain may be used to reduce the nonlinear problem to a collection of
disjointed linear two-point boundary value problems. The same end can be achieved
by combining a straightforward application of quasilinearization and approximating
the coefficients of the linear differential equation. The subinterval problems are then
solved by asymptotic methods. The local solutions are "patched" together to form
the global solution. Here, the WKB method is invalid near turning points. This calls
for a uniform asymptotic method in the neighborhood of a turning point.

For a system of differential equations, quasilinearization followed by approximat-
ing the coefficients of the linear DE is more suitable. The resulting linear boundary
value problem in each subinterval, however, is by no means trivial to solve.
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MULTIGRID METHODS FOR DIFFERENTIAL EIGENPROBLEMS*
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Abstract. This paper develops an efficient multigrid algorithm for solving the eigenvalue problem
associated with a linear differential operator. The algorithm is based on the full approximation scheme
(FAS) and incorporates a Ritz projection process for simultaneous computation of several eigenvalues and
their eigenvectors. Included are the results of some numerical experiments that illustrate its performance
in various contexts.

Key words, multigrid, eigenvalue, nonlinear, partial differential equations, eigenvectors, eigenfunction

1. Introduction. The usual method for finding eigenvalues of a differential
operator is to discretize the problem and solve the resulting matrix eigenvalue problem
by some algebraic technique. If, as we assume here, the first several eigenvalues and
corresponding eigenvectors are desired, then one may use a simultaneous or block
version of such methods as inverse iteration, Rayleigh quotient iteration or Lanczos.

This approach of treating the discrete problem as a purely algebraic one can
result in a loss of valuable information, especially concerning the smoothness of the
eigenvectors. In general, the operator’s eigenvectors corresponding to the desired
smaller eigenvalues are very smooth, so that they are fairly well approximated on
coarser grids. Certain multigrid processes (e.g., FMG described in 3.2) take full
advantage of this smoothness and are therefore very effective for solving such problems.

The experiments we have performed indicate that the first eigenvalue of a
differential operator can be approximated to within truncation error with a little more
work than is needed for solving the related boundary value problem by multigrid.
When more than one eigenvalue is desired, the work needed per eigenvalue increases
somewhat due primarily to the orthogonalization and Ritz steps used to prevent all
of the emerging eigenvalue approximations from converging to the first eigenvalue.
Nevertheless, as we note in 7, the total work is zag-q:Zn + O(q2n + q3 log n), where n
is the number of fine grid points and q is the number of desired eigenvalues.

After introducing the notation and some basic multigrid ideas, the method for
finding an approximation to the first eigenvalue of the operator is detailed and
discussed. This method is then extended in 6 to the computation of several
eigenvalues.

Basically, the algorithm proposed in this paper uses the version of multigrid that
treats the eigenvalue problem as a nonlinear problem on all grids. The problem is
solved on successively finer grids, using the solution at each level as the initial guess
for the next. To improve this initial guess, a multigrid cycle is then performed for
each eigenvector, retaining nonlinearity on coarser grids and maintaining separation
of the vectors by coarse-grid orthogonalization with respect to previous eigenvectors.

The Ritz projection is used to maintain a stable basis for the emerging invariant
subspace approximation and results in accelerating the speed of convergence of the
multigrid iteration to the true eigenvectors. It raises several questions in algorithm
design, as we shall see.

* Received by the editors October 6,1981. This work was supported by the National Science Foundation
under grant MCS80-17056 and the Air Force Office of Scientific Research under grant AFOSR-F-33615-
79-C-3223.
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Several other algorithms incorporating multigrid methods have been proposed
for the solution of differential eigenvalue problems. Hackbusch [5] developed a method
for approximating the. eigenvalues of an elliptic differential operator. The basic
algorithm is similar to ours although the emphasis of his work is mainly theoretical.
Strakhovskaya [9] proposes another method for approximating the first eigenvalue
that is similar to Hackbusch’s but that uses coarser grids to solve the residual equation
obtained on the finest. Clemm and Guderley [4] use the theory of a two-level method
for linear problems to develop a method for finding several eigenvalues. It is much
different from the modern recursive multigrid approach taken here. McCormick [7]
uses Newton’s method (that is, Rayleigh quotient iteration) with multigrid as the
inner-loop equation solver, together with Ritz projections to compute several eigen-
values and eigenvectors.

The method developed by Alcoutte, et al. [1] for solving linear problems has
been extended to apply to eigenvalue problems. It is similar to our approach for
computing the first eigenvalue, although their emphasis is in applying the method to
their problem and ours is in a full development of the algorithm.

The essential features of our algorithm were developed by the authors in 1979.
In fact, the present algorithm is an improvement of the one coded and distributed on
magnetic tape at the 1979 multigrid workshop at Yale University.

2. Notation. Let L be a differential operator on a set of functions defined on a
domain l) in Rd. Let G1, G2,..., G, be a sequence of increasingly finer grids that
extend over f. Assume that all grids are uniform and that each, except G 1, is a
refinement of the previous grid made by halving the mesh size. Let Lk denote the
finite difference approximation to L on grid G k.

Since interaction between grids is necessary, we need a procedure for transferring
functions from one grid to another. Let G k and G be two different grids and let u k

be a function defined on Gk. Let I be a mapping from the functions on Gk to the
functions on G such that:

a) if G k is coarser than G , IkU k is the function obtained on G by linear
interpolation of u k to G t’, and

b) if G k is finer than G l, the value of IlkU k at a given point of G is the weighted
average of a small number of points neighboring the corresponding Gk point. (This
includes the frequently used definition that the value of IkU k at a given point of G
is just the value of u k at the corresponding point of Gk.)

For k <l-1 we assume that I/ I_1I-1.
In the following, the inner product denoted by (.,. is a discrete approximation

to the continuous L2(f) inner product which, in d dimensions, is given by

(u

Here, hk is the mesh size of G and u k (x) and v
k

V at the grid point x.
k(x) represent the values of u k and

3. Basic multigrid processes.
3.1. Muitigrid cycle. The efficiency of multigrid methods results from the fact

that, although relaxation is usually slow to converge, it is quick to reduce high-
frequency error components. This allows the problem to be transferred to a coarser
grid where the error can be resolved with much less work. (Not only is relaxation
cheaper per sweep on coarser grids, but the solution process is also much more
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effective.) The coarse grid equation can be solved by relaxation and appeal to still
coarser grids. The coarsest grid used is chosen so that solution of the problem there
is inexpensive compared to the work performed on the fine grid. The number of
relaxation sweeps needed to smooth the error on each grid is generally small and can
be predetermined by the usual mode analysis, for example. The process of using a
predetermined number of sweeps per grid is called fixed cycle multigrid. Such a cycle
is defined by the following steps (where G is the finest grid).

1. Set k l.
2. Relax u times on the Gk problem.
3. Ifk=l, goto4.

Otherwise, set k -k- 1, transfer the problem to a coarser grid and go to 2.
4. Relax u2 times on the Gk problem.
5. If k =/, stop.

Otherwise, correct the Gk+l solution approximation using the solution of the
Gk problem, set k k + 1 and go to 4.

(This actually illustrates the so-called V-cycle, where one multigrid cycle on the Gk

problem involves exactly one multigrid cycle on Gk-1. The so-called W-cycle uses
two Gk-1 cycles before correcting the Gk solution.) Note that the problem on G 1,
the coarsest grid, is solved by ul +//2 relaxation sweeps.

3.2. Full muitigrid (FMG) algorithm. The cycling scheme described above does
not provide a procedure for determining a good initial guess for the problem on G .
However, since the G problem is approximated by one on G-1, it is natural to
determine a good starting vector by solving the G- problem and interpolating the
result to G i. This suggests solving the problem first on G (by some convenient method)
and then solving the grid G problem by multigrid cycling, using the interpolated
solution from level 1 as the initial approximation (l 2, 3, ., rn). Cubic interpola-
tion may be used here for the initial approximation to the G cycle (cf. [3]). Algorithms
utilizing this procedure are referred to by the term full multigrid (FMG).

Throughout this paper, denotes the currently finest level, that is, the finest level
reached thus far in the FMG procedure, and level k is the current level in the cycling
process.

3.3. Full approximation scheme (FAS). For linear problems, the residual
equation for the G problem may be transferred to G-1. The solution of the resulting
coarse grid problem then yields an approximation to the error of the G solution
approximation, so the G-1 solution is interpolated to G and added to the solution
there. However, for nonlinear problems, such as eigenproblems, instead of the actual
error, it is more convenient to approximate the fine grid solution itself on coarse grids.
This leads to the very powerful but subtle so-called full approximation scheme (FAS),
the details of which can be found in [2]. The essence of FAS is the construction of
the coarse grid problem so that its solution is a good approximation to the fine grid
solution transferred to the coarse grid. This ensures that the difference between the
fine grid approximation and the coarse grid solution is an approximation to the smooth
components of the fine grid error so that it can be used as a correction to reduce
these components. Note, at convergence, that the coarse grid solution must provide
a zero correction; that is, the coarse grid solution is just the fine grid solution transferred
to the coarse grid.

To be more specific, assume that FMG is applied to LU =f and level is the
currently finest grid. The G version of the problem is written as LtUl-- ft. Assuming
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we have an approximation, b/l, to the exact solution, Ut, and the error Ul- l,l is
smooth, then the problem is transferred to G t-1 as

l--1 l-1Ll-lul-l=It f +7"
l-1.where 7"l-1= Ll-lllt-lul _iI-lLlul. (Note that 7" s approximately what is needed to

obtain 11-1U as the coarse grid solution; that is, if u Ul, then the level 1 solution
is exactly Ill-1 ul.) Transfer of the problem to grid G k, k <= 1, using the same idea
yields the problem

k k(3.1) LkU=If +7"

where
k ki k+l (7"k+l Lk+l k+l(3.2) 7" =L +lu +Ikk+l U ).

The notation we adopt here uses the usual somewhat simplified multigrid conven-
tions. However, this simplicity introduces unfortunate ambiguities. Specifically, note
that capital letters are used to denote exact solutions and small letters to denote
current approximations to these solutions. Thus, Uk is the exact solution to the G

k k+lproblem, so it depends on 7" which in turn depends on u ,..., u and itself.
Thus, 7" and hence U do not represent the same functions throughout the solution
process. This is an ambiguity that is necessary to avoid substantially more complex
notation, but should cause no difficulty to the reader if this dependence of the coarse
grid solution on the emerging fine grid solution is kept in mind.

Once a suitable approximation, u , to U is found, the approximation u +1 can
be corrected according to

(3.3)

This is the so-called FAS interpolation step. (Note that I/1 is used in two different
terms in (3.2). In some instances, it is advisable to use different interpolation schemes
for each of these terms, but it is essential that the interpolation used for u k/l in (3.2)
be identical to the interpolation used in (3.3).)

The processes mentioned above form the basis for the algorithms used in this
paper.

4. The problem. The problem treated in this paper is to find approximations to
the first few eigenvalues and associated eigenvectors of the differential operator L
defined on functions with domain II. That is, we are looking for the smallest real
numbers A1 <- A2-<" -< Aq and functions U1, U2," ", Uq so that

LUi AiUi O on

(4.1) U=0 on

(U,U.)=L, i, f l, 2, q.

Here we assume that L is an elliptic, self-adjoint differential operator on f. (Our
work extends naturally to the generalized eigenproblemLU AMU 0 with appropri-
ate assumptions on M. We restrict our attention to the case M I for simplicity.)

Several alternatives can be used in specifying the accuracy required of the
eigenvalues and their eigenvectors. For example, a mesh size can be prespecified,
determining the discrete operator whose first q eigenvalues approximate those of L.
In this case, it is required to find the eigenvalues and eigenvectors to the level of
truncation error, that is, to the level of accuracy determined by the extent to which
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the discrete eigenvalues and eigenvectors approximate those of the continuous
operator. Solving beyond this level does not necessarily improve the error between
the approximations and the solutions of the continuous problem. Note in this case
that the accuracy is not uniform; that is, the error is larger in the higher eigenvalues
than the lower ones since higher eigenvalues generally have larger truncation errors.

Another way to define the accuracy requirements is to specify each eigenvalue
error explicitly by giving a fixed tolerance for all eigenvalue approximations. This
method is more intricate, since different fine grids will usually be required for different
eigenvalue/eigenvector approximations.

The method presented in this paper is designed according to the first accuracy
criterion, although the design and testing of an algorithm for use with the second is
discussed briefly in 6. We first examine the case where only one eigenvalue is desired.
This avoids this accuracy question yet clarifies some of the basic processes involved
in the full algorithm.

Following the notation introduced in 3, the current Gk approxirr, ations to the
ith G eigenvector and eigenvalue are denoted by u k and A k, respectively, where G
is the currently finest grid. Upper case is reserved for exact solutions so that UI and
A are the exact G solutions. When no ambiguity exists, superscripts and subscripts
will be dropped.

5. The method for the first eigenvalue.
5.1. The basic method. The full algorithm is listed in the appendix. In this section

we discuss the essentials for a version of this method as it applies to the computation
of the first eigenvalue only.

The first step is to obtain the coarsest grid approximation to the first eigenvalue
and its eigenvector. Some initial approximation u on this grid is chosen at random,
although whatever information is known about the first eigenvector may be used here
to provide a better initial guess. A is chosen as a suitable approximation to the first
eigenvalue of the operator. On this coarse grid, relaxation is performed on the equation
Lu 1- Au= 0 with A fixed, followed by an update of A by computing the Rayleigh
quotient

, (u’, u)/(u ,u )

This process is repeated until a fairly accurate solution emerges. The vector is then
normalized. In the experiments reported in this paper, 15 iterations were generally
sufficient, although this value depends on the mesh size of the coarsest grid and the
separation of the first and second eigenvalues there (cf. Kahan [6]). In any case, these
iterations cost very little since the coarsest grid has only a few points.

Once a solution has been obtained on a level l-1, u t- is cubically interpolated
to level l, where it is then improved by one fixed multigrid cycle from level to level
1 and back. On all but the coarsest grid of this cycle, relaxation is performed holding
A fixed. Two relaxation sweeps per grid ( ’2 2) usually ensure sufficient smoothing
and elimination of high frequencies introduced by coarse grid corrections. Thus, the
cycle begins with a fixed number of level relaxation sweeps on the approximate
vector followed by FAS transfer of the problem to the next coarser grid. This is
repeated until the coarsest grid is reached, where the nonlinear problem resulting
there from FAS transfers is solved by repeated relaxation and normalization of the
approximate vector and update of A by (5.6). FAS interpolation (3.3) is then used to
transfer the corrected solution back to the next finer grid, where a fixed number of
relaxation sweeps is performed, followed by transfer of the approximation to a finer
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grid until level is again reached. Relaxation on L/l is then performed to complete
the level cycle is then increased by 1.

The process of cubic interpolation followed by one multigrid cycle on level is
then continued to yet finer grids until a solution is obtained on level m, the finest grid
to be used.

The remainder of this section is devoted to a detailed discussion of certain aspects
of this method.

5.2. The coarse grid problem. The coarse grid equation is derived in much the
same way as described in 3. Specifically, let the currently finest grid problem be
written as

(5.1a,b) LtU- AIu O, "r (U l) 1,

where r/ is a normalization constraint functional which specifies the size of the solution.
This constraint is necessary for uniqueness since a solution U to (5.1a) is specified
only up to a multiplicative constant. The specific nature of r/will be discussed below.
If we have an approximation u to U, and the error has been smoothed by relaxation,
then the G t-1 equations are

Ll-l ul-1 AI-I uI-1 =7. l-l, TI
l-1(Ul-1) o. l-l,

l-1where r1-1= Ll-Ill-lul--Ilt-Llu and tr is some appropriate quantity. In general,
the Gk problem is

(5 2a, b) Lkuk Akuk k k k=, n (U) r
k+l k+l k+l k+lwith 7.k =ikk+17. +LkI+lU _ikk+lL U ,7" =0.

kTo see what r should be, it is necessary to examine the goal of the coarse grid
solution process. Since Ak is unknown, there are fewer equations than unknowns,
hence (5.2a) can have an infinite number of solutions. Condition (5.2b) is needed in
order to uniquely define the solution. One possible way to define tr k, analogous to
the definition of 7"k, is

k k+l k k+l k+l(L k(5.3) = +In (+,u )-n +’)], , =.
This definition arises from the attempt to force the corrected level solution to satisfy
(5.1b). However, this is not actually necessary, since on the fine grid a solution of any
reasonable size is acceptable. Thus, it is acceptable to use a constraint which seeks
to maintain the size of the solution, and which, together with (5.2a), provides a zero
.correction at convergence. Such a constraint is given by

k k k+l).(5.4) o" =’0 (I+au
This constraint is easier to enforce than (5.3) and appears to work well experimentally,
so we adopt this definition for ,our algorithm.

The most obvious choice for the ,normalization functional is

However, since the condition

i>.(u)=<u,u

l,l k, Ll
k

0
k

when coupled with (5.2a) admits two related solutions, one of which is essentially the
negative of the desired one, it is possible to converge to the wrong one on the coarsest
grid. In addition to obtaining a bad eigenvalue approximation, this would cause the
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corrected approximation to lose most of the eigenvector component that we really
want. It is therefore better to use a linear normalization constraint to ensure that the
extraneous solution is eliminated. To maintain the "sign" of the coarse grid solution,
we can choose rt

k (u k, Ikk+lU TM) SO that the normalization constraint then becomes

(5.5)

This normalization constraint, which we adopt here, ensures that the coarse grid
solution is approximately in the same direction as the current fine grid approximation,
and is compatible at convergence with (5.1a).

Relaxation on the finest few grids affects high-frequency error, which is generally
small compared to the solution norm, so the size of the solution changes only slightly.
However, on the coarser grids (i.e., for k 1 or 2), low-frequency changes are made
and the magnitude of the major component of the eigenvector approximation can
change significantly. For this reason, we enforce the normalization constraint (5.5) on
the coarse grids only.

kFor the eigenvalue calculation, note that - naturally provides the correction
needed to compute a Rayleigh quotient on the coarser grid. That is, A can be updated
by the relation

(L’uk--,r’, u k)
(5.6) X (uk, u k)

5.3. Relaxation. Gauss-Seidel relaxation with a shift parameter for equation
(5.2a) was used in the experiments reported in this paper. Let Mk be the lower
triangular part of Lk (including the main diagonal), u k and A the current approximations
to Uk and Ak and t7 k the approximation after relaxation. For each constant shift
this relaxatioti scheme is given by

(5.7) a " u " +(Mt" -i.,,I)-(r k -(Lk --AI)uk).

A useful tool for analyzing (5.7) is the smoothing rate analysis exemplified in [2].
For simplicity, let L k be the usual five-point approximation to -A. If we describe the
grid by Gk {(ahk, flhk)E ’: o/., fl integers}, where f is the function domain for L k,
then a given Fourier error component before and after the relaxation sweep is denoted
by Ao e i(x+Et3) and fi0 e i(/2), respectively. Letting the corresponding component
of the actual solution Uk be given by Bo e+2), then 0 is given as a function of
Ao and Bo by the following equation corresponding to the relaxation scheme (5.7)’

o -Ao(ei + ei2 + h g(A ))/(e-i + e -i2 4+h 2/z)
(5.8)

+ h 2(Ak -/X)B0/(e -i1 + e-i2-4 + h 2ix).
If we define

Co h 2(At’ A )Bo/(ei + e i2 + e -ix + e-i:-4 + h 2A ),

then we obtain

Ao-Co =[eiOa+eiO:+h2(A_l)l/[e_iO+e_iO 4+h2(5.9) -Ao -Co t l.

Note that if h 2(A /x) and h 2
/x are small, as is generally the case on finer grids

with a proper choice of tz, and if Co is small compared to Ao, then the (01, 02) component
smoothing rate approaches that for the Poisson problem. On finer grids, h2(A-A) is
small, even when the eigenvalue approximation has not been updated, and for higher
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frequencies, the denominator of Co is relatively large. In addition, Bo is generally
small since the solution is smooth and has very small high-frequency components. On
coarser grids, however, h2 can be of significant size, so that Co is no longer small
compared to Ao, causing a deterioration of the smoothing rate. To reduce A-A and
thereby minimize the affect of Co, we update A on the coarser grids where the Rayleigh
quotient is inexpensive to compute.

The experiments reported in this paper used tz 0, that is, relaxation without a
shift. Generally, this works well if the first eigenvalue is small compared to the spectral
radius of Lk, which is always the case here. Relaxation with the shift/ A would
actually yield slightly better smoothing rates in this case, and for some problems, such
as for -A + cI with large c, a nonzero shift may be necessary. However, when a shift
is used, care must be taken on coarser grids to avoid letting the denominator of (5.9)
become too small since this could lead to substantial magnification of high frequencies.
A robust algorithm should incorporate a full shift (/x A) on finer grids and adjust
the shift on coarser grids in order to ensure convergence there. This is especially true
for the initial stages of obtaining coarse grid eigenvalue approximations and for
computation of higher eigenvalues.

6. The full algorithm.
6.1. General discussion. There are several possibilities for extending the method

described in 5 to apply to the computation of the first q eigenvalues and eigenvectors
of L. They differ mostly by the degree to which they handle the eigenvector computa-
tions simultaneously. For example, a fully simultaneous extension of the method of
5 would update all eigenvector and eigenvalue approximations together, both in the

fine grid iterations and coarse grid corrections. A fully sequential process would
attempt to compute to convergence each eigenvector and eigenvalue in turn. Of
course, both methods require additional processes to ensure numerical separateness
of the approximations so that they do not all converge to the same eigenvectors. This
usually amounts to some sort of orthogonalization process that reflects the orthogonal-
ity of the eigenvectors themselves.

One attribute of the full simulataneous method is its ability to use Ritz projections
with all of its attendant advantages. For example, as with conventional techniques
such as the power method (cf. [8]), the emphasis is placed on producing a good
approximation to the subspace spanned by the first q eigenvectors of L. This has many
subtle advantages, even more than with the conventional uses of Ritz, but the most
direct is that convergence of a specific eigenvalue depends now on its separation not
from its neighbor but from the (q + 1)st eigenvalue of L. The major disadvantage with
the fully simultaneous method (and one of the main advantages of the fully sequential
one) is storage requirements. All vector approximations must be maintained on all
levels of the multigrid cycles. The additional storage is up to of the storage needed
(in any case) for storing all of the vectors on the finest grid (since on coarser grids
both uk and -k are stored).

The method we propose is intermediate to these two extremes. To retain the
advantages of each, we carry all vectors simultaneously through the FMG process by
maintaining approximations to all of the eigenvectors and by performing orthogonal-
ization and Ritz projections on the currently finest grid, and we proceed sequentially
within the cycling scheme by performing in turn a fixed multigrid cycle on each
currently finest grid eigenvector approximation. Sequential use of the multigrid cycling
process is apparently no less effective than, yet reduces the storage requirements of,
the simultaneous approach. The steps of our algorithm are listed in the appendix and
loosely described as follows.
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6.2. Initial coarse grid approximations. The first step is to obtain coarse grid
approximations to as many of the desired eigenvectors as possible. In general, the
correspondence between eigenfunctions of the continuous operator and eigenvectors
of a discrete approximation to that operator is not exact; that is, the eigenvector
corresponding to the ith eigenvalue on some Lh may be a closer approximation to
the fth eigenfunction of .L with # f. This may not necessarily cause problems if and
j are less than q. However, if a coarse grid eigenvector is computed which does not
correspond to one of the desired eigenvectors on the finer grids, then it is unlikely
that further finer grid work will achieve the desired accuracy. This is less likely to
happen if the eigenvalues computed on a coarse grid are limited to a fixed part of the
spectrum. Thus, on the coarsest grid G 1, we approximate only c lGl eigenvalues and
eigenvectors, where ]GI[ represents the number of interior G grid points and c < 1.
c- 1/4 is usually safe, although at times a higher value was used in the experiments
reported in this paper since the correspondence for our problems was known to be
exact.

The relaxation steps for approximating the eigenvalues and eigenvectors on the
coarsest grid are the same as for one eigenvalue with the addition of a Gram-Schmidt
orthogonalization step after each sweep. Thus, the ith eigenvector approximation is
kept orthogonal to u, f 1,. , i- 1, and normalized only at convergence. Once all
of the eigenvectors on G have been suitably approximated (i.e., we have accepted
min {q, c lal} approximations), then a Ritz projection is performed (see 6.3). The
resulting vectors are then cubically interpolated to the next finer grid, G2.

In general, once starting vectors are cubically interpolated to level l, one multigrid
cycle as described in 5, along with orthogonalization conditions given in 6.3 below,
is then performed on each u individually. The coarsest grid j >-1 used in this cycle
for u is one on which u first appeared (i.e., /" is the smallest index so that <=

l-1min {q, clal}). If q >clat-l, then each of the vectors ui, c[G I<i <-_min{q, clGll},
are computed by the coarse grid process described above (i.e., by relaxation sweeps,
each sweep being followed by orthogonalization with respect to /,/l1, Ui--1). All
the vectors are then cubically interpolated to G l/1 and the process is continued until

6.3. Ritz projection. As stated before, once the vectors u 1,’", uq have been
corrected by multigrid cycles ,on G l, the subspace X span {u ,..., uq} is a good
approximation to the subspace spanned by the eigenvectors U, , Uq that we seek.

inX andS1, q so that theRitz projection is a process which finds t,..., tTq
orthogonal projection of such LtS t-u onto X is zero. This ensures that any
eigenvector of L contained in X will be found by Ritz projection. More generally,
it will determine a basis for X that is closest to the UI in some sense.

To determine the Ritz vectors we first perform a Gram-Schmidt orthonormaliz-
ation on u .l ,l

1, U q, resulting in vectors u 1, u q. Then a//q/T is an orthogonal
projection operator onto X, where

Any vector in X can thus be written as q/z, where z is a q-vector. Letting tii--
then Ritz projection attempts to find zi, Ai, 1, 2, , q, so that

00T(LlOzi XiOlzi) 0

or, since o?/is full rank, so that
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Hence, the Ritz process requires the solution of a q q symmetric eigenvalue problem.
Since q is small relative to the size of the fine grid, then the work involved is small.
Note that the resulting vectors tii form an orthonormal set and that the eigenvalues
produced are the Rayleigh quotients of these vectors. This follows clearly from the
condition that Lli Aii is orthogonal to X and hence tii.

Ritz projection could be performed on a coarse grid using FAS approximations
to the entries in the Ritz matrix, all’LkL?l, but it is better to wait until the coarse
grid cycles have been completed on the currently finest grid. At that time, the
q-dimensional eigenspace approximation has been corrected. Note that no more fine
grid work is needed to perform Ritz on the fine grid than on the coarse grid since the
FAS approximation to the Ritz matrix involves calculations on the finest grid. An
added advantage of using Ritz on the fine grid after the cycles is that the results are
generally more accurate.

6.4. Coarse grid corrections. The fine grid problem (4.1) we seek to solve is
equivalent to finding the smallest A1h<Ah < < Aqh and U, Uh h

=’ "= 2," ", Uq so that for
i=1,2,...,q,

Luh -AUih =0, U =0 on

/’=1,2,...,i.

Since the Ritz process requires only a numerically well-determined subspace for
the eigenspace from which it computes the eigenvalue approximations, the aim of the
multigrid cycle performed on the ith eigenvector approximation is to produce a vector
which differs from U/h only in the directions of the vectors U, j =<q. Thus strict
orthogonalization is unnecessary, and we can instead try to maintain the amount of
separation that already exists between the vectors. We will refer to these separation
constraints as orthonormalization conditions, although it should be understood that
these only approximate true orthonormality. The multigrid cycle for the ith vector
will tend to produce an approximation to the vector with minimum Rayleigh quotient
which satisfies these separation constraints. That is, components of higher eigenvectors
are eliminated from the approximation, and those of the previously computed eigen-
vector approximations remain unchanged. Relaxation changes low-frequency error
components only very slightly, and since these components dominate the approxima-
tion, then vector norms and the amount of vector separation are approximately
maintained during relaxation on the fine grid. Thus normalization and orthogonal-
ization may be reserved for use on coarse grids only, where low-frequency changes
will occur.

Orthogonalization is therefore performed only on the very coarsest grids, with
the exception that at the termination of each multigrid cycle on the current finest grid
G t, Gram-Schmidt orthonormalization is used to start the Ritz process. Thus, during
each cycle, the separation exhibited by the fine grid vectors results only from them
being the interpolants of the orthonormal grid I- 1 approximants. This separation is,
however, adequate to provide good numerical determination of the subspace in which
they belong. Thus, our FAS orthonormalization conditions are designed to maintain
this separation rather than the much more difficult task of maintaining actual orthogo-
nality. The (approximate) orthonormalization constraint, analogous to that for normal-
ization in (5.3), is given by

(6.1) (u,/+lU/k+l 0",/’, 1,..., f,
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where crijk (I+1U+1, I+IU +). Note that the case =/" is the normalization con-
straint. Then the coarse grid equations are, for 1, 2,. , q,

k kLt:Ui -AiUi --I
(6.2)

uki, ikk+lU o.kil."
Relaxation on the coarse grids tends to increase the components in the direction of
previous eigenvectors, so for </’, (6.1) is enforced by subtracting a multiple of Iu
from u, and the equation for i is enforced by multiplication by some constant.
Since o-. 0 for </’, unlike true Gram-Schmidt orthogonalization, (6.1) is not exactly
satisfied after one pass through the equations. However, experiments show that further
work to enforce (6.1) is neither needed nor helpful.

We rely mainly on the coarse grid solution process to eliminate error components
of u in the direction of U,+ and other higher low frequencies. Since relaxation on
intermediate grids does not significantly affect these frequencies, the approximate
action of coarse grid solution on a component U. is given by

I (L-AI.I)-(LI -ILI)US.
Ignoring grid transfer errors, this means that the U5 component in u is approximately
multiplied by yj, where

%" A]-A
If 3’+1 is less than 1 for all i-<q, then the eigenspace approximation will improve
since higher frequencies are reduced at a greater rate. However, this quantity generally
depends on q and and the type of discretization. For programming convenience in
the work reported in this paper, 5-point stencil discrete operators were used on all
grids. In this case, for a positive definite operator, the discrete eigenvalue approxima-
tions generally decrease as the mesh size increases. Thus, for some q, 3’ can be greater
than 1 when coarse grid truncation error exceeds the eigenvalue separation At+x- A.
For such problems, a variational formulation of the problem may be useful. Here,
the coarse grid and grid transfer operators satisfy, up to a scalar factor,

1. A:" IhA
2. Ih "--I2h,

Using such problem formulation yields discrete eigenvalues which decrease as h
decreases. Thus if A;< A. then

A]-A A-A 1"Y S-i <
A.-Ai A-A.

This avoids any coarse grid anomalies and ensures coarse grid convergence, even
when these grids are very coarse.

The coarsest grid used in multigrid cycling, when G is the currently finest grid
in the FMG process, should be G, where k is min {/’: q <_-clG]}. This ensures that
relaxation is not performed on levels for which the G eigenvectors we seek do not
correspond to those on the coarse grid. On too coarse a level, eigenvalue ordering
can be different than on G and relaxation there can introduce error in the direction
of higher G eigenvectors. Another reason not to go to such a coarse grid, even for
low eigenvalues, is that most of the correction provided there will be in the direction
of eigenvectors belonging to the subspace that we are trying to approximate. More
specifically, if ]Gal is not large compared to q, then there is only a negligible change
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in the approximate subspace X on G due to the corrections computed on G1. Use
of the Ritz process allows us to take this view that we are concerned only with errors
in the subspace approximation, not the eigenvectors themselves.

6.5. An alternate accuracy criterion. The results and methods so far have been
geared towards finding q eigenvalues of. L to within truncation error defined by a
prespecified grid mesh size h. Truncation error generally increases with A, so the same
accuracy is not achieved for all eigenvalues. If one wishes to compute the first q
eigenvalues of L to within some given tolerance e, limited experiments indicate that
this can be achieved without performing relaxation on the eigenvalues that have
already been accepted because they are accurate to that tolerance. These accepted
eigenvectors need not even be included in the Ritz process, although they should be
carried to the finer grids demanded by the higher eigenvalues and used in the coarse
grid and pre-Ritz orthogonalization processes there. Also, if for some reason the
discrete eigenvalues are wanted to some level of tolerance smaller than truncation
error for a fixed h, we can make the first cycle for all vectors as before, with more
work (i.e., further cycles) performed only for higher vectors, using the lower ones
again in orthogonalization only.

In both of the above cases, if all vectors are used in the Ritz projection, the
convergence rates for the higher eigenvectors are close to those obtained by the more
expensive algorithm that includes the lower eigenvalues in all processes. In the second
case, the rates are almost identical.

7. Work and storage requirements. Since normalization, orthogonalization and
computation of the orthonormalization correction terms and the Rayleigh quotient
are performed primarily on coarser grids, we neglect these processes in developing
the following overall work estimates. For convenience, let nk-IGI and assume
nk zn/l for k 1, 2, ., m 1. Let an represent the number of operations in one
G relaxation sweep. This is essentially the cost of one matrix multiply, a is approxi-
mately twice the number of nonzero entries per row in Lt. (In some cases, such as a
uniform discretization of the Laplacian, a is much smaller than this.) An inner product
on G is assumed to cost 2nk operations. The amount of work involved at one stage
of the FMG process results from the following computations:

l--11. Cubic interpolation of u to u for 1,. , q.
2. vl + v2 relaxation sweeps on u, 1, ., q, k 1, ., 1.
3. Coarse grid - calculation for k 1,. ., l- 1, 1,..., q.
4. FAS interpolation of u -1 to u/, 1,. ., q, k 2,. ., l.
5. Ritz projection on G t, which includes:

a. orthonormahzaton of ul,...,
ITrb. compilation of the Ritz matrix Lui L u]i.., i,/" 1,. , q;

c. solving for all the eigenvectors and eigenvalues of the Ritz matrix;
d. computing the new vectors a, a,..., rTq.

The work involved in each of these processes is measured as follows:
1. !f-nt .q.
2. -a(vl + v2)n q.
3. -(a + 1)nl-lq (a + 1)n q.
4. 11 4-z-n g" q =--nl q.
5. a. (2q z + q )nl

b. cq. n + q (q + 1)n;
C. O(q3);
d. q(2q 1)n.
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This gives a total G operation count, W, of

Wl =-}(1 + ’2 + 1/4 )qanl + [!_9_q + 5q2]nt + O (q3).
The total operation count, W Yl--1 WI, for the complete FMG algorithm is therefore

W(,+ ’2 +-)qan,, +[12q + q2]n,,, + toO(q3).

Note that m should be proportional to log n,, so that

W n,,O (q2) + log nmO (q3).

Storage is needed for all vectors on all grids, although future work on small-storage
algorithms (see [2, 7.5]) may drastically reduce that requirement. Since coarse grid
problems are inhomogeneous, storage is also required for the right-hand side of these
problems. However, the sequential manner in which the coarse grid cycles are per-

kformed means that only one vector per grid is needed to store the right-hand side -The finest grid actually needs no storage for this, since the problem is homogeneous.
All other storage is at most proportional to the product of the number of points in
one direction on the fine grid and the number of eigenvalues being computed. Thus,
disregarding locations needed for bookkeeping, the total storage location requirements
are approximately

4S =-qn, +1/2n,.
8. Computational results. The model problem used in our experiments is

given by
-Au +10y(sin 3rx)u =,u on f=[0, 1Ix[0, 1],

(8.1)
u 0 on 0II.

The Laplace operator by itself has several properties not typical of more general
operators which made it unsuitable for reliable tests. The term added to the Laplacian
in (8.1) causes the multiple eigenvalues of the Laplace operator to be perturbed,
yielding instead sets of close eigenvalues. This poses more of a challenge to our
algorithm. Moreover, the eigenvectors are altered so that they are not exactly represen-
ted by the discrete problem as they are for the Laplacian alone.

Unless otherwise indicated, h 1/4 and m 4 so that h, 2. Also, t,1 z,2 2.
A closed form solution for the eigenvalues and eigenvalue discretization error of

this problem is not known, but can be closely approximated by carrying out the test
results farther than the number of cycles and the fineness of h,, than we report. The
"exact" values A, used in Table 1 were calculated by extrapolating the computed
solutions on levels m 4 and m 5. h in Table 1 represents h ha 32.

TABLE

n A A iAO Ah iiLhUO o o

1 18.73558161 18.71847149 .0171 .0407
2 48.32534796 48.18927363 .136 .142
3 51.69556290 51.56004355 .136 .148
4 81.32645700 81.07201016 .254 .263
5 97.65037417 97.00117915 .649 .651
6 100.2221931 99.57484220 .647 .654
7 129.8746755 129.1084354 .766 .773
8 130.6674040 129.8996943 .768 .771
9 166.65623 164.6376509 2.02 2.02
10 169.0329 167.0085449 2.02 2.03
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The last column in Table 1 is the norm of the residual of the solution to the
continuous problem projected onto the h grid. This is also an approximation, but
is close enough to serve as a quantity against which to measure convergence of the
discrete solution. That is, when the grid h residual is comparable to the residual
formed by the projected continuous solution, then we conclude that the discrete error
is the same order as the truncation error. The algebraic error in the eigenvalue is not
necessarily a good measure of the algebraic error in the eigenvector, the former being
approximately proportional to.the square of the latter.

The method for one eigenvalue and h is given in Table 2. The amount of
work performed in relaxation, which dominates the overall work in this case, is
equivalent to about seven sweeps on the fine grid.

TABLE 2

t A1 IlL h/,/lh -Aeulll

18.71871030 2.39x 10-4 1.40x 10-2

The results for ten eigenvalues and h are shown in Table 3. A comparison
with Table 1 shows that the problem is solved to below the level of truncation error.
Note that the accuracy is better relative to this truncation error for the lower eigen-
values. If more eigenvectors are included in the process (whether or not they converge),
all approximations are improved. When 15 eigenvectors were included in a test that
we ran, although the last two failed to converge, the residual norm of the 10th
eigenvector decreased by about a factor of 2. This is not of too much practical
importance, however, since even though it suggests that less work is required for the
lower eigenvalues when Ritz projection is used, the error decrease is actually due
mainly to elimination of low-frequency error.

TABLE 3

n ,h Ih Ahl ilLhu u 211
18.71847153 3.40 x 10.-8 4.26 10-3

2 48.18927456 9.31 x 10-7 2.04 x 10-2

3 51..56004444 8.90 x 10.7 2.32 x 10-2

4 81.07201416 4.00x 10-6 3.80x 10-2

5 97.00123840 5.93 x 10-.5 1.64 x 10-1

6 99.57489151 4.93 x 10-5 1.56 x 10-1

7 129.1088552 4.20 x 10-4 2.64 x 10-1

8 129.9001827 4.88 x 10-4 2.77 x 10-1

9 164.6602169 2.26 x 10-2 1.74
10 167.0701555 6.16 x 10-2 1.72

As explained in 6, low-frequency error can arise if the coarse grid solution does
not provide a good correction to the approximations on finer grids. In these cases a
cycle with more visits to coarser grids may help. Table 4 gives the results for the
so-called "W-cycle" for ten eigenvalues. A W-cycle means that the coarse grid
correction to any grid k is calculated by two cycles on grid k 1. The amount of work
performed in relaxation is times the amount needed for usual multigrid cycles. The
total amount of work is then

W-(3 (,1 + u.)+ -)qanm +[12q + qZ]nm + mO(q3).
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TABLE 4

3.60 x 10-8 4.21 10-3

2 6.57 10-7 1.83 10-2

3 6.55 10-7 2.12 10-2

4 2.34 x 10.6 3.10x 10.2

5 3.97 x 10.5 1.47 x 10-1

6 3.27 x 10.5 1.40 x 10-1

7 4.68 x 10.5 1.53 x 10-1

8 5.29x 10.5 1.58x 10-1

9 2.36 10-3 7.15 x 10-1

10 1.42 x 10.2 8.83 x 10-1

Tables 5 and 6 show the results obtained with red-black ordering in place of
lexicographic Gauss-Seidel with usual cycling and W-cycling, respectively. This type
of ordering is a more effective smoother than lexicographic, as evidenced by the higher
accuracy obtained in the eigenvalues.

TABLE 5

1 1.23 x 10-8 2.98 x 10-3

2 8.40x 10-8 2.39x 10-2

3 1.03 x 10-7 2.33x 10-2

4 5.54 x 10-7 6.50 10-2

5 5.64 x 10.6 1.89 x 10-1

6 8.51 x 10.6 2.57 x 10-1

7 1.44 x 10.5 3.32 x 10-1

8 2.72 x 10-5 2.88 x 10-1

9 9.84 x 10.3 1.05
10 1.16x 10-1 1.96

TABLE 6

n Ix -A"I IILhu A "u "11
1 4.45 10-9 1.65 10-3

2 2.96 x 10-8 1.35 x 10-2

3 3.31 x 10-8 7.48 x 10-3

4 7.64 x 10-8 2.08 x 10.2

5 9.79x 10-7 6.19x 10-2

6 1.17 x 10.5 3.00x 10-1

7 1.31 x 10.5 3.18 x 10-1

8 1.77 x 10-6 9.22 x 10.2

9 2.60 x 10.3 4.40 x 10-1

10 3.87x 10-2 1.31

The nature of the FMG process is ideal for the use of extrapolation on the
eigenvalues approximations. Table 7 shows the eigenvalue approximations extrapo-
lated from the 6 and grids and the accuracy obtained.
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TABLE 7

n (41 A 2hh)/3 IA (41 A h)/31

18.73554270 3.89 x 10-5

2 48.32469250 6.55 x 10-4

3 51.69476513 7.98x 10.4

4 81.32502517 1.43 x 10.3

5 97.64234667 8.03 10--3

6 100.2140080 8.19x 10.3

7 129.8582268 1.64 x 10
8 130.6508394 1.66 x 10.2

9 166.4985283 1.58 x 10-1

10 168.8655123 1.67 x 10-1

Appendix. The algorithm is broken into two parts" the FMG Ritz procedure and
the CYCLE procedure. CYCLE is called from FMG Ritz. The parameters of the
algorithm are as follows:

q: The number of eigenvalues and eigenvectors desired.
m" The number of grids to be used.
u0’ The number of iterations used to obtain a first approximation to each vector

on the coarsest grid.
u" The number of relaxation sweeps performed before transferring the problem

to a coarser grid.
u2: The number of sweeps performed after the coarse grid correction.

FMG RITZ.
1. Set n - 1, n max- 1, - 1, ho 0
2. Set u in # Random function hn #/n-1

For 1, 2,. ., vo, do
u # Relax (Llu -hu =0)
Forf 1, 2,.. , n-l, do

Un Un Un U] U]
Set h, (Lu un)/(u u

Setuu/(ul,,u,).
3. If n q, set n max q, k min l,

Ritz on ug, l, 2, ., n max & go to 4
If n < c IGI, set n n + 1 & go to 2.
Set n max n, k min & go to 4.

4. If m, stop.
Set//+1
For 1, 2,. ., n max, do

ui -lU
cycle (i, k min, l)

Ritz on u , 1, 2, ., n max.
5. Ifnmax<q, setnnmax+l&goto2.

Otherwise go to 4.
CYCLE (n, k min, l).

k1. Setkl,z,0
2. Fori=l, 2,...,ul, dO

(Luu Relax h,u
If k N k min
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For]= 1, 2,..., n-l, do
k k k k k+l k k k

Un <’- Un ((U., Iluj>
Set u

k k k k kIf k k min, set A, -(L’u,, -7.,,, u,,)/(u,,, u,,).
3. Ifk=kmin, gotoS.
4. Setkk-1

+
7., =7., +L +lu +IL u
L/n <-- +lt/n

Go to 2.
5. For 1, 2,..., v)., do

k ku ku, Relax (L A,u 7.,,)
If k <-_kl
Forf 1, 2, ., n-l, do

k k k (I+IU [l Uj>)/(Iu k
n, i, IlUi)’Iui

Set u k(I,+auk+ I )/( k i kun u un, un) Itu
If k k min, set A. "(Lkblkn --7"k, tt kn)/(ttn,k bln).k

6. If k l, stop.
7. Setk <--k +1

k I (uk-_i-I k
lgn <"- Ign q- -1 bin)

Go to 5.
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SYSTOLIC NETWORKS FOR ORTHOGONAL DECOMPOSITIONS*
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Abstract. An orthogonally connected systolic array, consisting of a few types of simple processors, is

constructed to perform the OR decomposition of a matrix. Application is made to solution of linear systems
and linear least squares problems as well as QL and LQ factorizations. For matrices A of bandwidth w

the decomposition network requires less than w processors, independent of the order n of A. In terms
of the operation time of the slowest processor, computation time varies between 2n and 4n subject to the
number of codiagonals.

Key words, systolic array, VLSI, QR decomposition, linear systems, least squares

Introduction. Systolic arrays are an architectural paradigm first proposed by Kung
and Leiserson [11], [12] for the implementation of matrix operations in VLSI (very
large scale integrated circuits). The object is to design special purpose devices which
take advantage of new and emerging computer circuit technologies. A general overview
of the design activity is given by Kung [9], [10].

A systolic array is a collection of parallel processors arranged, by their interconnec-
tions, into a regular planar network. The array operates in a pipeline mode. Data
enter the processor array through its periphery, and (for the purposes of this paper)
circulate through the array along fixed paths in synchrony with a global clock signal.
Results emerge from the processor array along its periphery, at the same rate as data
are entered; in some designs results may be accumulated for output after input is
completed. Practical considerations for VLSI design require the processors to be
simple and identical; those on the periphery may differ from those in the interior of
the array, however.

This paper describes a systolic array to compute the QR factorization of a banded
matrix, in the spirit of designs presented in [11], [12] for other band matrix computa-
tions. The LU factorization systolic array of [11], [12] implements Gaussian elimina-
tion without pivoting; modifications to support both pivoting and similar operating
characteristics (time, I/O format) do not exist. Essentially, a high degree of data-
dependent control for pivoting would have to be implemented by the network, violating
some of the constraints on VLSI design. Here, the numerically stable Givens plane
rotation [5] is repeatedly applied to obtain a reduction to triangular form.

Chaining three simple types of processors, which perform only basic arithmetic
operations, produces a linearly connected mesh which is the integral component of
the network for QR, QL and LQ decompositions, and hence solution of linear systems
and linear least squares problems. Because the bandwidth, w, of a matrix A can be
preserved through a proper order of elimination, the number of processors in our
array is less than w 2 and independent of n, the order of A. Taking the operation time
of the slowest processor as a unit, the total computation time varies between 2n and
4n subject to the number of codiagonals to be eliminated. The proposed networks
follow the data I/O regimen established in [11], [12] for band matrices and are suited
for implementation in VLSI as part of a family of special purpose devices.

After comments on plane rotations as well as exploitation of parallelism in
orthogonal decompositions, appropriate processors are defined and the network for

* Received by the editors September 21., 1981, and in revised form May 10, 1982. This work was
supported, in part, by the National Science Foundation under grant MCS 78-09126.

Computer Science Department, The Pennsylvania State University, University Park, Pennsylvania
16802.
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the QR decomposition is presented. Different indexing of matrix elements enables
the QL factorization and a reversion of datalines yields a network for the LQ
factorization. Addition of a processor incorporating a delay element allows solution
of linear least squares problems following the QR factorization. Finally, some remarks
concerning a VLSI implementation are made. An indication of how to process matrices
too wide for available hardware will be made in a subsequent paper.

There are three related designs for the OR factorization by other authors.
Bojancyzk, Brent and Kung [2] and Ahmed, Delosma and Morf [1] (cf. Gannon [3])
describe a systolic array for dense square matrices, storing Q in the array and
propagating R; A is entered (essentially) one column per step. Gentleman and Kung
[6] describe another systolic array for dense rectangular matrices, storing R in the
array and propagating Q; A is entered (essentially) one row per step. Both designs
are based on Givens rotations; the latter can be modified to solve least squares
problems on the fly. The design presented here propagates both Q and R, making it
more economical for band matrices. Johnsson [8] discusses a VLSI processor array
implementing the Householder triangularization for band matrices, using w processors
and O(nw) time. Our design, when reduced to w processors, would also use O(nw)
time (el. [1]), but the necessity to accumulate an inner product prevents the House-
holder reduction’s effective use of more than w processors" w

z processors would need
O (n log w) time.

The final comparison of designs will depend on implementation issues not yet
resolvable.

Plane rotations. The standard Givens rotation is a computationally stable device
for introducing zeros into a matrix by premultiplication [14], [15]. Let

C +S --1,

(; (x0, p x2

Y2 Yk Y Y

The elimination is effected by

(1)

k__>l.

(2) x CXi + Syi, Y --SXi -- Cyi, 2 <= <--_ k.

Equations (1) should be modified for implementation, to avoid over- and underflow.
Fast Givens rotations [4], [7] complicate data manipulation for VLSI implementation
and are not considered here. By means of a few shifts and comparisons, P can be
stably encoded into a single number [16]. In the sequel, P will denote either the
matrix or its encoding.

Exploitation of parallelism. Considering a full matrix as an initial portion of an
appropriate band matrix, attention can be restricted to band matrices A of order n.
The size of the linearly connected mesh to follow depends on the bandwidth of A,
w =p + q + 1 (q subdiagonals, p superdiagonals, 1-<_p, q-< n), but not the length of
the band, n.

Arriving at the same conditions as in [13] and [14], subdiagonal elements yl and
371 can be simultaneously eliminated by premultiplication, if

(a) y and 371 are in nonadjacent rows, and

if y 0 then x =XI, C 1, s =0

elsex’ (x + )1/2y ,C --Xl/X /X1, S Yl 1,
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(b) all elements to the left of (xly,)r and (1)1)T respectively, as well as below
y and 71, respectively, are zero.
This means that annihilation proceeds subdiagonalwise from without toward the
diagonal, implementing a QR factorization of A.

Processors. A synchronized network is assumed where the time between clock
pulses is long enough to perform any required operation. Two kinds of processors
are needed for the OR decomposition, one that generates plane rotations (see (1))
and a second which propagates them (cf. (2)).

Cell 1. e’ P’ equations (1).

Yl

Cell2. xl_-[ i]. equations (2).
P’’i P’

Yl

In the absence of input, all datalines will assume the value 0 and consequently plane
rotations will yield identity. Pij denotes the rotation which eliminates aij. Primes denote
values computed in the cell, so if Xg, yg and P enter cell 2 at time t, then x’i, y and
the unchanged P exit cell 2 at time + 1 and are then available for input to another cell.

The linearly connected mesh. A linearly connected mesh of w processors elim-
nates the qth subdiagonal of A, resulting in a matrix A’. The bandwidth is preserved
by fill-in of a (p + 1)st superdiagonal. The product of plane rotations flowing to the
right constitutes the matrix Or. Dataflow in and out of a particular processor occurs
by codiagonals, so that succeeding codiagonal elements enter (and leave) every other
time step. Figure 1 illustrates the mesh with appropriate dataflow.

If we index cells from left to right by -q p, then element a (/’,/" + k), -q <_- k _-< p,
arrives at time Ikl / 2/"- 1 as input to cell k. The updated value exits from cell k- 1
two steps later.

Elimination of a codiagonal takes time 2n, provided all enters at 1. As for
speedup and efficiency the same results as in [13] are obtained, indicating superiority
over Gaussian elimination with pivoting, the Gram-Schmidt orthonormalization pro-
cess and the Householder triangularization.

The Q!/ decomposition. An array of q of the above meshes, comprising qw
processors, performs the reduction R orA, where the lowermost mesh removes
the qth subdiagonal and the uppermost one the first subdiagonal. The elements of R
leave the top of the array. Delivering a ll at 1, rll is available at 2q, bringing
the total computation time to T(n, q)= 2(n +(q-1)). See the appropriate portion of
Fig. 3.
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all

a12

q, 2 a13

a23
a’ a,p+2q+1,2 a24

a2, p+3

0

P P

aq+l,l

all

a21 a12

aq+2,2

a22

al,p+la32 a23

a2, p+2

FIo. 1. Linearly connected mesh, for elimination of qth subdiagonal, with I/O format.

The OL and LQ decompositions. A different addressing scheme for matrix
elements allows the OR network to be employed for the OL factorization. Input data
consists of a matrix A which results from reversing the row and column order of the
original matrix A. Let J R"n,/ik 6 k,,-i/l for 1 -< i, k <= n, be a permutation matrix.
Then

A JAJ OR and A (JQJ)(JRJ)

p.w processors are necessary, as is also a computation time of T(n, p). Regarding
the solution of Ax b, one has to"

1. Determine A QL.
2. Solve L(Jx)= (O)r(Jb).
If it is not a question of having an upper or lower triangular matrix, the decomposi-

tion requiring the least resources should be applied. For example, for p << q, compute
A OL where the number of processors pw << qw and the time T(n, p) < T(n, q).

As for the LO factorization, superdiagonal elements are annihilated from without
toward the diagonal by postmultiplications, and therefore the datalines of processors
are reversed so as to join adjacent column elements"

i

Celll’. Y- xi equations (1)
P P

Yi
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Cell 2’. xi Y;
equations (2).

P P

Yi

The corresponding linear mesh is shown in Fig. 2. Processor and time requirements
for the LQ array are the same as for the QL array. Routing of matrix elements,
however, occurs as in the OR factorization.

0

FIG. 2. Linearly connected mesh for elimination of pth superdiagonal (cf. Fig. 1).

Linear systems and least squares computations. A vector x has to be determined
that minimizes IIAx- b ll; for simplicity first assume A is square and nonsingular, so
Ax b. If R QTA is available then R is nonsingular [15] and Rx =y for y Orb.
Hence, two steps are necessary:

1. Determine R (2TA and y O Tb.
2. Solve Rx y.

To deal effectively with multiple least squares problems, x minimizing [lAx-b.[12,
yi O Wbi, Rxi yi, 1 <-f <-k, the following cell, which effects a delay, is needed

Y’ input b, P
local memory z

computey’=cz+sb
Cell 3. p P z’ -sz + cb

output y’, P
local memory z’

b

The value z’ is retained as z for the next operation of the cell. Initially, z is 0. In
Figs. 3 and 4 the local memory is not displayed.

The network in Fig. 3 for the case q 2 serves as an illustration for the general
case. The first element of bj, bl., enters q-f steps before the first matrix element, a11,

and succeeding elements of b enter every two steps. Note that k is not restricted with
respect to q, so q-/" may be negative. For any number of subdiagonals, q, yl always
leaves the network/" steps after r11. Assuming bll enters at 1, rll is available at

2q + (q- 1) 3q 1; therefore, the entire computation takes time 2n + k +
3(q- 1) T(n, q)+k +q- 1. The network consists of q(w +k) processors.

The second step, solving Rx y, can be accomplished by a linearly connected
mesh from [11], [12]. The input to the latter mesh, however, has to be a lower
triangular matrix. Thus, the systolic arrays of steps 1 and 2 cannot be directly linked.
Data must be stored in memory or passed through delay elements in order to obtain
proper dataflow for the second network.
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A partial trace of the dataflow is provided in Fig. 4 for the case k =q 2, p 3.
Default values for data are omitted, matrix elements are identified by their indices"
the ones entering the network stand for aij, the ones leaving for rij.

rll

Yll r12

r22 r13

Ylk Y21 r23

r24 rl,p+3

Y2k
r2,p+4

t t t t [
l -I l T l

b
ll

all

blk b21 a21

a31 a22 al,p+l

b2k b31 a32

b3k
a42 a2, p+2

FIG. 3. Computation ofR 0rA, Yi (2 rbi, with I/O ]:ormat, q 2.

Treatment of rectangular band matrices. Consider the minimization IIAx-bll2
where A R"", x R, b m and A is assumed to be of full rank. Two cases can
be distinguished.

Case 1. m >= n. Partition A (A0), b (b ]rb[)r, A1 g-l-, bl "1, for m
min{m, n +q}, so that [lAx -bll IIax -bl[ + lib=lib.

Thus, only A1 and b need to be entered into the OR network. Let the output
be R1 and yl with R1 (R10)r and yl (y]rly]r2)r, Rll "" and yll [". Then,

Solve Rllx yll to find the minimizing x. The square of the residual is
The computation of R and y takes T(m 1, q), while x can be determined in O(n) steps.

Case 2. m <n. Again, partition A (A10), x (xx), A1 -1, xl "1 for
nl=min{m +p,n}. Thus, IIAx-bll=--IImx-bll=. Hence, only A1 and b have to be
input into OR network. If the output is R1 and y with R1 (R11R12), xl (xlx2),
R 11 ["" and x 11 ", then

Ilmlxl-bll=-IlglXl-bll= ll(gx- y)+R12x
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f

A

bl 2

b22

t t t t t

bll

b21 A [’] P3
31

11

- t t
(a) t= 3.

f
0

0

b12

b22

b12 m

bll

b21
/P31
b31

b
ii

P21
b21

// P42
b41

II

["]P21
21’ 12

32’

[--] P4242

P31
32

(b) 4.

12

P21
22’

(c) 5.

P31
33

32"

33’

P42
43

t

P21

13

2_3’

l

t t t
(d) 6.

FIG. 4. Partial time trace of Fig. 3, k 2, q 2, p 3.
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13

P31
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Set X12 0 and X2 0 and solve R11X11 y to obtain the minimizer with smallest norm.
Generation of R and y can be accomplished in T(n, q) and x in O(m) steps.

In general, the time to solve the linear least squares problem for banded matrices
comes to approximately T(smaller dimension of A, q). The treatment of b ,k,
k > 1, follows the same lines.

VLSI implementation. The systolic array concept lends itself well to VLSI
implementation of special purpose devices [11], [12]. The orthogonally connected
grid of Fig. 3 may be built up from three basic rectangular cells"

1. to implement (1);
2. to implement (2), on the right of Cell 1 in Fig. 3;
3. to implement (3), on the left of Cell 1 in Fig. 3.

Cells 2 and 3 are nearly identical and should require far less area than Cell 1, as their
functions are a small subset of those of Cell 1. Cell 1 is replicated q times, Cell 2
q(p;+q) times, and Cell 3 qk times, so the largest cell is needed least often. The
systolic array of Gentleman and Kung for dense matrices [6] has similar characteristics.

For connection to other systolic arrays, the bandmatrix input and output regimen
established in [11], [12] is followed. Thus the input to one array may come from the
output of another, and temporal displacement among elements does not have to be
changed. As mentioned, however, the output from the decomposition array must be
directed to memory for completion of the solution to a linear system or least squares
problem. Memory devices supporting the I/O regimen would, of course, be available
in a computer system adopting the systolic array concept.

REFERENCES

[1] H. M. AHMED, J.-M. DELOSME AND M. MORF, Highly concurrent computing structures for matrix
arithmetic and signal processing, Computer, 15, no. (Jan. 1982), pp. 65-82.

[2] A. BOJANCYZK, R. P. BRENT AND H. T. KUNG, Numerically stable solution of dense systems of
linear equations using mesh-connected processors, this Journal, 5 (1984), to appear.

[3] O. GANNON, A Note on Pipelining a Mesh-Connected Multiprocessor for Finite Element Problems by
Nested Dissection, in Proc. International Conference on Parallel Processing, IEEE Computer
Society Press, Silver Spring, MD., 1980, pp. 197-204.

[4] W. MORVEN GENTLEMAN, Least squares computations by Givens transformations without square
roots, J. Inst. Math. Appl., 12 (1973), pp. 329-336.

[5] , Error analysis of QR decompositions by Givens transformations, Linear Algebra and Appl.,
10 (1975), pp. 189-197.

[6] W. M. GENTLEMAN AND H. T. KUNG, Matrix triangularization by systolic arrays, in Real Time
Signal Processing IV: SPIE Proceedings vol. 298, Society of Photo-Optical Instrumentation
Engineers, Bellingham, WA, 1981, pp. 19-26.

[7] SVEN HAMMARLING, A note on modifications to the Givens plane rotation, J. Inst. Math. Appl., 13
(1974), pp. 215-218.

[8] L. JOHNSSON, A computational array for the QR-method, in Proc. of a Conference on Advanced
Research in VLSI, P. Penfield, ed., Artech House, Inc., Dedham, MA, 1982, pp. 123-129.

[9] H. T. KUNG, The structure of parallel algorithms, in Advances in Computers, 19, Academic Press,
New York, 1980, pp. 65-112.

[10], Why systolic architectures?, Computer, 15, no. (Jan. 1982), pp. 37-46.
[11] H.T. KUNG AND CHARLES E. LEISERSON, Systolic arrays (for VLSI), in Sparse Matrix Proceedings,

I. Duff and G. Stewart, eds., Society for Industrial and Applied Mathematics, Philadelphia, 1978,
pp. 256-282.

[12] C. MEAD AND L. CONWAY, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
[13] A. H. SAMEH AND D. J. KUCK, Parallel direct linear system solvers--A survey, in Parallel Computers--

Parallel Mathematics, M. Feilmeier, ed., International Association for Mathematics and Computers
in Simulation, Amsterdam, 1977.



SYSTOLIC NETWORKS FOR ORTHOGONAL DECOMPOSITIONS 269

[14] A. H. SAMEH AND D. J. KUCK, On stable parallel linear system solvers, J. Assoc. Comput. Mach.,
25 (1978), pp. 81-91.

[15] G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.
[16] ., The economical storage o]plane rotations, Numer. Math., 25 (1976), pp. 137-138.



SlAM J. ScI. STAT. COMPUT.
Vol. 4, No. 2, June 1983

(C) 1983 Society for Industrial and Applied Mathematics
0196-5204/83/0402-0011 $01.25/0

CONSTRUCTION OF A CURVILINEAR GRID*

BARBRO KREISS"

Abstract. The construction of overlapping grids is explained and applied to a system of hyperbolic
differential equations.

Key words, overlapping grids, curvilinear grid, solution of PDE, interpolation.

1. Introduction. We want to solve a hyperbolic system of partial differential
equations

(1.1) OU_A OU+B u
+F

Ot Ox Oy

in a domain [IA bounded by a smooth curve OfA. At 0 we have the initial conditions

and on O’A boundary conditions

are given.

u (x, o) l’(x),

Lu=g

The crudest method is to cover la by a rectilinear grid (Fig. 1.1) and replace
the differential equations and boundary conditions by difference equations.

FIG. 1.1

Unfortunately this process is often very inaccurate. We shall instead use two different
overlapping grids"

(1) One curvilinear grid, Gc, defined by the transformation

(1.2) T: { x (r, s),
y =y(r, s), O<--r’s<--l’

* Received by the editors November 13, 1981, and in revised form June 25, 1982. This project was
sponsored by the Office of Naval Research under contract N0014-80-C-0076, the U.S. Department of
Energy under contract EY-76-S-03-070 and the Swedish Natural Science Council (NFR 2711-018) and
the Swedish Board for Technical Development (STU 77-3690).

? Department of Computer Sciences, Uppsala University, Uppsala, Sweden. Present address, Depart-
ment of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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which follows the boundary. It covers a domain flc ’A- -B, where fn is bounded
by another smooth curve 0fn. This grid is constructed with help of splines.

FIG. 1.2

FIG. 1.3

(2) One rectilinear grid, Gn, covering fib and partly overlapping fc.
We replace (1.1) by difference equations. On fib we use a standard leap-frog

procedure. In order to obtain the difference equations on the curvilinear grid, we
introduce r, s as new independent variables and obtain

(1.3)
Ou Ou Ou--+--+F.
Ot Os Or

We replace (1.3) and the boundary conditions by difference equations and again use
a standard leap-frog procedure.

The solutions on the two grids are connected by interpolation. The grid construc-
tion program generates a mapping function and its derivatives and the weight functions
necessary for the interpolation.

Overlapping grids have earlier been used by [4]. However, we believe that our
construction is simpler and more flexible. We are already working on extensions of
the grid construction that include stretching in the r and s directions and allow other
kinds of domains. Our applications include elliptic equations and a combination of
hyperbolic and elliptic equations. The use of splines for grid construction has also
been used by [5]. There is no overlapping of grids, though, which we think is a very
important feature.

2. Grid construction. In practice the boundaries 0’A and 0fin are only known
at J corresponding points
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Therefore we define t[’A and 01)n by spline interpolation, as described in [1, p. 42]
and [2, p. 50] and obtain a representation P(s), Q(s) of cgfg, Ofn respectively, as
functions of a parameter s, 0--<_s _--< 1. For every fixed s we connect P(s), Q(s) by a
smooth curve D(r, s), 0 <_-r, s _-< 1. The simplest curve is a straight line, and this is the
only type used so far (Fig. 2.1).

FIG. 2.1

This procedure defines the coordinate transformation (1.2).
We want to cover 12c by a curvilinear grid Gc. Let As 1/N and Ar 1/(M- 1).

The gridpoints of Gc are defined by

Pi,(r, s) Pi,,,((i 1). Ar, u As),

This curvilinear grid in the x, y-plane corresponds in the r, s-plane to a uniform grid
over the rectangle 0 _-< r, s _-< 1 (Fig. 2.2).

FIG. 2.2

We cover ’A by a uniform rectilinear grid. We use a method as given in
[3, p. 358] and [4, p. 4.1] to restrict this grid in such a way that it covers [In but is
contained in IIg. Set r re. We then obtain a coordinate curve

C(s)" x x(rc, s), y y(rc, s).



CONSTRUCTION OF A CURVILINEAR GRID 273

For every point on C we determine the closest point in the rectilinear grid. The points
thus obtained are the boundary points RL of the restricted grid. It is important that
RL forms a closed polygon. If two consecutive points on C give boundary points
whose indices indicate a gap > 1, then we define the intermediary boundary points as
those which approximate the chord between the two points on C (Fig. 2.3).

FIG. 2.3. Points on C; [11 boundary points from points 1, 2, 3; 7-] additional boundary points.

This process needs a starting point that is known to be in the interior of liB.
Finally R. is cleaned of corner points, which are not needed during the computation.

An integer image array is used to flag the points of the rectilinear grid. For the
boundary points R the flag is 2. In these points we will interpolate. For interior
points the flag is 1. There we will apply the leap-frog scheme. For outside points the
flag is 0. The grid GB consists of gridpoints, where the flag # 0.

3. Numerical solution of hyperbolic differential equations. Consider a symmetric
hyperbolic system

(3.1) O---U A O--U-U +B O--u-u
Ot Ox Oy

for (x, y) fig, =>0. Here u (u (1), ., u("))T isa vector function andA A*,B B*
are n x n symmetric matrices which depend smoothly on x, y, t. At =0 initial
conditions

(3.2) u (x, O) f(x),

and on OI-IA a number of linear relations between the components of u are given as
boundary conditions

(3.3) Lu g, (X,

As we have described earlier, we cover A by two overlapping grids GB and Go Gn
is rectilinear in the x, y-plane and Gc in the r, s-plane, defined by the transformation
(1.2). At all interior points of G we approximate the differential equation by the
leap-frog scheme, i.e.,

u(x, y,t+At)=u(x, y,t-At)+2At(A(x, y, t)D0, +B(x, y,t)Doy)U(X, y,t).

Here

Doxu(x, y, t) (u(x + Ax, y, t)- u(x Ax, y, t))/2Ax,

Doyu(x, y, t)= (u(x, y + Ay, t)-u(x, y -Ay, t))/2Ay

denote the centered difference operators.
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In order to obtain the difference approximation in Gc we use the transformation
(1.2). We have

O___u= (OUrU Oy Ou Ory)/A, A=Ox Oy Ox Oy
Ox Os Os Or Os Os Or’

Oy Or Or

Therefore (3.1) becomes

(3.4) o__u X o__u + ou
Ot Or Os

where

X=- A---B
OS

I (-A Y+B-rr)=- Or

Here u (r, s) is periodic in s. r 0 corresponds to 0’]A, and r 1 corresponds to 0fB.
We approximate (3.4) for 0<r=j. Ar<l and s=0, As, 2As,. ., (N-l). As

again by the leap-frog scheme

(3.5) u(r,s,t+At)=u(r,s,t-ZXt)+2At((r,s,t)Dos+;(r,s,t)Dor)U(r,s,t).
For r 0 we use a one-sided formula. If

d(0 S) (--21 0) Aj > 0 diagonal, /’=1,2,

is diagonal, then the boundary formula becomes particularly simple. The positive
eigenvalues correspond to the outgoing characteristics. Therefore we extrapolate these
variables

(3.6)

r(zXs)u(0, s, + At) u(0, s, t) +
2

D+sD_sulI(o, s, t)

+ At (A2D+rUII(o, s, t) + (IDosu (0, s, t))II).

Here r is a parameter and

D+rulI(0, s, t) (ulI(Ar, s, t)- un(0, s, t))/Ar,

D+D_uII(o, s, t) (u n(0, s + As, t)- 2u n(0, s, t) + un(0, s As, t))/(As)2.
For the other variables we use the boundary conditions.

If A is not diagonal, then we proceed in the following way" At every boundary
point r 0, s So we construct a unitary transformation U such that

U*U A.

Then we introduce a new variable t7 by u Ut and transform (3.4). For the transfor-
med equations we can use the approximation(3.6). Changing back to the original
variables we obtain the boundary approximation.

Assume now that u is known at times and t- At. Then we can use the above
approximations to determine u at time + At in all gridpoints along O12A and in all
interior gridpoints of both Gc and GB. The values of u at the gridpoints on the
boundaries 0Ftn and RL are obtained by interpolation, which will be explained in
the next section.
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4. Interpolation. Let u (x, y) be a smooth function. Let Pi, 1,. ., 9 be nine
points uniformly spaced in a rectilinear grid, and let u (Pi) denote the function values
in these points.

We want to determine an approximate value u (Q) at a point inside the rectangle
formed by P1, P3, PT, P9. See Fig. 4.1.

P4

P, P8

FIG. 4.1

P9

03

Q

P6

Q1 P3

Consider the 3-point formula

(4.1)
u (O,) a l(a)u (Pi- 1) + a2(a)u (Pi) + a3(a)u (Pi+I),

0<__ll<=l, Pi_l<=O!<=Pi+l

with

a(a 1) (a + 1)(a 1) (a + 1)a
al(a)=, a2(a) a3(a)

2 --1 2

We use (4.1) with a (xo- XPs)/h,,. First let 2 and we obtain

b/(O1) a l(a )u (P1) + az(a)u (P2) + a3(a)u (P3).

We obtain u(Q2) and u(Q3) when we let 5, 8, respectively. We replace a in (4.1)
by fl (Yo- yps)/hy, P by Q and let 2 and obtain

u (Q) a 1(/3)u (Q1) + a2(/3)u (02) + a3(/3)u (03)

or

(4.2)

3 3

u(Q)=al(fl) E ai(a)u(Pi)+a2(3) E ai(a)u(Pi+3)
i=1 i=1

3

+ a3(3) E ai(a)u (Pi+6).
i=1

For every gridpoint O on OI2B we find the gridpoint in GB that is closest to O. We
denote this point P5 and apply (4.2) using the function values of the nine gridpoints
in Gn with P5 in the center to obtain an approximate function value in O.
The nine weight coefficients in (4.2) and the location of P5 are computed once and

stored to be available at computation time.
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In our computation the grid Gc had to be considerably denser than GB. Therefore
we have found it to be satisfactory to use a four point formula when we interpolate
among gridpoints in Gc to find an approximate value at the boundary points RL of GB.

Let P e Rt. Denote by P1 the gridpoint in Gc that has the shortest distance to P.
We call three of P’s neighbor points in Gc P2, P3, P4. See Fig. 4.2. Denote the
vector from P to P2 by a, the vector from P to P4 by c and the vector from P4 to

P3 by b.

P4
hb

d

P

FIG. 4.2

The vector d through the point P is defined by

(4.3) d =hb +c-ha, O <- h <-1.

We also have

(4.4) P P ha +/xd, 0 <_- ix <-- 1.

Equations (4.3) and (4.4) give us

(4.5) P PI ha +/xc + h/z (b a).

We use an iterative process to solve (4.5) to obtain h,/z. We have assumed that
h,/z _-> 0, i.e., P lies in "quadrant 1" of P. If the solution of (4.5) turns out negative
values for h or or both, then we try another "quadrant" of P1, i.e., P2, P3, P4 could
be another set of points around P1. Figure 4.3 shows the different "quadrants" and
the arrows indicate the ascending order of the points P2, P3, P4.

When we have reached satisfactory values for h and/z, we proceed using the
following standard interpolation formula, in order to obtain an approximate function

FG. 4.3
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value u (P) from the function values u (Pi), 1,..., 4,

u (P) (1 h)(1 tx)u (Pl) + h (1 tx)u (P2)
(4.6)

+A/x u(P3)+(1-A)" u(P4).

The four weight coefficients in (4.6) are computed once and stored to be available at
computation time. Also available are the locations of P in GB and of P1 in Gc as
well as the correct "quadrant" number. This is done for every point P

5. An example. As a test case we have solved (1.1) with

A=(Io _01), B=(
u (x, O) (sin x, cos x) r,

For the boundary r 0 we have

0
F (cos (x + 2t), -3 sin (x + 2t))r,

u (x, At) (sin (x + 2At), cos (x + 2At))7".

au(1)+a2u (2) =g.

Remark. The coefficients a and a2 are chosen in such a way that we give the
variable corresponding to the ingoing characteristic. The solution to this problem is

v (sin (x + 2t), cos (x + 2t))r.
Therefore we have been able to compute the error function

e--o--b/.

Table 5.1 shows the maximum error, emax, and the global error for different grid
densities. We used r =0 and At 0.001. We constructed the grids from two sets of
7 points. They are listed in Table 5.2. In the iterative processes of the grid construction
we used a tolerance e 10-6. The grid construction program was run on a VAX
11/780 in time-sharing mode, the solution of (5.1) was done on an IBM 370/3032
at the California Institute of Technology, Pasadena.

FIG. 5.1



278 BARBRO KREISS

FIG. 5.2

FG. 5.3
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TABLE 5.

II

III

Gc GB Gc

time N M hx hy emaxU

0.2 43 7 0.05 0.05 0.00289
0.4 0.00280
O.6 0.00224
0.8 0.00195
1.0 O.00252

0.2 78 10 0.05 0.05 0.00118
0.4 0.00130
0.6 0.00151
0.8 0.00136
1.0 0.00150

0.2 78 10 0.025 0.025 0.00100
0.4 0.00130
0.6 0.00154
0.8 0.00139
1.0 0.00153

emaxt/

0.00319
0.00263
0.00276
0.00316
0.00316

0.00158
0.00180
0.00144
0.00114
0.00181

0.00151
0.00172
0.00154
0.00116
0.00164

emaxU

0.00228
0.O0269
0.00497
0.00689
0.00712

0.00080
0.00109
0.00164
0.00169
0.00198

0.00082
0.00125
0.00160
0.00183
0.00208

GB
(2)emaxu

0.00231
0.00304
0.00437
0.00461
0.O0608

0.00127
0.00183
0.00184
0.00183
0.00336

0.00130
0.00185
0.00214
0.00146
0.00181

The grids I, II, III (see Table 5.1) are plotted in Fig. 5.1, 5.2, 5.3 respectively.

global e

0.00118
0.00147
0.00130
0.00114
0.00159

0.00124
0.00156
0.00116
0.00101
0.00138

0.00079
0.00098
O.00067
0.00064
0.00076

0.49195
0.77552
0.94802
O.68927
0.36907
0.19184
0.09495

TABLE 5.2.

0.00291
O.28246
O.66O32
0.99824
0.96906
O.67414
0.22102

0.46714
0.58529
0.71172
0.65264
0.43406
0.36198
0.29229

0.24867
0.40381
0.63728
0.77706
0.73712
0.61270
0.37616
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ESTIMATING THE DISTRIBUTION OF SPHERICAL PARTICLES
FROM PLANE SECTIONS: AN OPTIMAL ALGORITHM
FOR SOLUTION OF THE ABEL INTEGRAL EQUATION*

WILLIAM M. VISSCHERt AND AARON S. GOLDMANt

Abstract. The persistently troublesome problem of solving the Abel integral equation with noisy data
is reconsidered. A criterion is formulated for determination of a most probable solution which satisfies the
reasonable requirement that frequency estimates be nonnegative. Our prescription, called the constrained
minimum variance estimator (COMIVE) results in an optimum (in a sense described in the text) radius
distribution for the spherical particles. Numerical examples are given which use input generated by Monte
Carlo from various distributions and which use real experimental data. Results demonstrate considerable
improvement over those obtained by other methods.

Key words. Abel integral equation, least squares, minimum variance, sampling distribution, stereology,
parameter estimation

1. Introduction. Stereology is the art of obtaining information about three-
dimensional objects from a study of their projections or their sections in the plane.
[See Elias (1977)]. A prototypical stereological problem is that confronting an analyst
who wishes to find the radius distribution of cells from observations of sections of
tissues [Wicksell (1925)]. Similar problems arise in geology, metallurgy, materials
science, ceramics, physiology, anatomy and other disciplines. Despite the fact that
these studies have become highly automated, with microelectronics and many sophisti-
cated instruments in general use, it has recently been remarked by Elias (1980) that
"astonishingly enough, the determination of size distribution and numerical density
are still the most difficult problems in the field." Their difficulty has caused Watson
(1971) to advise, "this experimental method should be avoided when there is a
practical alternative." Symptomatic of the intractability is the fact that all statistical
methods given in the literature for estimating 3D distributions result in some negative
estimates of frequencies or variances. Desperate measures are sometimes prescribed
to circumvent these absurdities, such as visual smoothing [Elias (1980)], interpolation
[Tallis (1970)] or summarily replacing negative frequencies with zero [Saltikov (1967)].
It is the aim of this paper to provide a method for solving this stereology problem
which replaces these arbitrary prescriptions for treating the symptoms with an
algorithm that actually cures the disease.

The original formulation of the stereology problem was given in the classic paper
by Wicksell (1925). Work since that time has been summarized by Anderssen and
Jakeman (1975) and by Nicholson and Merckx (1969). Some other references which
are useful are Saltikov (1967), Minerbo and Levy (1969), DeHoff (1965) and Wahba
(1979).

One of the simplest problems of stereology has been the subject of most quantita-
tive investigations. It may be stated as follows: a set of spheres with a distribution of
radii is dispersed randomly in a volume. An indefinite number of randomly placed
planes pass through this configuration. Spheres which are sectioned appear as circles
on these planes. The problem is, given a set of observations of the circle radii, what
can be said about the number distribution of spheres of various radii in the volume?

* Received by the editors December 3, 1980, and in revised form November 2, 1981. This research has
been supported by the U.S. Department of Energy.

? Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545.
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A problem which can be so simply stated ought to have a simple solution, but,
until now, all attempts on this one have not excluded impossible answers, namely,
negative density estimates.

2. Abel integral equation. If a plane passes a distance h from the center of a
sphere of radius R, the intersection is a circle with radius r /R2- h 2. If there are
many planes randomly uniformly distributed in h, then the distribution of circle radii
is proportional to Idh/drl=r/h =r//-R2-r2, and it is easy to see that, if f(R) is the
volume density of spheres of radius R and &(r) is the surface density of circles of
radius r on the sectioning planes, that

(1) &(r)= 2 dh(R’.r) f(R) dR 2r
dR

2f(R).
dr 4Ra-r

This is the Abel integral equation. [A more general form is given by Goldman and
Visscher (1978).] As long as there are many sectioning planes, randomly positioned,
it is valid regardless of the degree of order in the array of spheres. Our task is, given
O(r) in the form of discrete observations, to find f(R). For a wide class of O’s this
can be done exactly. But there are pitfalls, which we will now explain.

The Abel integral equation can easily be formally solved for f(R) if d&(r)/dr
exists. The solution is

(2) f(R)
O(R) R I &(R2)-&(rrrR +--r (R r2)3/- dr,

as can be verified by direct substitution. But (2) is of limited usefulness in practical
stereology problems for a couple of reasons. (i) Experimental data for O(r) seldom,
if ever, satisfy the ditterentiability requirement. Points at which & (r) is discontinuous
can give infinite contributions to (2), so &(r) must somehow be smoothed. Unfortu-
nately, the answers one gets for f(R) depend on exactly how b(r) is smoothed, and
there are many reasonable ways to do it. (ii) f(R) as given by (2) is not manifestly
positive. For example, if for some R, O(R)= 0, then, unless b(r)= 0 for all r >R,
then (2) says f(R)< 0. This is just a reflection of the obvious fact that if .one sees
circular sections of radius r, then one should also see sections of radius r’ for all r’< r.

In practice, experimental data for & (r) consist of finite numbers of observations,
usually in the form of histograms, so (i) says that f(R) as given by (2) is not well
defined and (ii) says that, for some values of R, f(R)< 0, and the noisier the data
&(r), the more values of R there will be at which this physically absurd result obtains.

These deficiencies render (2) useless for direct stereological analysis. Although
it is, under certain conditions, equivalent to (1) mathematically, it is not equivalent
numerically when it is discretized, as it always is in practice. We will work henceforth
directly with (1).

Observations are usually tabulated as frequencies per class interval. In terms of
&(r), these are given by

(3) &, O(r) dr, 1 <-_i <= k,
ri

which are the observed densities per unit area of circles with radius ri-1 < r < ri. This
amounts to a discretization of r into k histogram bins (0, rt), (r, r2),-.., (rk-, rk).
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Then, if the integral in (1) is approximated by some quadrature scheme, (1) becomes
K

(4) 4i Y gijf, i= 1,..., k,
j=l

where K is the number of intervals in the quadrature.
The form of the k xK matrix g is determined by the particular scheme chosen.

If it is defined by the 8-function sum

K

(5) f(R) Y f.8(R -Ri)

[see Wicksell (1925) or Saltikov (1967)] or it is a histogram
K

(6) f(R) Z O(r-xlrlr),
/=1

(where

O(alxlb)-- { (b-a)-’O a<x<=b,
otherwise),

then the corresponding forms for g0 are given in Appendix A. According to (5) there
are assumed to be K different sphere species with radii RI"" RK and densities
fl"" fK. Saltikov makes a special choice of {Rj} which are equally spaced on a
logarithmic scale. According to (6) one has uniform distribution of sphere sizes in
each of K histogram bins (class intervals) (0, R1), (R1, R:z)’" (RK-1, RK) into which
are placed fl, f2," fr spheres per unit volume.

Many other choices for the form of f(R) besides (5) and (6) are possible. Tallis
(1979) uses a discretization (ramp function) which involves piecewise straight lines.
His example using Swiss cheese data is discussed in Appendix B.

The matrix g in (4) is upper-triangular, i.e.,

(7) gii 0 if ri > Ri,

for obvious reasons. So if K k it is very simple to solve (4) by successive elimination,
starting with the largest spheres. It is often convenient to choose k K; it is not, however,
necessary. Equation (4) has a unique solution in general only in that case.

3. Constrained minimum variance estimator. Equation (4) does not determine
{f.} unless k K. If k >K, {f.} is overdetermined, and if k <K, it is underdetermined.
Following Nicholson and Merckx (1969) we will adopt a minimum principle as a
determinator of {f.} which gives the same answer as (4) when k K, but also gives
an answer when k >K, the more usual situation in practice.

Using a vector notation f (fl," ", fK), b (1, tk), we define the positive
bilinear form

2((8) X ]7) (,_ g]7)’Z-(4_ g]7),
where E is a k k positive definite symmetric matrix. At the minimum of (8), clearly,

(9) 0X2(f)
0, j=1,2,...,K.

If k K, (9) is identical to (4). If k > K, however, (9) has a solution but (4) does not.
If k <K, (4) generally has multiple solutions and so does (9); this is a situation to be
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avoided. One would be foolish, indeed, to choose the number of unknowns f larger
than the number of observations 4!

We will now cease to regard (4) as the fundamental equation of our applied
stereology problem. We replace it with the extremum principle, equivalent to (9),

(10) gz(f) minimum with respect to variation of 1
But the solution f of (10) still suffers from the shortcoming (ii) ofthe preceding section;
namely, some of its components may be negative. The obvious remedy to this situation is
to seek a solution to (10) which also satisfies the credibility condition

(11) fO, i=1,...,K.

The only a priori universally applicable constraints on f are (11) and the normalization
condition Y_,f < eo (which is always satisfied for the gij’s we use). We will call the
stereology algorithm (10), (11) the constrained minimum variance estimator
(COMIVE).

In (K + 1)-space (K components of/ plus X 2) (8) is a parabolic ellipsoid. That is
2

1’ (lT)=constant is an ellipsoid in the K-dimensional /7-space, and if one of the
components of f is fixed, C, then

2 2
X =X (fa, f2,"’,C,’",f)

is a ((K 1) + 1)-dimensional parabolic ellipsoid.
To illustrate the minimum principle, we have plotted t‘2 for K 2 for a couple of

contrived situations. In Fig. 1, 2(fl, f2) has a minimum for fl > 0 and f2 > 0. In this case

FIG. 1. Illustration ofthe COMIVE algorithm for two degrees offreedom (K 2). In this case the minimum
of the parabolic ellipse h,z(fl, f2) lies in the first quadrant, and the constraint (11) has no effect.

the constraint (11) has no effect; the constrained minimum is the same as the
unconstrained minimum. In Fig. 2, however, the unconstrained minimum would have

fl < 0, f2 > 0, which, when constrained, shifts to the origin fa f2 0. Figure 3 shows an
example for which without constraints both fl < 0, f2 < 0; with constraints fl > 0, f2 0.

For k 2 it is obvious from the geometry of Figs. 1, 2 and 3 that the constrained
solution is unique. It is, in fact, true for anyvalue ofK <= k [see Lawson andHanson (1974,
Exercise 23.55)].
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FIG. 2. The minimum of the parabolic ellipse lies in the second quadrant (fl <0, f2 >0); because of the
orientation of the ellipse 2 constant, the constrained minimum is at f f2 O.

FIG. 3. The minimum of the parabolic ellipse lies in the third quadrant (fl < 0, f2 < 0). The constraint
shifts it to f > O, f O.

4. Numerical illustration. In order to apply COMIVE one must assign values to
the covariance matrix elements ij which appear in (8). Although one can conceive
of situations in which it has nonvanishing off-diagonal elements, we will always take
it to be diagonal. In the absence of correlated errors, the bi’s in successive trials are
integers which are actually Poisson distributed. As far as we can see, however, this
does not necessarily mean that a factor bi should be included in ,. The simplest choice

(12) ’ii 1

works quite well, unless correlated errors are suspected in a given interval i, in which
case an appropriately increased value for Eii should be assigned. In particular, since
many experimental techniques tend to miss small circles, their contribution to (8)
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should be unweighted, which obviously is accomplished by increasing the correspond-
ing Zii’s.

Once E is fixed and measurement gives us a set of values for {4i}, then it is a
straightforward matter to solve (10), (11) for fi if k >= K. Our computer code performs
the constrained minimization by a simple adaptation of Newton’s method. If it weren’t
for the credibility condition (11) the problem would be trivial; it degenerates to
ordinary least squares. With constraints it is still not hard [Lawson and Hanson (1974)].

The number of intervals k and K we choose depends on the number of circles
observed. Since in our simulations this is at our disposal, for the sake of definiteness
we will take k K 20 and use the following notation.

{4} input data; numbers of circles observed in ith class interval.

{fR} raw output; defined by ’= gfR.

{f}= optimum output; this is the solution of (10), (11) with .
{b}-back-substituted input; defined by -gfO.

We also take the input intervals to be the same as the output intervals, i.e., Ri- r.
Empty intervals at the largest radii in practice have no effect; i.e., if &/t 0 for >M,
then f0 -0 or/" >M also. We never predict spheres larger than the largest observed
circles, although this is not guaranteed by the upper-triangularity of g.

Although we will give other illustrations, we tirst concentrate on the simplest
test, which is also a stringent one. This is the monosize distribution, or which the
spheres have a volume density p and radius r

(3) f,

in both the Saltikov and histogram discretizations. Any density can be constructed
from a superposition of monosize distributions; although the constraints (11) spoil
the linearity of the problem and variances are no longer additive, it is reasonable to
suppose that if we can handle (13) we can obtain accurate results for any fi.

Test data {b} are generated for the monosize case as follows. The spheres with
radius r,, are identically, independently, uniformly distributed in space with average
density p per unit volume. A plane with unit area intercepts z 2r,p spheres, on the
average. The probability that exactly n spheres will be cut is P, z"e-Z/n !, and it is
a simple matter for the computer, with the aid of a pseudo-random number 0 < O < 1,

E, =0 P,, < O < =0 P,,). Then theto assign a value of n to each trial (i.e. n satisfies n--1

radius of the circle formed by the sectioning of each of n spheres is determined by
n more random numbers according to x r, x/1 ’ 02, and the value of the appropriate

is incremented (i.e., if ri-1 " X < re then 4 x --,, + 1).
A large ensemble of test data can be generated and processed very quickly.

Typically, for an ensemble of 100 samples of approximately 100 circles each and a
discretization into 20 bins, computing times are ten seconds on a CDC 6600. Means
and variances of various densities for the monosize case are displayed in Figs. 4 and
5 for the Saltikov discretization of gij. Some of the features that show up deserve
comment.

Although the raw output fR (Fig. 4) often includes negative density estimates,
which is reflected by the fact that the standard error bars as well as the means often
go negative, the "optimum output" f0 is nonnegative by the nature of the constrained
minimization. As one might have expected, the standard deviation, r0, of f0 is generally
appreciably less than
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100
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:,, 6o

o 40
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0 0.2 0.4 0.6 0.8

Raw Output
COMIVE Output

1.0

Sphere Size

FIG. 4. Results for Monte Carlo simulation with all spheres having radius 0.95, represented by the
histogram. The "raw output" is obtained by applying the inverse Abel operator g-1 to the Monte Carlo input
data (shown in Fig. 5). The data shown here is the result of taking 100 sections of unit area of a random
array of spheres with density 100 per unit volume" the plotted points are means and the error bars are the
standard deviations. One sees that the raw output is often negative, and thus cannot be accepted as a density
estimate. The result of performing the COMIVE procedure is also shown ("optimum output"). The output
values are always nonnegative now, which is indicated in the figure by not extending the error bars below the
axis. The distance from the mean to the top of the error bar is one standard deviation. COMIVE increases
the precision of the results.

tr0 is a measure of precision of the output data fo. Because of the constraints
imposed, the precision of fo is not only greater than that of fR, but also is greater
than that of the input data b t (Fig. 5). This is evidenced by the fact that the standard
error bars for the back-substituted input b are smaller than those of b t.

The accuracy of COMIVE does not increase as the ensemble size does, but will,
of course, as the sample size increases. For a small sample, such as is illustrated in
Figs. 4 and 5, the density of spheres with R .95, which should be 100 is, on the
average, less, because of the nonnegativity constraint. As the sample size increases
the fraction in this interval increases as expected.

Results obtained with COMIVE for other pdf’s (binary, lognormal) will be
presented in Appendix B.

5. Conclusion. We have proposed an algorithm (COMIVE) for solving the
stereology problem (Abel integral equation with noisy data) which we believe to be
superior to any which have previously been used. The constrained least squares
optimization procedure is designed to give the best possible answer which is consistent
with positivity of density estimates. The procedure is completely stable and, in fact,
enhances the precision of the input data.

The method has been illustrated using test data which was computer-generated
by taking random slices of spheres. This idealized data lacks systematic effects which
usually are present in real experimental data, but the principal benefits of our algorithm
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FIG. 5. Same monosize case as Fig. 4. The histogram is the radius distribution which wouM be obtained

for an infinitely large sample. "Backsub" is the result of applying the Abel operator g to the "optimum output"
of Fig. 4. Closeness of "backsub" to the input, also shown here, is optimized by COMIVE subject to the
constraint of nonnegativity of density estimates.

will persist in any situation. It is a stable prescription for obtaining an optimal
nonnegative density estimate f0. From f0, of course, all other statistics follow, such
as moments and distributions.

One of the important unsolved problems in stereology is the determination of
shape characteristics. Nicholson and Merckx (1969) use a matrix formulation to
compute density and moment estimates for prescribed shapes of particles. Recent
work by Beddow (1980) gives procedures for determining shape distribution para-
meters using 2D projections. A future project will be the adaptation of the methods
of this paper to this morphological problem.

Appendix A. Discretization of (1). If (5) is substituted into (1), the result is

(14) b(x) 2x

(where 0 (x) 0 if x < 0, 0 (x) 1 if x _-> 0), which is the density of circles for the density
of spheres given by the superposition of 6-functions (5). The number of circles with
radii in the interval ri-1 < x < ri is, per unit area,

(3) da, da (x dx.

When (14) is substituted into (3), one gets (4) with

2 2(15) gii 2(4R -rZi_a-x/Ri -ri).

We call this the Saltikov discretization.
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(16)

If, on the other, (6) is substituted into (1) we obtain the histogram discretization,

gii A-l{ R,/R r2i_l Ri_lx/R2 r2g_i-1--

:z g] Ri+/R-r2i-1 Rix/R--ri-1 lo_

log

which is much more complicated than (15). It is understood in (17) that any term
which contains the square root of a negative quantity is omitted, and we have assumed
uniform interval size, with

(17) ri--ri-1 :A.

Appendix B. Other applications of COMIVE. Figures 6 and 7 show results for
binary and lognormal sphere pdf’s, respectively. Again, the Saltikov discretization
was used, and most of the remarks made in connection with Fig. 4 are relevant. The
apparently large standard errors in the lognormal output should not mislead onemthis
is still an ensemble of 100 small samples and the scale on the ordinate is expanded.

120

I00

80

_:" 60

20

0

Raw Output
COMIVE Output f

0 0.2 0.4 0.6 0.8

Sphere Size

FIG. 6. Output data when the input is generated by Monte Carlo on a sphere distribution consisting of
equal numbers of radius 0.9 and 0.2. The statistics are generated from an ensemble of 100 sections like those
used for Fig. 4 but with an equal density of the smaller spheres added. Other comments made about Fig. 4
also apply here.

An example of the application of COMIVE to unfolding experimental data is
shown in Fig. 8. This is a single sample of input consisting of observed circle sizes in
slices of Swiss cheese which was used by Tallis (1970) to illustrate his method. As we
mentioned above, Tallis interpolated to eliminate negative frequencies from his output.



ALGORITHM FOR ABEL INTEGRAL EQUATION 289

3O
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Raw Output
COMIVE Output

0 0.4 0.6 0.8 1.0
Sphere Size

FIG. 7. Like Fig. 6, but the input data are generated by Monte Carlo on a lognormal distribution of
spheres, with mean radius .7 and standard deviation .2. The probability density is plotted here, rather than
the number density of the previous figures.
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FIG. 8. Example of Swiss cheese data used by Tallis (1970) to illustrate his unfolding method. Raw
data (squares) is compared with the results of back-substituting Tallis output (circles) and the results of
back-substituting the COMIVE optimum output (triangles). Only two points are significantly different; the
discrepancy is caused by the different algorithms used by Tallis and COMIVE to eliminate negative components
in the raw output. Tallis replaces raw output densities in the range of radii in which negative densities occur
with a linear interpolation from the origin to the first positive density beyond the last negative one. This is

reflected here by the Tallis back-substituted data being smoother than the raw data.
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Our algorithm is different; this is reflected by the figure, which shows the results of
back-substituting Tallis’ and our results contrasted with the original input.
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION*

JEROME H. FRIEDMAN, ERIC GROSSE: AND WERNER STUETZLE

Abstract. We describe an adaptive procedure that approximates a function of many variables by a
sum of (univariate) spline functions Sm of selected linear combinations am x of the coordinates

4(x) E sin(a,, "x).

The procedure is nonlinear in that not only the spline coefficients but also the linear combinations are
optimized for the particular problem. The sample need not lie on a regular grid, and the approximation
is affine invariant, smooth, and lends itself to graphical interpretation. Function values, derivatives, and
integrals are inexpensive to evaluate.

Key words, multivariate approximation, surface fitting, projection pursuit

1. Introduction. Multidimensional surface approximation is recognized as an
important problem for which several methodologies have been developed. The aim
is to construct an approximation 4 (x) to a p-dimensional surface y f(x) on the basis
of (possibly noisy) observations {(yi, xi)}l_<_i__<n. Most existing methods, such as tensor
product splines, kernels, and thin plate splines (for a survey, see Schumaker [1976]),
are linear in that

(x)= E wy,
li=n

where the weights {wi} depend only on x and {Xi}li_<_n, but not on {yi}_<_i<__n. These
methods have the advantage that they are straightforward to compute and their theory
is tractable. In practice, however, they arc limited because they cannot take advantage
of special properties of the surface. Due to the inherent sparsity of high-dimensional
sampling, procedures successful in high dimensions must be adaptive and thus non-
linear.

In this paper we describe an adaptive procedure that approximates f(x) by a sum
of (univariate) spline functions Sm of selected linear combinations am "x of the co-
ordinates

(1) 4(x) E Sm(am "X).
lmM

The procedure is nonlinear in that not only the spline coefficients but also the linear
combinations are optimized for the particular problem.

2. The algorithm. The spline function Sm along m X is represented as a sum of
/’ B-splines (de Boor [1978]) of order q

(2) sin(am’x)= Z BmjBmi(am.x).
l<-j<=jm
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The approximation $(x) (given by (1) and (2)) is specified by the directions {a,}l__<,<=M,
the knot sequences along a,,. x for l<=m <-M, and the B-spline coefficients
{B,,j}I_-<,M.I-<_j_-<’... For particular {a,}, the knots are placed heuristically and then the
{B,,j} are determined by (linear) least squares. The residual sum of squares from this
fit is taken to be the inverse figure of merit for {a,,}l,__<M.

Following Friedman and Stuetzle [1981], the approximation is constructed in a
stepwise manner" given {a,}l__<,__<M-1, find aM to optimize the figure of merit of
{a,,}l__<,__<M. Terminate when the figure of merit is below a user specified threshold.

3. Implementation. A difficult part of the algorithm is finding each direction a,.
We perform a numerical search using a Rosenbrock method (Rosenbrock [1966]).
This method is easily modifiable to search over the unit sphere. We have found
empirically that each iteration of the optimizer requires approximately 3.5p function
evaluations, where p is the dimension of x. Two iterations are nearly always sufficient.
As the search usually starts far from the solution and the solution does not have to
be obtained with high precision, it does not seem likely that optimization procedures
that estimate the Hessian would do better.

For high dimensionality, the computation is dominated by the evaluations of the
object function. Since it is not crucial to find the precise optimum, considerable savings
are achieved by substituting a similar, but much less expensive figure of merit during
the search for a new direction. For this figure of merit not only the previously found
directions but also the corresponding spline coefficients are held fixed. For a given
direction, the residuals are modelled by (basically) a moving average smooth (see
Friedman and Stuetzle [1981]). The characteristic bandwidth (the fraction of observa-
tions over which averaging takes place) is taken to be inversely proportional to the
number of knots. The residual sum of squares from the smooth is the figure of merit
used for the smooth. Solving the least squares problem for the original figure of merit
requires

2

<=m_<_M

operations, while the new figure of merit can be evaluated in roughly n operations
using updating formulas for the moving average. The least squares problem has to be
solved only once for each iteration to determine the new model after a, has been found.

To solve the least squares problem, we form the normal equations and use a
pseudo-inverse, since the design matrix might not have full rank. The singularity which
arises from the inclusion of a constant term for each direction is remedied by simply
dropping one column per direction from the design matrix. Higher order singularities
caused, for example, by the linear terms for three co-planar directions, are not explicitly
taken care of, but are handled by the pseudo-inverse.

Our knot placement procedure is motivated by the sequential nature of the
algorithm. At each iteration, the knot positions are required for the least squares fit,
.after the new direction has been found. Our model at this point is the spline fit of
the previous iteration, plus the moving average smooth along the newly found direction.
The knot placement is based on the residuals {r} from this model. Multidimensional
structure in these residuals due to incompleteness of the model manifests itself as
high local variability in the scatterplots of r against a, .x. In order to preserve the
ability of fitting this structure in further iterations, it is important to avoid accounting
for it by spurious fits along existing directions. For this reason we place fewer knots
in regions of higher local variability. Since the residuals change, the knots are replaced
along all directions at each iteration.
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The knots along a direction am are placed as follows’ the smooth described above
is applied to {(ri, a, xi)}lg__<n and the local variability t)i at each point is taken to be
the average squared residual from its local linear fit. The Winsorized local variabilities
are defined by

I23 if vi > 23,
W ’ if Vi < 1/2,

vi otherwise

(where 6 (I/n) l<i__<n vi), and then are scaled so that ,i<=, 1/wg 1. The knots {ti}
are placed to divide the line into intervals with equal content of 1/wi:

1 1
for each l,

j,-q + 1 am’x,[’,,’,+l] Wi

4. Procedure parameters. The operation of the procedure is controlled primarily
by two parameters; these are the number of knots taken along each direction and the
termination threshold. Both parameters can be adjusted using graphical output pro-
duced by the program. The adequacy of the number of knots and their placement
can be judged by examination of the residuals from the final model plotted against
each a, .x. A systematic pattern in any one of these plots indicates that either the
number of knots is too small or that the knot placement algorithm did not perform
well. Another indication that the number of knots might be insufficient is that the
procedure chooses nearly the same direction twice, thereby effectively doubling the
number of knots placed along that direction.

The value set for the termination threshold determines the number of terms
making up the model. Various criteria can be used to decide whether a particular
term should be included. In the case of noisy data, one can ask whether a term is
significantly different from zero (given all previous terms), or whether the addition of
the term reduces the predictive mean squared error of the model. Also, considerations
outside the data having to do with the problem setting can influence such a decision.
In order to judge statistical significance, it is necessary to know, by how much one
would expect an additional term to increase the figure of merit if there were no
structure in the residuals. This can be estimated with a permutation test. The residuals
(from the previous terms) are randomly permuted among the observations, thereby
guaranteeing no structure in the (permuted) data. MASA is applied to these residuals
and the increase in figure of merit noted. This process can be repeated, obtaining a
(null) distribution of the figure of merit. Either formal or informal hypothesis testing
techniques can then be used to judge whether the nonpermuted figure of merit is
significant.

The optimal number of terms with respect to prediction error can be estimated
by cross validation. The observations are randomly divided into L (typically 5-10)
subsamples. Each of the subsamples are in turn set aside and the model constructed
from the remaining observations. Each observation is set aside exactly once. The
mean squared prediction error averaged over the set aside observations is taken as
an estimate of the model mean squared error. Such an estimate can be made for
models with differing numbers of terms and that model minimizing the cross validated
mean-squared error estimate is then selected. Both permutation tests and cross
validation can be implemented in a small driver routine which calls MASA repeatedly.

5. Examples. In this section we present and discuss the results of applying the
multidimensional spline approximation method (MASA) to four examples. (A
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FORTRAN program implementing MASA is available from the authors.) The first
three examples were suggested elsewhere for testing surface approximation pro-
cedures. The function in the fourth example was studied in connection with a problem
in mathematical genetics.

The first example is taken from Friedman [1979]. In this example uniformly
distributed random points {xill <- <= 200} were generated in the six-dimensional hyper-
cube [0, 1]6. Associated with each point xi was a surface value

yi 10 sin (’rrxi(1)xi(2))+ 20[xi(3)- 0.512 + 10xi(4) + 5xi(5)+Ox(6)+e,

where the {Si} were independent identically distributed standard normal. The inverse
figures of merit for the approximation with M 1, , 4 terms were 6.71, 4.29, 1.87,
0.97. In three restarts, the figure of merit did not decrease below 0.86, so M 4 was
chosen. The four linear combinations and the corresponding spline functions are
shown in Figs. l a-ld. (The function value is plotted on the vertical axis, a .x on the
horizontal axis. The "+" signs on the bottom of the graph indicate the knot positions.
A "+" sign followed by a number indicates multiple knots. For completeness, the
program parameters are also listed; see comments in the program source code for a
detailed explanation.) The spline along the first linear combination (Fig. l a) is seen
to model the linear part of the surface. The second term in the approximation (Fig.
lb) models the additive quadratic dependence on x(3). The final two terms (Figs. lc,
ld) model the interaction between x(1) and x(2). The L2 norm of the error Ilf- llz
was 0.57.

Although the full advantages of MASA compared to other procedures are realized
in higher dimensional or noisy settings, we applied it to two bivariate examples used
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by Franke [1979] to compare a number of interpolatory surface approximation
schemes. For both examples 100 uniformly distributed random points in the unit
square [0, 1] were generated. The function in Franke’s first example is

f(x’ y)=O’75exp[-(9x-2):z+(9y-2):]+O’75exp[ -(9x49 9y+l]10
+0.5 exp [ (9x -7) + (9Y 3)z] + 0.2 exp [-(9x 4)2 (9y 7)2].

4

Considerations similar to those in the previous example led to an approximation with
three terms. The linear combinations and corresponding spline functions are shown
in Figs. 2a-2c.

The function in Franke’s second example is

f(x, y [tanh (9y 9x) + 1 ].

For this case the approximation used only one term, shown in Fig. 3.
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Since different random points were used in Franke’s and our tests, precise
comparisons are not possible. On the first example, MASA gave roughly an order of
magnitude larger errors than the best methods in Franke’s trials (global basis function
methods) while on the second example, MASA gave an order of magnitude smaller
errors than the best methods. These results are not surprising since the peak-shaped
basis functions of the global basis methods are especially suited for representing the
peaks of the first example, whereas the ridge-shaped basis functions of MASA are
especially suited to the second example. Unfortunately, peak-shaped basis functions
are not appropriate for moderate or higher dimensionality. The difficulty is that in
order to achieve a smooth fit, the width of the basis peaks needs to be comparable
to the distance between data points. For n uniformly distributed random points in a
p-dimensional hypercube [0, 1]p, the typical nearest neighbor distance is (l/n) 1/’. In
particular for n 1000 and p 10, this distance is 0.5, and for p 20 is 0.7. Thus
variation of the surface over distances small compared to such large interpoint distances
cannot be well approximated with these global basis functions methods.

Our final example is a 19-dimensional function encountered by Carmelli and
Cavalli [1979]. An important question is the structure of this function near its
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minimum. We sampled the function at 200 points uniformly distributed in a small
hypercube centered at the minimum found by numerical optimization and applied
MASA. The inverse figure of merit for the best constant fit was 13.3. The inverse
figure of merit for M 1 was 0.78. In 30 restarts, the figure of merit did not decrease
below 0.42. Figure 4 gives the linear combination and corresponding spline function.
This shows that most of the structure in the likelihood function is revealed in this one
projection. The structure certainly would not be easy to find by just looking at the
definition of the function, and we know of no other approximation method that would
yield this kind of information.

6. Discussion. MASA can be expected to work well to the extent that the surface
can be approximated by a function of the form (1). Of course in the limit M- eo all
smooth surfaces can be represented by (1), but even for moderate M functions of
this form constitute a rich class.

As seen in the previous section, an advantage of using essentially one-dimensional
basis functions is the possibility of graphical interpretation. The entire model can be
represented by graphing s. (am X against am X and by specifying{a. }1 Nrn =<M (perhaps
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graphically for p 2 or 3). Additionally the graphical output is very helpful for setting
the main procedure parameters, the number of knots along each direction and the
termination threshold. Proper termination of the algorithm can be assured by monitor-
ing at each iteration the plot of the residuals from the model of the previous iteration
along the newly found direction.

The problem of sparse sampling in high dimensions is not encountered, since
MASA is fitting one-dimensional projections of the entire sample. The sample need
not lie on a regular grid, and the approximation is affine invariant and smooth. Function
values, derivatives, and integrals are inexpensive to evaluate. In addition, since the
approximation is locally quadratic for q 3, optimization algorithms can be expected
to converge rapidly. As only the directions, the knot positions and the B-spline
coefficients have to be stored, MASA produces a very parsimonious description of
the surface.



MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION 301

REFERENCES

CARL DE BOOR [1978], A Practical Guide to Splines, Springer-Verlag, New York.
DORIT CARMELLI AND L. L. CAVALLI-SFORZA [1979], The genetic origin of the Jews: a multivariate

approach, Human Biology, 51, pp. 41-61.
WILLIAM S. CLEVELAND [1979], Robust locally weighted regression and smoothing scatterplots, J. Amer.

Statist. Assoc., 74, pp. 829-836.
RICHARD FRANKE 1979], A critical comparison of some methods for interpolation of scattered data, Naval

Postgraduate School report NPS-53-79-003.
JEROME H. FRIEDMAN AND WEANER STUETZLE [1981], Projection pursuit regression, J. Amer. Statist.

Assoc., 76, pp. 817-823.
H. H. ROSENBROCK [1960], An automatic method for finding the greatest or least value of a function,

Computer J., 3, pp. 175-184.
LARRY L. SCHUMAKER [1976], Fitting surfaces to scattered data, in Approximation Theory III, G. G.

Lorentz, C. K. Chui and L. L. Schumaker, eds. Academic Press, New York, pp. 203-268.



SIAM J. ScI. STAT. COMPUT.
Vol. 4, No. 2, June 1983

1983 Society for Industrial and Applied Mathematics

0196-5204/83/0402-0014 $01.25/0

ALGORITHMS FOR THE ANALYSIS OF SEVERAL 22
CONTINGENCY TABLES*

MARCELLO PAGANO AND DAVID TRITCHLER

Abstract. This paper presents algorithms for calculating the exact permutation distributions of several
2 2 contingency tables. They address both the hypothesis of constant relative odds across the tables and
inference about this common value. The efficiency of the algorithms is due to their not requiring the
enumeration of all the tables consistent with the given marginals.

Key words, contingency tables, permutation distribution, relative risk, fast Fourier transform

1. Introduction. Zelen (1971) presents a methodology for analyzing k 2x2
contingency tables and lists several examples where it is useful. The complexity of
the calculations required by the exact methods proposed by Zelen increases exponen-
tially fast as the size of the problem increases. As a result, approximations based on
asymptotics have been suggested. There has been some debate about these asymptotic
methods (see Halperin, et al. (1977)). However, no clear and theoretically supported
rules have been derived as to when these approximations are applicable or how close
they are to the exact answer.

We propose algorithms to perform the exact calculations to determine whether
the relative odds are constant across the k tables and to make inference about this
common value. The algorithms take advantage of special features of the problem so
that total enumeration of all possible tables, consistent with appropriate marginal
restrictions, is unnecessary. Thus, as compared to total enumeration (Thomas (1975)),
these algorithms have the effect of postponing the reliance on asymptotic methods to
larger problems.

2. Theory. Using Zelen’s (1971) notation, the/’th table is

Number of Number of
Successes Failures Totals

Treatment m r mj
Treatment 2 n n

Totals ti N N

for/= 1,..., k.
Let 0i be the probability of success for treatment in table/’; 1, 2, / 1, , k.

Then the relative odds for the/th table are

02i/(1 --02i)
01i/(1 -Oat)"
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In order to determine whether the k tables may be combined, consider the
hypothesis that all the 0 are equal. To this end, define the

(n)( mr )(N.)
-1

(1) C (st, ti)
s. t. s. ti

j 1,. ., k,

and let
k

S’-, Sj
/=1

be the total number of successes observed for treatment 2. Let s be the vector whose
jth component is si and define the set

(2) s= z: F zi s, li <- zi <- ui
/=1

where

li max (0, ti mi) and ui min (ti,_ni).

Then, with t the vector whose ]th component is t. and
k

(3) C(s, t)= [l C(s, t),
i=l

the probability of the observed tables, under the hypothesis of constancy of the 4’i is
given by Zelen (1971) as

(4) fc(s) C(s, t)/ Y C(z, t),
/ze.

and the significance value of the observed tables is

(5) Pc= E fc(w),

where W is the subset of defined as

W {w: w and fc (w) Nf (s)}.

Then the hypothesis of constant relative odds is rejected if P is too small (see Zelen
(1971)).

If one is willing to accept the hypothesis that the i are all equal to , say, then
the next step is usually inference about . To this end let

c (s, ) 2 c(z, 0.
z

The the relevant frcucncy function, for the total numcr of successes on treatment
2, is

(6) f(s)= C(s, t)4//z C(z, 1)4,

where

Z= z" Y. z=z, li<-_zi<-ui
/=1

is the set of all z’s possible as z., for admissible z/s and

C(z, t)= Y. C(z, t).
5’z
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As shown by Zelen (1971), this function can be used to make inference about
4; for example, to test if equals one, to set a confidence interval on , to find a
"maximum likelihood" estimate of if, to find the relative likelihood function, etc

The two sets of quantities which are laborious to evaluate are"

(i) the C(w, t), for w Ws, which appear in the numerator (implicitly) in (5) and
(ii) the C(z, t), for z Z, which appear as coefficients in (6) and one of which

(z s) appears in the denominators in (4) and (5).
These two sets of quantities require that 1-Ij (uj li + 1) configurations of possible

successes for treatment 2 be generated. Then for each configuration, k probabilities
must be evaluated and multiplied together and a possible "IF" executed (when z s)
to determine whether it belongs in Ws. Thus the amount of work increases exponen-
tially as k and the number of observations increase.

This work can be significantly decreased by the algorithms we outline in the next
three sections. Section 3 concerns itself with problem (i) above and 4 with problem
(ii) above. Section 5 applies the methods of 4 to problem (i) above.

3. Tail probability for constant relative odds hypothesis. Since the quantity in
the denominator in (4) is constant for all members of Ws appearing in (5), we can
defer its calculation to the next section. This section addresses itself to the calculation
of Pc under the assumption that the denominator in (5) is known.

To calculate Pc one could proceed by generating all the tables in and determining
which ones belong to W. As we show below, it is unnecessary to generate all tables
in Se; but to make this argument more lucid it is advantageous to first illustrate how
to calculate Pc by generating

To determine all the tables in s, generate all k-tuples (zl.,’’ ", zk) which are
such that li <= zi <- ui and z + + zk s. To satisfy the summation constraint, consider
the feasible region for the first table. Since the tables are generated in order,
z2, z3,’’’, z could be as large as Ix2, 3,""", tz, so

,s- 2 u --11".
j=2

That is, z must be large enough to permit the total to be s.
Similarly,

Z1 min ul, s -i= u

In general, if the first (i 1)z’s have been chosen, then zi must satisfy l* <_-zi <_- u*, where
i-1 k /(7) I/* max li, s z u
]=I j=i+l

’- " 6)(8) u/*=min ui, s zi
/=I /=i+i

We use the convention that a summation is null if its lower bound is bigger than its
upper bound.

Thus the complete enumeration algorithm for calculating Pc"
ALGORITHM 1.
1 Set p HiLl C(si, t]) and P O.
2 Set 1.
3 Calculate 1* and u* as in (7) and (8).
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4 Set zi I/*.
5 Set + 1.
6 Ifi<k go to 3 Else,
7 Set zk s i=1 Zi"
8 Set q I]i=1C(zi, ti).
9 Ifq<-p,P=P+q.

10 Let zk-1 zk_ + 1 and z z 1.
11 If (z-I _-<u_ and zk ->l) go to 8. Else,
12 Set =k-2.
13 Setzi=z+l.
14 If z _-< u* set + 1 and go to 3. Else,
15 Set i- 1. If > 0 go to 13. Else (zl has been exhausted),
16 Pc P/Y,.ses C(z, t); the denominator is assumed known.

To obtain the coefficients C(yi, t.) one can use the recursion

(n -z)(t-z)
C(z + 1, t)= C(z, t),

(z + 1)(m + z + 1)

where the subscripts have been dropped for clarity.
Another saving can be effected by the following considerations. Suppose the first

(k- 2) tables have been set and let

p C(z, t), /’= 1,...,k-2.

Also let
k

p 1-I C(s,, t).

If

k-2

(9) Pi --< P,
/’=1

then all the k-tuplets in 0s whose first k- 2 components are (Zl,."", zk-2) are in W.
This will save a number of "IF" executions (step 9). If, on the other hand, (11) is
not satisfied one must further check the last two tables.

To explain the checking of the last two tables consider a matrix of length
(b/_l 1-1 + 1) and width (u lg + 1) whose (i, ])th entry is C(x, t_a)C(y, tk), where
x--l-i +i--1 and y- l +]-1. Then the entries of interest are the ones on the
SW-NE diagonal where x + y a, a constant. One can start at the SW corner (Z-x
l_, z =u) and proceed SWINE. But one can take advantage of the fact that
C(x, t_)C(a-x, tk) is unimodal (shown below). So one can proceed from the SW
corner in the NE direction until one exceeds p, then descend from the NE corner
(z_ u *_, z l* in the SW direction until p is again exceeded. No further checking
need be done. If (u *_ --l-i nt" 1) and (uk l + 1) are large, this directed enumeration
can lead to a substantial saving, since a number of tables need not be generated (the
loop 8 to 11).

THEOREM. The function

f(/’)=
t-j s-j v-s +j f integer

is unimodal as <= f
_

u, where and u define the permissible range off.
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Proof. Consider

g(x) F(x + 1)F(s-x + 1)

for continuous x. If it can be shown that g is log concave, any product of such functions
is log concave, and the theorem is proved. To show that g is log concave,

dx 2 log F(x + 1)
1 e-’ dr, x > 1,

(see Abramowitz and Stegun (1964, p. 260)) which is nonnegative over the permissible
range of x. Thus g is log concave and the theorem is proved. [3

In order to take full advantage of the above theorem it would seem that the
tables should be ordered so that Table 1 is the smallest and table k the largest,
according to (u. l.). The procedure just described is implemented by replacing 9-11
of the algorithm by the following steps.

9a Set a =k-l,/3 =k.
9b If q -<_ p, P P + q. Else,
9c If a k, go to 12. Else,
9d Seta=k,/3=k-1.

10 Let z z + 1 and z z 1..
11 If (z -<-tz* and ze > l) go to 8. Else,

All the calculations in this section pertain to the hypothesis that the relative risk
is constant and the tables can be combined. If the hypothesis is going to be rejected,
then Pc is small and quickly calculated, but presumably more often than not the tables
can be combined. In this case Pc is large and it really is not necessary to know it
exactly since the primary interest is whether Pc is greater than some value, such as
the ubiquitous .05. If this is indeed the case, then, because Pc is accumulated for each
new table (step 9), once the value of Pc exceeds .05, no further tables need be
generated if the actual probability is not of interest.

4. Probability function of total successes. Once it has been determined that the
k tables can be combined, then attention focuses on the relative odds, . One could
evaluate the coefficients of the frequency function f(s) (see (6)) by using an algorithm
which is similar to the one in the previous section. Namely

1 Generate all k-tuples (zl, ,, zk) with lj=zj =uj.
2 For each k-tuple calculate 1-I.;1C(zj, t) and z --1 z.
3 Combine the results of 2 to obtain C(z, t) for each z Z.

Fortunately, it is unnecessary to perform any of these operations if one uses the
algorithm described in this section.

Consider the independent random variables Si with respective probability
frequency functions

pi(s)=C(s, ti),

Define the random variable

li<=s<-ui, ]=l,. .,k.

k

with probability frequency function p (.). Then, with probability one, -<_ S -<_ u, where
ll +. + l and u ul +" + uk. Furthermore, it is clear that the probability
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function of $ yields all the coefficients required in (6) and in the denominators of (4)
and (5).

One can find the distribution of S, without generating all possible k-tuplets
(z 1, , Zk) in Z, by inverting its characteristic function.

Discrete Fourier inversion rule. For any v >-_ u,

X exp )
/9 /=0 /9 / =<z <-u,

where x(" is the characteristic ]’unction of S.
Proof. The random variable.S takes on only a finite number of integer values

and so a, (.) is a trigonometric polynomial of order u. The rule is thus just a restatement
of a basic theorem in Fourier series.

Since the Fast Fourier Transform (FFT) can be used to invert the characteristic
function, the v in the above theorem can be chosen so as to take full advantage of
the FFT.

To find the characteristic function (.), note that if X(’) is the characteristic
function of Si for j 1, ., k then X x X" X/’k, due to the independence of the Si’s.

Thus k calls to the FFT followed by a multiplication of the characteristic functions
and a further call to the FFT to invert the resultant characteristic function, yields the
probability frequency function of S. The total amount of work is approximately of
the order of (k + 1)v log v and extra storage requirement is approximately of the order
of 3v. These numbers should be contrasted with the previously noted exponential
factors.

As a result of the above considerations, the coefficients of the frequency function
f(s) can be obtained without obtaining any elements in Z. Caution should be exercised
when dealing with f(s), which is possibly a very high degree polynomial. Overflow,
underflow and ill-conditioning are dangers in calculating quantities of that form.

5. Tail probability for constant relative odds hypothesis II. One can apply the
reasoning used in the previous section to the problem of finding Pc. For the random
variables defined in the previous section, let

k

T= E S, i=1,...,k-1.
j=i+l

Thus Ti represents the total number of successes on treatment 2 in the last (k-i)
tables. Since the characteristic functions of the individual S have been calculated, it
is straightforward to calculate the probability distribution of each of the Ti and to
store this information. Suppose this has been done.

Now return to the algorithm, in 3, for calculating Pc. Consider the first step,
i.e., setting zl l. If now pl Pr (T1 s-za)-<-p, then it is clear that each table in 5s
whose first component is Zl is also in Ws. Furthermore, it is unnecessary to generate
all these tables to find the sum of their respective probabilities. Indeed, this sum is
p Pr (T s- z 1). The next set of tables to check would be those in 5s whose first
component is la* + 1 and continue in this manner until a z is found which is such that
C(z, t) Pr (T1 s -z) >p. Call this z, z*. Now one can set z u* and come in from
the right until the appropriate probability exceeds p again. Call this value of z, z**.
Note, from the log concavity of the hypergeometric, that for all z l, z*_<-z_-<z**,
C(zl, t)Pr(Tx=s-z)>p. For these values of Zl we can return to the algorithm
described in 3.
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Clearly, once z has been set, one can apply the above reasoning to the second
component, z2, and so on. One can thus modify the algorithm in 3 by adding these
two steps between Step 3 and Step 4.

3.1 Call Algorithm 2.
3.2 If l* > u *, go to 15. Else,

where

ALGORITHM 2.
1 Setq=landt=s.

i--1
2 If > 1, set q I-Ii=l C(zi, ti).
3 If i>l, set =s-z1 zi-1.
4 Set i l* 1.
5 Do for z l/*, u/*.

5.1 Set/" =f + 1.
5.2 Setq*=qC(z,t)Pr(Ti=t-z).
5.3 If q*>p, go to 6. Else,
5.4 P=P+q*.

6 If/" u *, go to 11. Else,
7 Set l* j,/’ u * + 1, k 1/* + 1.
8 Do for z u *, k, 1.

8.1 Set/" =/’- 1.
8.2 Set q*=q xC(z, ti)xPr(Ti=t-z).
8.3 If q*> p, go to 9. Else,
8.4 P=P+q*.

9 If q* <p, u I/*. Else u* =/’.
10 Return.
11 If q*<p, k 1. Else k =0.
12 Set l* =u* +k.
13 Return.

This algorithm requires more storage (approximately 1-I ui) than the algorithm
given in 3, but it seems clear that it should be much faster than that algorithm for
large tables and/or large k.

6. Discussion. In order to obtain a measure of how the proposed algorithms
compare with a complete enumeration algorithm, we performed some time trials. All
computing was done on a DEC-2040 computer, and the times should be used for
internal comparisons only.

Attention was focused on both the hypothesis of constant relative risk and
calculating the coefficients in f(. ((5) and (6)). We consider nine small tables,

7 6 3 5 14 7 2 6 8 5 4 5 3 6 6 6

1 2 5 3 2 2 5 3 7 3 7 3 6 7 7 5 7 5

We first took the first two tables (k 2), then the first four (k 4), then the first six
(k 6), and finally all nine tables (k 9). We then multiplied each cell by two (x 2)
and repeated the experiment for k 2, 4, 6; then repeated this experiment for x 3.
For k 9 the experiment was not repeated for x 2 or 3 because the complete
enumeration algorithm would have taken much too much time. The results are
displayed in Table 1.
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TABLE
Timing in seconds.

k x Pc CE DS DMS DS.05 DMS.05

2 1 .41 .36 .44 .40 .42 .45
4 .43 .76 1.18 1.34 .93 1.24
6 .29 16.14 5.82 5.18 3.17 3.38
9 .57 23,715 1,289.98 134.70 326.45 14.64

2 2 .20 .38 .60 .60 .60 .60
4 2 .12 2.35 2.20 2.40 1.59 2.08
6 2 .02 522.8 59.79 44.86 59.79 44.86

2 3 .04 .69 .69 .71 .69 .71
4 3 .03 9.78 3.14 3.52 3.14 3.52
6 3 .001 5,796.5 305.45 227.78 305.45 227.78

The first three columns refer to which tables were chosen, the multiplier applied to each cell and the
value of Pc (5) respectively. The fourth column refers to a complete enumeration algorithm. The fifth and
seventh columns refer to the algorithms in 3 and 4 without and with the .05 cutoff, respectively. The
sixth and eighth columns refer to the algorithms in 4 and 5 without and with the .05 cutoff, respectively.

Table 1 epitomizes our general findings"
(i) Except for small k and very small tables, the proposed algorithms are much

faster than complete enumeration.
(ii) The order in which the tables are treated is important and the advice given

in 3 should be followed. For example, for k =4, the data multiplier= 2 and the
order of the tables reversed, the time rose from 1.59 secs to 2.29 secs (column 7).

(iii) The amount of time required increases dramatically as k and the total size
of the problem increase.

(iv) The efficiency of the DMS algorithm is apparent when k is large, especially
when a .05 cutoff is applied.

(v) In column 7, most of the required time is taken by the calculation of Pc. For
example, when k 6, x 1, the calculation of f took only 1.91 secsmthat is not to
say that Pc took only 1.26 secs (3.17-1.91), since both calculations require the same
overhead. But when the cell entries were multiplied by two, the time to calculate f
increased to only 2.68 secs (of the total 58.36 secs).

This last point suggests that a mixed algorithm may be appropriate. Namely, if
the size of the tables is relatively large, use an approximation to determine Pc, then
use exact methods to determine f(.). This should be an acceptable compromise
especially in the usual situation when Pc is of much less interest than f(. ). But more
research needs to be done on this point.
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COMPUTING FORWARD-DIFFERENCE INTERVALS
FOR NUMERICAL OPTIMIZATION*
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AND MARGARET H. WRIGHTS"

Abstract. When minimizing a smooth nonlinear function whose derivatives are not available, a popular
approach is to use a gradient method with a finite-difference approximation substituted for the exact
gradient. In order for such a method to be effective, it must be possible to compute "good" derivative
approximations without requiring a large number of function evaluations. Certain "standard" choices for
the finite-difference interval may lead to poor derivative approximations for badly scaled problems. We
present an algorithm for computing a set of intervals to be used in a forward-difference approximation of
the gradient.

Key words, nonlinear optimization, finite-difference approximation, nonderivative method

1. Introduction. When minimizing a smooth multivariate function whose deriva-
tives are not available, an obvious strategy is to use a so-called finite-difference gradient
method, in which each occurrence of the exact gradient in a first-derivative method
is replaced by a finite-difference approximation. The success of this approach depends
on obtaining "good" approximations to the necessary first derivatives. However, in
order for such methods to be competitive with alternative nonderivative methods, it
is essential that the gradient approximation should require only a small number of
function evaluations. (The efficiency can also be improved by modifications that tend
to reduce the number of gradient evaluations--e.g., using a line-search procedure
based on function values only.)

We shall describe an automatic procedure whose purpose is to compute finite-
difference intervals that produce "acceptable" forward-difference approximations of
the gradient during an iterative minimization procedure. Note that our intention is
not to compute the most accurate possible estimate of the gradient at a single point.
The motivation for the algorithm to be described is the same as that of an earlier
algorithm suggested by some of the authors (Gill, Murray and Wright (1981)). The
present algorithm differs in the initial choice of interval, in the estimates used to define
termination and in some steps of its logic in certain situations; in addition, a different
strategy is suggested when switching to a central-difference estimate and for computing
intervals at an arbitrary point.

The general problem of finding approximate derivatives by finite differences is
known as numerical differentiation. A recent discussion of methods for numerical
differentiation is given by Lyness (1977). The topic is also considered in Anderssen
and Bloomfield (1974), Dahlquist and Bj6rck (1974), Lyness and Moler (1967), Lyness
and Sande (1971), Oliver and Ruffhead (1975) and Oliver (1980). Many automatic
differentiation routines attempt to minimize the total error in a finite-difference
approximation at a given point and tend to require a significant number of function

* Received by the editors November 10, 1981, and in revised form March 25, 1982. This research
was supported by the U.S. Department of Energy under contract DE-AC03-76SF00326, PA No. DE-AT03-
76ER72018, the National Science Foundation under grants MCS-7926009 and ECS-8012974, the Office
of Naval Research under contract N00014-75-C-0267, and the U.S. Army Research Office under contract
DAAG29-79-C-0110.

5"Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford, California 94305.
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evaluationsmusually, at least ten per derivative (see, e.g., Dumontet and Vignes (1977)
and Stepleman and Winarsky (1979)). Therefore, standard numerical differentiation
techniques are not appropriate within a finite-difference gradient method.

Section 2 contains a brief overview of the errors associated with the relevant
finite-difference formulae. The proposed algorithm for computing an interval is presen-
ted and discussed in 3, along with numerical results. Section 4 discusses the procedure
to be used in multivariate optimization and explains the differences between our
approach and alternative methods.

2. Errors in finite-difference approximations. For simplicity of description, we
shall initially consider the error in estimating the first derivative of the smooth
univariate function f(x). In general, the errors in finite-difference approximations
depend on quantities that are unknown, such as higher derivatives of the function.
Therefore, the derivation of a representation of the error is useful mainly in indicating
how the error varies with the finite-difference interval. However, under certain
assumptions about f and its derivatives, a good a priori finite-difference interval can
be specified (see 2.3).

2.1. The forward-difference formula. The simplest approximation involves the
forward-difference formula, in which f’(x) is approximated by the quantity

(1) r(f, h) =f(x +h)-f(x)
h

for some h > 0, where the subscript F denotes "forward difference". The analysis in
this section also applies (with trivial modifications) to the backward-difference formula

qB (f, h)
f(x)-f(x -h)

When using the finite-difference formula (1), there are three sources of error in
the approximation to f’(x).

(i) Truncation error. The truncation error consists of the neglected terms in the
Taylor series, namely

(2) qr(f, h)-f’(x)= f"(x)+ f’"(x)+ f"($)=- TF(h),

where sc is a point in the interval [x, x + h ].
(ii) Condition error. In practice, the computed function values to be used in

calculating qF will be subject to error. Let the positive quantitiy eA denote a bound
on the absolute error in the computed function values at x and x + h. It will be assumed
throughout this paper that the value of eA at the given point is available; an effective
technique for computing eA is given by Hamming (1973), and is also described in
Lyness (1977) and Gill, Murray and Wright (1981).

Let/(x) and/(x + h) denote the computed values of f(x) and f(x + h) (including
errors that may result from representing x, h and x +h in finite precision). By
assumption, the computed function values satisfy

(x)=f(x)+OoeA and f(x +h)=f(x q-h)q-OheA,

where 100]--< 1 and IOhl <- 1. If the inexact function values are used in (1) and no other
errors are made, it follows that

26eA
(3) qF(), h 0F (f, h -------- CF(h
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for some , Iq]--< 1. The error Cv(h) in the value of 0v() h) due to inaccurate values
of f will be termed the condition error (see Lyness (1977))msometimes known as
cancellation error (see, e.g., Kahan (1973))--and satisfies

[Cv(h)l < 2e__.A
h

(fii) Rounding error in the calculation of qF. Given/(x) and/(x + h), the calcula-
tion of a forward-difference approximation involves rounding errors in performing
the associated subtraction and division. However, these errors are generally negligible
with respect to the truncation and condition errors, and will be ignored in our analysis.
The error in the computed approximation can thus be viewed as the sum of the
truncation error and the condition error.

Example, 1. All calculations given in this paper were performed using short
precision on an IBM370. The machine precision et is 16-5 9.537 10-7, and
numbers in the examples have therefore been rounded to (at most) six figures
(irrelevant higher-order digits are omitted).

To illustrate the effects of errors in a forward-difference approximation, consider
the function

1 1)
2

(4) f(x) (e 1)2 +
x/1 + x 2

Forward-difference approximations to f’ were calculated at the point x 1 for various
values of h, starting with h et. Table 1 contains the results of the computation. The
first column contains the values of h. The second column contains [Tv(h)[, the magni-
tude of the truncation error that would be incurred by using the exact qv(h) to
approximate f’; the third column contains the magnitude of the condition error, which
was calculated using the exact value of pv. (The "exact" value of pv was obtained by
double precision calculation.) The fourth column contains the computed values of
r(, h) and the final column contains the exact error [f’(X)--pF(, h)[.

A convenient bound on the overall error in a forward-difference approximation
is

(5)
h 2

If f"(:) is nonzero, the interval that minimizes the bound (5) is

(6) haS=2 )l"

TABLE 1

Condition and truncation errors in or for Example 1. f(x)= 3.03828,

9.537 10-7

9.537 10-.6

9.537 10-s

9.537 10-4

9.537 10-3

9.537 10-2

(’(x) 9.54866.

lTv(h)l

1.15697 10-5

1.15711 x 10-4

1.15718 10-3

1.15790 10-2

1.16520 x 10-1

1.24192

Ifv(h)l

2.54867
4.87710 x 10-2

2.98130 10-2

2.23475 10-3

2.75015 x 10.4

2.66112 x 10.6

7.00000
9.50000
9.52000
9.55800
9.66490
1.07906 101

If’(x)-,v(, h)l

2.54865
4.8653610-2

2.86541 10-z

9.34600 x 10-3

1.62462 x 10-1

1.24192
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When h h F*, the values of the bounds on the truncation and condition errors are
equal, and the associated value of E is 2,/e,lf"()l.

It is of interest to analyze the conditions under which the relative error bound
El/lf’(x)l will be small. If we assume that the calculated values of f are an acceptable
representation of the exact values, the value eA provides a measure of the "noise
level", i.e., the smallest meaningful perturbation in . (Note that eA need not necessarily
be "small" relative to Ill at all points; for example, it may happen that eA 10-6 and
f 10-8.) This interpretation suggests using eA to estimate a corresponding "noise-
level" perturbation hA in x. Expanding in a Taylor series, we obtain

eA f(x + hA)--f(x) hAf’(),

where e[x,x +hA]. If we assume that f’(c) is similar in magnitude to f’(x), then
the value

(7) hA If’(x)l

may be used as a lower bound on any meaningful finite-difference interval. Any
perturbation h smaller than hA will produce a change in f that is less than noise level;
if h is close to hA, the resulting change in f will be almost at noise level.

If the forward-difference interval h- (6) satisfies h->> hA, then it follows from
(6) and (7) that the relative error bound

If’(x)l If’(x)l
will be small. On the other hand, we observe that this relative error bound will tend
to increase as [f’(x)l decreases, assuming that If"f )l does not decrease correspondingly.
Therefore, in general even the bestforward-difference approximation to f’ will eventually
be unreliable when If’(x)l becomes small. (In terms of the preceding analysis, the
relative accuracy deteriorates as h * and hA become similar in magnitude.)

We have emphasized the relative error in a forward-difference approximation to

f’ because the relative accuracy of the gradient vector affects the quality of the search
direction in finite-difference gradient methods. For example, in a finite-difference
quasi-Newton method, the search direction p is the solution of a linear system of
the form

Mp ,,
where is the gradient approximation. If the relative accuracy in , compared to the
exact gradient is poor, p may not have the properties required in the algorithmfor
instance, p may not be a descent direction. (In 4.3, we describe a procedure that
may be used when the forward-difference approximation is no longer acceptable.)

2.2. The central-difference and second-order formulae. The first derivative can
also be approximated using the central-difference formula

qc (.f, h) =f(x + h)-f(x h)
2h

where h >0. In this case, the truncation error is bounded by hlf’"(/z)l, where
ix e [x- h, x + h ]; the condition error is bounded by eA/h, where eA is a bound on the
error in the computed function values at x, x- h and x + h. If f"’(tz) is nonzero, the
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interval that minimizes the sum of bounds on the truncation and condition errors is
given by

3[. 3eA
h xJ

An approximation to if(x) can be obtained from the second-order difference
formula
(8) dp(f, h)

f(x +h)-2f(x)+f(x-h)
t,t2

+/-h21The truncation error is bounded by 12 f4)(rt) l, where n [x-h,x +hi, and the
condition error arising from inaccuracies in the computed values of f(x), f(x + h) and
f(x-h) is bounded by 4eA/h 2. If f4)(r/) is nonzero, the interval that minimizes the
sum of these bounds is

h,=2

2.3. The well-sealed ease. In some circumstances, it is possible to estimate
a priori values of the optimal intervals for each of the finite-difference formulae
described above. In particular, suppose that f is nonzero and that eA can be expressed
in terms of a known bound eR on the relative error, i.e.,

(9)

(In this case, eR is a measure of the number of correct figures in f.) A relationship
like (9) often holds for a value of eR close to machine precision when f is a standard
function or has a very simple form.

If f and all its derivatives are of comparable magnitude for all points in Ix, x + h ],
then it follows from (6) that

where "---" means "of similar size". Furthermore, under these circumstances the
bound on the relative error in the approximation of f’(x) is also of order x/--. This
result leads to the "folklore" observation that, in general, the number of correct
figures in a forward-difference approximation with the best finite-difference interval
is half the number of correct figures in .

Under the same assumption about f and its derivatives, it holds that

hen and h$eR.

3. A procedure for automatic estimation of a forward-difference interval. In this
section we outline an automatic procedure whose purpose is to obtain a "good"
finite-difference interval hF for use in a forward-difference approximation to the
gradient at a given point. The use of this procedure within a minimization algorithm
is described in 4. For simplicity, we shall describe the procedure as applied to the
univariate function f; for an n-variable function, the procedure is executed once for
each component of the gradient.

3.1. Motivation for the procedure. The interval hF computed by the procedure
is given by

(10) hF 2 e4A,
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which is simply expression (6) for the interval h*F with substituted for f"(:). Since
the point is unknown and the second derivative is not available, the value used
in the procedure is an estimate of f"(x) obtained from the second-order difference
approximation (8).

Two assumptions underlie this choice of . Firstly, it is necessary for f"(x) to be
an adequate approximation of f"(), which will be true only if the second derivative
is not changing too rapidly near x. Secondly, the value of must be a sufficiently
accurate estimate of f"(x). The procedure is directed toward finding an interval h,
whose associated value of is a correct order-of-magnitude estimate of f"(x) (i.e.,
has at least one correct decimal figure).

The procedure is based on the fact that the bound on the relative truncation
error tends to be an increasing function of h, while the relative condition error bound
is generally a decreasing function of h. In particular, the value of h, is selected from
a sequence of trial values {h}. The decision as to whether a given value of is
sufficiently accurate involves (), the following bound on the relative condition error
in :
(11) d’() 4EA

(When is zero, C() is taken as an arbitrarily large number.) No attempt is made
to compute an explicit estimate of the truncation error.

If the value of ’() for the trial value hi is "acceptable" (i.e., lies in the interval
[.001, .1]), h, is taken as h, and the current value of is used to compute hF from
(10). There is a clear need for an upper bound on the value of (). A lower bound
on the acceptable value of t() is needed because a very small value of () indicates
that the interval may be reduced (thereby reducing the truncation-error bound) and
still yield a sufficiently small value of the bound on the relative condition error.

If t() is unacceptable, the next trial interval is chosen so that the relative
condition error bound will either decrease or increase, as required. If the bound on
the relative condition error is "too large", a larger interval is used as the next trial
value in an attempt to reduce the condition error bound. On the other hand, if the
relative condition error bound is "too small", h is reduced. We have chosen simply
to multiply hg by a fixed factor to obtain the next trial value. More complicated iterative
schemes can be devised, based on the special form of (11), but they tend to require
further assumptions that do not necessarily hold in practice (e.g., that remains of
a similar magnitude as h changes).

The procedure will fail to produce an acceptable value of ’() in two situations.
Firstly, if is extremely small, then t() may never become small, even for a very
large value of the interval. This will happen if f is nearly constant, linear or an odd
function. Alternatively, C() may never exceed .001, even for a very small value of
the interval. This implies that is extremely large and usually occurs near a singularity.
These situations will be illustrated in the examples of 3.3.

As a check on the validity of the estimated derivative, the procedure provides a
comparison of the forward-difference approximation computed with hF and the central-
difference approximation computed with h,. If these values do not display some
agreement, neither can be considered reliable.

In order to begin the procedure, an initial trial value ho is needed. Since the
"ideal" ho is unknown, our aim in selecting ho is for the minimum number of function
evaluations to be required for well-behaved functions (i.e., for the value of ()
computed with h0 to be acceptable). Hence, our choice of h0 is based on a relationship
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that holds for many functions encountered in practice--namely that

(12) If"l
1 + )f(x)
1 +lxl2

where means "of a similar order of magnitude". If Ixl is of order unity, (12) holds
when f and its second derivative are of comparable size (a characteristic of many
well-scaled functions). The additional factor involving Ix is included to reflect to some
extent the effect of a simple change in scale of x on the second derivative.

Iff and x are such that (12) holds, the interval/ 2(1 +lxl),/e,/(1 /1:1)produces
a condition error in CF comparable to its "optimal" value, but a relative condition
error () of order one (i.e., the value of computed with would have no correct
figures). Therefore, the initial h0 is taken as 10ft, in the hope that h0 will produce an
acceptable value (of order .01) for () (recall that () is inversely proportional
to h 2). In this case, no further trial intervals need to be computed.

The value of h0 is not critical to the ultimate success of the algorithm, but clearly
may affect the number of trial intervals required before termination. Given suitable
a priori information, it may be possible to choose h0 so that fewer steps of the algorithm
are needed for a particular class of functions.

3.2. Statement of the algorithm. Algorithm FD requires an initial point x, the
value of f(x) and the value of ea. The algorithm computes an interval h that should
produce an adequate forward-difference approximation of f’. The algorithm also
produces (an estimate of f’(x)), (an estimate of f"(x)), andE (an estimate of the
error bound in ).

The positive integer K is an upper bound on the number of trial intervals. In
situations where the trial interval is increased the maximum number of times, it is
useful to store h, the smallest value (if any) of h for which the relative condition
errors in the forward- and backward-difference approximations are acceptable. For
this reason, we define the following bounds on the relative condition errors in
and

(F) 2CA
and (B) 2eA

(When F or B is zero, the corresponding error bound is taken as an arbitrarily large
number.) The value h is the smallest interval in the sequence for which these bounds
are"acceptable" (i.e., less than. 1).

The formal statement of the algorithm is:

ALGORITHM FD (Automatic estimation of h, f’ and f" using finite differences).
FD1. [Initialization.] Choose K and evaluate f(x). Define ho 10h, where

(13) h 2(1 + ]xl)
1 + If(x)’

and set k 0. Evaluate f(x + ho), f(x -ho), (ho), B(ho), c(ho), O(ho), (),
() and (O). Set h 1.

FD2. [Decide whether to accept the initial interval.] If max {(F), (n)}.1, t
h h0. If .001 (O).1, set hho and go to Step FD5. If (O)<.001,
go to Step FD4. Otherwise, continue at Step FD3.

FD3. [Increase h.] Set kk + 1 and hk 10hk-1. Compute the associated finite-
difference estimates and their relative condition errors. If h.<0 and
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max {(o), 7(n)}<-_.l, set h <--h. If 7((b)<_-.1, set h,-hg and go to Step
FD5. If k -K, go to Step FD6. Otherwise, repeat Step FD3.

FD4. [Decrease h.] Set k -k + 1 and h, <--hg_/lO. Compute the associated finite-
difference estimates and their relative condition errors. If ()> .1, set h, <--

h_ and go to step FDS. If max {(), (n)} <_-.1, set h <--h. If.001 _-< ()-<
.1, set h, <-- h and go to step FD5. If k K, go to Step FD6. Otherwise, repeat
Step FD4.

FD5. [Compute the estimate of the optimal interval.] Define h from (10), and set
to (h). Set the estimated error bound to

(4) E=--2 h

Compute the difference between p and qc(ho) as

If max {Ev,/}-<_.51l, terminate successfully. Otherwise, terminate with an
error condition.

FD6. [Check unsatisfactory cases.] If h < 0 (i.e., max {(pz), t(pn)} > .1 for all values
of h), then f appears to be nearly constant; set h <--h (13), and set p, and
Ee to zero. Otherwise, if t()>.1, then f appears to be odd or nearly linear;
set h to h, set to 0e(h), set to zero and computeE from (14). Otherwise,
f" appears to be increasing rapidly as h decreases (since t()<.001 for all
values of h); set h <-- hn, set p to p(h), set to (h) and computeE from
(14). In all these cases, terminate with an error condition.

3.3. Numerical examples. In all the examples, K was taken as 6, and the value
of eA was computed using the procedure given in Gill, Murray and Wright (1981).

When Algorithm FD is applied to the function of Example 1 at the point x 1,
with eA =4 X 10-6, the relative condition error with the interval h0 (3.98 10-) is
t() 4.16 10-4, which is less than the desired lower bound; the value of t()
corresponding to h is 4.24 10-2 and thus h, h. The value of is 2.38294 x 10,
which is a good order-of-magnitude estimate of the exact value of f"(x) (2.42661 x
10). The value of h is 8.19 x 10-4, and p(h)= 9.55636, giving a relative error in
f’ of 8.07 10-4. Note that the estimate h agrees with the results given in Table 1
and that the estimates of f’ and f" are as accurate as we might expect from six-decimal
arithmetic.

Example 2. Consider the function

f(x) (x 100)2 + 10-6(x 300)3

at the point x 0, with ea 9 x 10-3. The exact values of f(x) and f"(x) are 9.97300 x
103 and 1.99820, so that condition (12) is not satisfied. Since h0 is too small, the
interval is increased twice before the relative condition error is acceptable (the final
value of is 1.99567). The value of h is 1.34x 10-’, the corresponding o is
-1.99632 x 10a and the exact value of f’(x) is -1.99730 x 102, which gives a relative
accuracy of 4.9 x 10-4.

Example 3. To illustrate the performance of the algorithm in the opposite
situation when If"[ >> Ill, consider the function f(x)= ex at the point x .01, with
eA 4 X 10-6. Since f" is four orders of magnitude larger than f, ho is much too large
and the interval is decreased twice before the value of t() is satisfactory; the final
value of was 2.71141 104, which is a good order-of-magnitude estimate of the
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exact value of/"(x) (2.71828 104). The value of hF is 2.43 10-5; the corresponding
value of qF is 2.72090 10, which gives a relative error ot 1.01 10-3 in ]’(x). The
exact value of )’(x) is 2.71828 102.

The remaining examples illustrate situations in which an abnormal exit is made
from the procedure.

Example 4. As an example of a function that is nearly constant, we chose
[(x) 1-cos2(x)-sin2(x), at the point x 1, with e,, 10-6. Although this function
would be identically zero with exact arithmetic, its computed value fluctuates around
the level of machine precision. The relative condition error never becomes acceptably
small, even after the interval is increased the maximum number of times. The algorithm
terminates in Step FD6 with hE set to/ (4.0 10-3), the interval associated with a
well-scaled problem.

Example 5. The algorithm was tested on the linear function f(x)= 3x + 1 at the
point x 1, with eA 5 10-6. As in Example 4, the relative condition error in
was not acceptable even when the interval was increased to its maximum value. The
value of hF was set to hs, the smallest value for which max {’(oF), (qB)} was less
than. 1 (in this case, hs 4.0 10-2). (The behavior of the algorithm was the same on
the odd function f(x)= x 3 at x 0, except that h 2.0 10-1.)

Example 6. The remaining abnormal termination of the algorithm in Step FD6
occurs when the condition error in remains too small even when h is decreased the
maximum number of times. This situation usually occurs near a singularity and is
illustrated bythe function In [xl at the point x 10-8, with eA 2.0 10-5. The estimate
of increases by two orders of magnitude for every order-of-magnitude decrease in
h, so that () consistently remains of order 10-6, even when h is of order 10-7.
The procedure terminates with hF h6 2.03 10-7.

Example 7. It was observed in 2.1 that a forward-difference approximation
will tend to have poor relative accuracy when If’] is small, even with the best choice
of interval. As an example of this situation, consider the function f(x) x 4 + 3x 2- 10x
at the point x .99999, with eA 7 10-6. The exact value of f’(x) is -1.80244 10-4.
The algorithm computes a good estimate of with ho ( 1.80008 101 compared
to the exact value f" 1.79999 x 101) and hz is given by 1.25 x 10-3. However, F(hF)
is 9.13 10-3, SO that the approximate derivative has poor relative accuracy, even
though hF is a good estimate of the optimal forward-difference interval. The central-
difference approximation computed with h, (-3.57 10-3) also has poor relative
accuracy. Note that the difference between the forward- and central-difference esti-
mates would cause the algorithm to give an error message.

Example 8. Algorithm FD may fail to produce an acceptable estimate of the
derivative even when f’ is not small. The value of hF is based on approximating f"()
in (6) by , which is itself an approximation to f"(x). Consequently, hF will be a poor
estimate of the optimal interval when f"(:) in (6) differs widely from --for example,
if f’" is very large near x. In this case, the derivative approximation will be inaccurate
because the underlying asssumptions used to derive (6) are not satisfied, even though
the estimated condition error may be acceptable.

This situation often happens near a singularity, but may also occur in other
situations. To illustrate the latter, consider the function

f(x) 10000x 3 + .01x + 5x

at the point x 10-9, with eA 10-6. The exact values are f’(x)=5.0, f"(x)=
2.006 10-2 and f"’(x) 10000. After one increase in the interval, we obtain the value
(I)=2.0217710-.2 (a good estimate of f"(x)), and the resulting value of hF is



COMPUTING INTERVALS FOR OPTIMIZATION 319

1.41 x 10-2. However, the value of v(hv) is 6.98 and the value of c(h.) is 4.05 x 102;
note that both estimates are poor. As in Example 7, the difference between these
estimates produces an error message.

4. Gradient approximations in multivariate optimization. In this section we shall
be concerned with the n-variable function F(x), x. The gradient of F will be
denoted by g(x). Let x0 denote the initial estimate of the solution.

4.1. Estimating the finite-difference interval at an arbitrary point. The procedure
of 3.2 requires at least three evaluations of the function for each component of the
gradient, even for a well-scaled problem. An optimization algorithm that required
this number of function evaluations at every iteration would be uncompetitive with
alternative nonderivative methods. Ideally, an algorithm should be able to compute
an approximation to the gradient with only one function evaluation per component.

Fortunately, this aim can often be achieved, for several reasons. First, and most
important, it is our experience that, for many functions encountered in practice, the
finite-difference intervals generated by a procedure such as that of 3.2 do not vary
significantly from one iteration to the next. Second, the intervals produced by the
procedure of 3.2 do not usually differ widely from the "optimal" intervals. Finally,
finite-difference gradient methods can generally make satisfactory progress as long as
the overall gradient vector has a "reasonable" level of accuracy; it is not essential for
each component of the gradient to have close-to-maximal accuracy at every iterate.

Based on these observations, we suggest that the procedure of 3.2 should be
executed at a "typical" point (usually, x0). The set of intervals obtained should then
be used to compute forward-difference approximations at subsequent iterates.

We illustrate the effects of this strategy with the function from Example 1 when
x0 1. In 3.3, it was shown that Algorithm FD produces the interval hF 8.19 10-4.
When this interval is used to compute a forward-difference approximation at the point
x 10, we obtain a relative accuracy of 4.09 10-4 in the derivative (the approximate
and exact values are 9.71 108 and 9.70286 108). When Algorithm FD is executed
at the point x0 10 (with eA 5.0 102), the value of hF is 1.01 10-3; if this interval
is used to compute PF at x 1, the relative error in the forward-difference approxima-
tion is 1.02 10-3. These results are typical of those in many numerical experiments.
Although it is not difficult to construct examples for which the optimal finite-difference
intervals vary significantly from point to point, our experience is that the procedure
works well in practice.

An additional benefit of the procedure of 3.2 is that the quantity associated
with the th variable is usually a good estimate of the th diagonal element of the
Hessian matrix at x0, and thus we can obtain an initial diagonal approximation of the
Hessian in a quasi-Newton method. An improved estimate of the Hessian often
reduces the number of iterations required for convergence.

4.2. Other approaches. Several other approaches have been suggested for obtain-
ing finite-difference approximations to the gradient. The procedure of Curtis and Reid
(1974) is based on a central-difference approximation and hence requires at least 2n
evaluations of the function at each iterate in order to approximate the gradient.

Stewart (1967) suggested a procedure for using a forward-difference approxima-
tion in a finite-difference quasi-Newton method and for switching to central differences
under certain conditions. At each iteration, the interval with respect to each variable
is chosen to minimize the sum of the relative truncation error and the relative condition
error. The relative truncation error in the th component of the forward-difference
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approximation computed with interval hi is estimated by

1 xIh----where is the th diagonal element of the current quasi-Newton approximation to
the Hessian and /is the ith component of the approximate gradient from the previous
iteration. An assumption is made that the calculated value/ of the exact function F
satisfies

F(x)=F(x)(l+e),

such that lel <--e, where e is a known quantity; the relative condition error in the
th component of the approximate gradient is then given by

2elF(x)l
IF(x + hiei)-V(x)l"

The reader should consult Stewart’s original paper for a more detailed discussion of
his assumptions and for a statement of the criteria used to switch to a central-difference
approximation.

Our approach differs in at least two significant respects. First, our analysis is
based on different estimates of the truncation and condition errors. Second, we suggest
that additional function evaluations should be expended at the initial point in order
to obtain accurate estimates of the second partial derivatives.

A modified version of Stewart’s method could be developed in which the diagonal
elements of a quasi-Newton approximation are used to estimate f"() in (6). (Note
that no additional evaluations of the function would be necessary.) With this strategy,
the th interval at the general point x would be given by

The unsatisfactory feature of this approach, as with Stewart’s original procedure, is
that the diagonal elements of a quasi-Newton approximation need net be good
order-of-magnitude estimates of the diagonal elements of the true Hessian (see, e.g.,
Dennis and Mor (1977)). Even for a quadratic function, the Hessian approximation
is exact only after n iterations and then only with exact arithmetic. This discrepancy
is particularly severe for badly scaled problems, in which accurate gradient approxima-
tions are most crucial.

4.3. The switch to a central-difference approximation. The forward-difference
formula requires only one additional evaluation of F for each component of the
gradient and will usually provide approximate gradients of acceptable accuracy unless
g(x)ll is small. Since the gradient approaches zero at the solution of an unconstrained
problem, this means that the forward-difference approximation will eventually be
unreliable, even for a well-scaled problem with carefully chosen finite-difference
intervals (see 2.1 and Example 7).

The forward-difference approximation should be abandoned when there is a
failure to find a lower point during the linear search. This tends to happen only when
the relative error in the overall gradient vector becomes too large (note that the
algorithm will not usually encounter difficulties if the relative error is poor only in
some components). It may also be advisable to avoid the use of the forward-difference
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formula under other circumstancesmfor example, if the change in x during any
iteration is close to the perturbation associated with a finite-difference calculation.

When the forward-difference formula is unacceptable, we suggest a switch to a
central-difference approximation (see 2.2). The condition error in the central-
difference formula is of order (1 /h ), but the bound on the central-difference truncation
error is of higher order than that for the forward-difference formula. When switching
to central differences, we suggest using the set of intervals {(ha)i} computed at the
initial point; note that, if Algorithm FD terminates successfully, (ha,)i > (hF)i.

5. Conclusions. We have described an algorithm for estimating a set of finite-
difference intervals at a given point. In practice, the information accumulated about
the function of interest at the given point usually provides an adequate set of finite-
difference intervals at other points. If the intervals become inappropriate (for example,
they may fail to produce a useful search direction in an optimization algorithm), a
new set of intervals can be computed at the point where failure occurred.

The implementor of a finite-difference gradient method faces a dilemma" although
good finite-difference intervals are often crucial to success (especially for badly scaled
problems), an efficient method must not expend a large number of function evaluations
in obtaining these intervals. The procedures in this paper are based on a compromise
that generally produces sufficiently accurate derivatives at a reasonable cost.

Acknowledgment. We are indebted to James Lyness for many valuable
comments.
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Abstract. We consider the problem of extending the Neyman allocation--which minimizes total

sampling cost in stratified random sampling subject to an upper bound on the variance of a single estimated

population total--the same situation with more than just one variance constraint. We deal with a series

of computational aspects of solving this problem.
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1. Introduction. Suppose that we want to estimate total personal income in New
York City. We have an enumeration of the N residents of the city; based on this
enumeration we draw a simple random sample of size n from these N and compute
the mean income for these n persons. Let 37 denote this mean income; then N37,
which we call I7 is an unbiased estimator of total income.

For 1, ,N let Yi denote the income for resident i; let I7 denote (i Yx)/N,
the mean income for the N residents. Let S2 denote the variance of income in the
city; this variance is (Y’.__I (Yi-I?)2)/(N-1). Thus I7 and S2 are the true (but
unknown) population mean and variance for all N residents--to be distinguished from
(results based on) our sample of n residents. We let simply S denote the square root
of S--that is, the standard deviation of income.

The variance of the estimator I7, which we call Var (I), is equal to NS2(N n)/n.
Hence if we have an advance idea of the value of S2, we have an advance idea of the
value of Var (I).

However, general reasoning suggests that we may reduce Var (I7) as follows. Let
the city be divided into rich and poor neighborhoods. We estimate the mean income
for each neighborhood; then we form Y based on putting together these mean incomes
to estimate the entire-city income. The variance of income within neighborhoods is
much smaller than that between neighborhoods and thus is smaller than S2; as a
result, Var (Y) will be less than for simple random sampling. Explicitly, we let Nh,
/’/h, h and Sh denote N, n, 37 and S defined for neighborhood h, i.e., "stratum" h,
unto itself. Then I= Nhfh and Var (I) is NhS2h(Nh/nh--1). From this point, we
proceed to the problem of this paper.

Suppose that we want to draw simple random samples from each of H given
strata numbered h 1,..., H. Let"

Y be a variate of interest defined for each population unit;

Nh be the number of population units in stratum h;

nh (<=Nh) be the number of sample units to be drawn from stratum h;

(1.1) S be the variance of Y in stratum h;

Ch be the cost per unit sampled in stratum h (often, one just takes Ch 1);

h be the sample mean for stratum h; and

" ., Nhh, an unbiased estimator of the population total for the variate Y.

* Received by the editors May 31, 1980, and in revised form February 15, 1982.
Statistical Research Division, Bureau of the Census, Washington, DC 30233.
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We want to choose the nh (<=Nh) SO as to

(1.2) minimize Chrlh subject to Var (I2) -<_ V

for V(>0) specified by the analyst. We have Var (f")=Y’.NhSh(Nh/nh--1). For h
1,. ., H let:

Xh 1/Chnh

vectorX (x 1, , XH);

(1.3) f(X) E (1/Xh);
2 2 2Bh ChNhS h/ V + IV.S (denominator independent of h);

and g (X) 1 Y Bhxh
the problem becomes that of

(1.4) minimizing f(X) subject to (X) => 0.

Thus our problem may be mathematically characterized in terms of the parameters
Bh, h 1,..., H, which combine information in Nh, Ch, Sh and V. Using a Lagrange
multiplier, we obtain as a solution the familiar Neyman allocation (Cochran (1963)):
Xh (B h/2 .,j B/2)-1. There are also the constraints nh <=Nh, i.e., Ph >= O, where Ph
Xh- 1/ChNh; these constraints must be dealt with, but we do not do so until 7.

Suppose now that we have, instead of just a single y, K variates of interest (with
K > 1) Yk, k 1," , K, with associated constraints Var (f"k)<= Vk. Correspondingly,
we have K constraints gk >= O, where

(1.5) g, (X) 1 Y BkhXh, k 1, , K.
h

In other words, for each constraint k, k 1,..., K, we define g(X) and quantities
Bh in the above fashion: we then denote these by gk (X) and Bk.h. To insure that nh > O,
so that Xh is well defined, we remove from consideration any strata for which, trivially,
Bkh --0 for all k (so that nh 0).

This, then, is the problem that we address. In practice, of course, the stratum
variances "S" are determined as accurately as possible before drawing the sample
from previous information. The solution vector X will in general be unique; there is
no ambiguity concerning what is the correct answer. (We do not address the problem
of how best to round the resultant r/h’S to integers: clearly, if the r/h’S are large, this
problem is minor.) The uncertainty is over how best, computationally, to go about
finding this solution.

In this paper we describe a series of steps that we have taken in obtaining a
solution. We often point out advantages over familiar, existing techniques. Yet to a
large extent each of our recommendations may be viewed separately. Depending on
a particular problem or situation--or even on one’s personal prejudices--one may
accept or reject each of our proposals on an individual basis. Section by section we:

(1) For K 2, in 2, give a speedy algorithm based on an approach developed
by Cochran (1963, 5A.4). (For K 1, of course, we have the Neyman allocation.)

(2) Indicate, in 4, how, instead of dealing with a problem in H variables as
considered in 3, we may deal with a problem in only K variablesman approach
advantageous for K <H--as has been noted, equivalently, by A1-Khayyal et al. (1978).
Independently of our paper, these authors developed, for a somewhat different
purpose, several of the ideas appearing herein.
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(3) Show, in 5, how, for K >_- 3, instead of using a convex-programming algorithm
to solve the K-variable problem, we may make efficient use of generalized Newton
approximation.

(4) Show, in 6, how to solve this K-constraint problem by adding one constraint
(in many cases, several constraints) at a otime to a subset of the full set of K, until the
solution for a subset of, say, J constraints satisfies the remaining K -J.

(5) Deal, in 7, with the constraints n,--<_Nh according to AloKhayyal et al.
(1978); if necessary, we repeatedly do (3) and (4) here.

(6) Show, in 8, how to measure, for J >_-3, closeness of cost for the solution at
hand to the cost at the unattained optimum.

(7) Give, in 9, an example to illustrate how, usefully, most of the quantities
Bk can be artificially 0 (with K << H, also).

(8) Consider, in 10, some possible nonlinear cost functions (in contrast to can,
of (1.2)).

Relative to other methods, our approach clearly becomes advantageous when J
is very small relative to H and K and also when there are many stratum variances
artificially zero. Our methods are not better for every imaginable situation, but seem
to work well in practice for large problems. We have dealt with business surveys on
monthly retail, wholesale and "service" sales, a voter registration survey and planned
"post-enumeration" followup to the 1980 Census. We have developed computer
programs which are available, one especially useful when most or all stratum variances
are nonzero and one when most stratum variances are zero.

Other aspects of the general situation that we consider are discussed by Chatterjee
(1968) and Folks and Antle (1965). Here we focus on computational issues for a
specific problem--without considering surrounding issues such as, for example, how
strata might best be formed.

2. Two constraints. For K- 2 the essence of a convenient solution is given by
Cochran (1963, 5A.4). By use of Lagrange multipliers it is established there (eq.
(5A.14)) that the solution is of form which, for our purposes, may be viewed as
(UlBlh + UEB2h)-1/2 for some ul, u2 :>0. Because of the approach that we take in 6,
we will know that, for our purposes, whenever K 2: (1) we will never be in a situation
where the Neyman allocation for either one of the two constraints can satisfy the other;
and (2) we must have either Bh > 0 or BEh O. As a result, we know that uk :> 0 and
gk -0, k- 1, 2, at the solution. From this point we use a binary search to obtain a
solution which Cochran (1963) obtains by approximation in his equations (5A.15)-
(17.)

The following is a concise statement of the algorithm that we thus use for K 2.
Re-express Xh as r(lBlh +(1-t)B2h)-1/2 for r :>0 and 0t 1; nowwe find the values
of and r. Let Dh B2h -Blh; since 0 gE-gl ’. DhXh, We find by solving C(t) O,
with C (t) Dh/(B2h tDh) 1/2. With dC/dt , D2/2(BEh tDh)3/2 O, we may nar-
row in on the solution with a binary search. We compute C(1/2); if C(1/2)>(<)0, we
subtract (add) 1/4 to t, i.e., use 1/4 (1/4); likewise we subtract or add , 6, , 1/216 (the last
exponent being somewhat arbitrary). Having found the solution in this manner, we
have r BEh/(tBlh d- (1 t)B.)1/. Thus the 2-constraint situation is easily solved as
an equation involving a single, bounded variable (t).

3. Three or more constraints. For K > 2 one may find the solution by an approach
such as that of Chatterjee (1966) or those of references in Cochran (1977, 5A.4),
based on making a series of quadratic or linear approximations; or one may use a
convex-programming technique such as "SUMT" (Fiacco and McCormick (1968)).
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We may incorporate the constraints Ph >- 0 in these techniques. Here a direct approach
is based on the H variables Xh, h 1," ", H. In 4 we now take an approach which
deals, instead, with only K variables.

4. Constraints as variables. We have (Fiacco and McCormick (1968, 2.3, Thm.
4)) that the solution (without the constraints Ph >- 0) is given byX and U (u 1, , u:)
such that Uk>--_O, gk>--O, ukgk =0 and (d/dxh )(f Y, ukgk)=O--this solution being
unique if, as should hold because of our 6 approach, the rank of the K H matrix
((B,)) is K. Using the last, we may obtain Xh (Yk UkBh)-1/2 and thus

(4.1) gk(X) g(U) 1 -Y’. Bkh/t/2, where th Y. uiBih.
h

Thus in terms of U our problem is that of

(4.2) minimizing F ugk(U) subject to Uk >= 0 and gk (U) >__-- 0,

i.e., forcing F to 0. It may easily be established that the gk are concave in U (the Uk
are, of course, linear) and that F is strictly convex if BB’ is positive definite, so that
(4.2) has a unique solution. (A somewhat different approach was used by A1-Khayyal
et al. (1978) to formulate a problem equivalent to (4.2).)

5. Newton approximation. Rather than minimize F, which is best done (in a
series of iterative steps) by using the first and second derivatives of it, i.e., of the
Ukgk’S, with respect to the u’s while taking care to avoid violating the constraints of
(4.2), we may solve the K equations Ukgk(U)--0 by using only the first derivatives.
We do this by means of generalized Newton approximation, as follows. Choose

(5.1) U0=(b/01,’’’,b/0K) suchthatu0k_->0 and gk(Uo)>=O;
1/2we let Uok be (h B kh )2, corresponding to Neyman allocation for constraint k alone.

We compute the corresponding g’s and then multiply U0 by the factor (1.001 min (1,
(1 -min gk)/.99))2. This somewhat arbitrary rule shrinks U0 to a solution still satisfying
(5.1) yet giving smaller cost. We denote

(5.2) tCkgk(U) by Vk and dvi/du by aii;

3/2then aii= 3iigi + ui h Let denote (vl, V,BihBih/th V v:) and D the vector A -1

with Do denoting D evaluated at U0. The vector D is the solution to AD V.
Computationally it is convenient to divide ai,/" 1,.-., K, and v by u/2; this does
not change the value of D. The altered A and V are thus given by

(5.3) aii= 6i2gi/u + BhBih/t3h/ and vi 2gi
h

with A symmetric positive definite.
An off-diagonal entry of A is (always) zero for row i, column j if constraints

and j have either Bib 0 or Bib 0 (or both) for each h. (As indicated in 9, we will
often have many such zeroes.) Thus we deal repeatedly with A having O’s in the same
positions; based on this information we may arrange the indexing of the constraints
so that for whatever method is used to find D, many additions and multiplications
may be bypassed. Here we omit details of the particular way in which we did this.
We used the Crout method (Hildebrand (1956)) for solving a system of simultaneous
linear equations with symmetric coefficient matrix; and it seemed straightforward to
develop an accompanying arrangement of indexes to keep number of calculations at
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a minimum. For some other method of solving the system of equations, a different
arrangement and strategy might be appropriate.
The generalized Newton approximation to the solution U is U1 Uo-Do. But if

we "step" too far from U0 and come close to violating the constraints of (5.1)meven
if we do not actually violate them--we will probably be thrown off the track, being
close to a boundary but not close to the optimal vector U which is usually on a
boundary (somewhere else). Hence instead of Uo-Do we use Uo-cDo, where scalar
c is as follows. Let U1, with components Ulk, k 1," ", K, denote Uo-cDo.

(1) Let c 1.01 (i.e., close to 1).
(2) If necessary, reduce c further so that u lk >- 0 for all k.
(3) Divide c by 1.01. (Thus if no reduction is necessary in (2) we have c 1; in

any event, all the values uk are strictly positive and all the values Xh are well defined.)
(4) If necessary, divide c by 2, as many times as necessary up to 6 times, so that

gk(U)0 for all k. (Thus all constraints are satisfied.)
(5) Divide c by 10.

This gives the final c.
We continue in this manner, computing U/ from U. except that for/" _->20 we

divide c by 2 instead of 10 in Step 5. We stop when: (a) the ratio ( Ukgk)/( Uk) has
become less than .001; (b) ] reaches 500; or (c) Step 4 was repeated 6 times without
gk-->0 for all k. Virtually never will (b) and (c) be encountered, in which case any
further progress would be slow and time consuming. The meaning of the cutoff .001
in (a) is discussed in 8.

As an alternative to the above approach, one might use convex-programming
techniques as in 3, to solve the problem in (4.2). Such techniques can avoid the
arbitrariness in the above determination of scalar c. Using SUMT, we would again
repeatedly solve a K xK system of linear equations with A now based on second
derivatives of the function F- r( log Uk + log g) for fixed, small and positive r; logs
might be replaced by reciprocals. This A may be seen to be more cumbersome than
the A above. Moreover, all its entries will be nonzero; thus, if for many pairs (i, f)
we have Bib 0 and/or Bib 0 for each h, the above-discussed shortcut is not available.

On the other hand, if (few or) no entries of A are zero for the Newton method,
a convex-programming approach (even with its added annoyances) may be especially
worthwhile" in other words, even though we have found the Newton method to
perform well for large problems, it should not be viewed as always faster.

6. Constraint subsets. If the solution for a subset S of the K constraints, say J
constraints with J <K, satisfies the remaining K-J constraints, we have a solution
to the full problem. This enhances the potential usefulness of the Neyman allocation
( 1) corresponding to J 1 and of 2 corresponding to J 2. Accordingly, we build
up S as follows, at each stage adding the constraint which appears most likely to have
to be included in S.

First (J 1), include in S the constraint for which the cost based on Neyman
allocation (for that constraint alone) is largest.

Second, without loss of generality suppose the first constraint picked was 4 1. If
there are no strata for which BI 0, we let the second constraint be that which is
farthest from being satisfied by the sample allocation for the first constraint and go
to the third step. Farthest from being satisfied means that the (negative) value of gk

is the most strongly negative. If Blh 0 for some h, we use the following iterative
rule. For k S let ak be the portion of the Neyman allocation cost for k that is associated
with strata for which Bib 0 for all j e S and add to S the choice of k which maximizes
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ak. When this maximum is 0, i.e., there are no strata for which Bib 0 for all/" S,
rather than add to S we go to the third step. (At this point we observe again that
there are many instances where B’s can, usefully, be 0; this is discussed in 9.)

Third, for J _-> 2 find the solution; then let the next constraint added to S be that
which is farthest from being satisfied by this solution. Keep doing this until done. At
any point we are done if the current solution satisfies all the constraints gk >--_0

(including, obviously, the case J -K where there are no more constraints to add).
When many B’s are zero, we add a set of constraints, rather than a single constraint

that is "farthest from being satisfied", before finding a new solution. The idea is to
add at once any mutually nonoverlapping constraints that are going to have to be
added anyway. After a solution is obtained, set ah 0 for each stratum h. (1) Add
the constraint k that is farthest from being satisfied, subject to ah 0 whenever Bkh > O.
(2) Set ah 1 wherever Bkh 3> 0. (3) Repeat 1 and 2 (without resetting any ah to
0) until no more constraints can be added.

The matrix A should be well-conditioned since, by eliminating redundant con-
straints, we prevent, for example, two rows of the underlying matrix ((Bkh)) from
being very nearly collinear. This approach should preclude the computational difficul-
ties that would occur (in practice) if we simply started with the full set of K constraints:
as an extreme example, if two constraints were identical, and both were included, we
would be trying, in effect, to invert a nearly singular A.

Ordinarily we will have J <= H, i.e., the number of constraints included in S will
not exceed H. Thus for H 2 (and K >> 2) it should be simpler to use our approach
than the graphical approach for H 2 developed by Dalenius (1957).

7. Sample size greater than the universe. Now we consider the H constraints
Ph >---- O. The recommended procedure to satisfy these is as follows. First, do the problem
according to 5-6. If Ph ----> 0 for all h, we are done. Otherwise, for strata where ph _-> 0,
sample all N units; then redo the problem with these strata removed from consider-
ation. If under the new allocation additional strata are over-allocated, repeat the
process; continue in this manner until p _-> 0 for all strata. This procedure provides a
solution to the full problem, as indicated by A1-Khayyal et al. (1978).

A variation on this idea is as follows. Suppose that sampling fractions are very
small, so that, for certain, we will have n, <-N; but that we want nh ->_ a _>-0, where
a is fixed (and, nontrivially, not always 0). We let p 1/cah--Xh and go through
the above procedure, setting nh a and adjusting the problem accordingly whenever
there is under-allocation. We do not attempt to deal with the situation where both
over- and under-allocation are simultaneously possible.

8. Closeness of solution to optimum. For J 1 or 2, we are essentially at the
exact optimum solution. For J => 3, however, we only approximate it. Thus we have
developed a way of estimating the cost associated with the exact (unattained) optimum,
to see how much further cost reduction could be gained if we could attain this exact
optimum.

Let S denote Y’. Uk, R denote Y’. ukgk, C denote cost, U (Ul, UK) and D
(dx, , d:) based on the final printed solution. It may easily be shown, algebraically,
that S-R -C. Let S*, R*, etc., denote these quantities at the exact solution; since
R* 0, we have S* C*. In the notation of 5, it is approximately true that U* will
lie along the line U-cD with scalar c > 0. The rate of change of S with respect to
change in R is given, approximately, by the ratio of directional derivatives with respect
to c of S and R along this line, evaluated at c 0. The derivative for S is dk, for
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R1/2 dk(1 + gk). We may thus approximate that S*, corresponding to R*-0, i.e., R
decreasing to 0, is given by S 2R( dk)/( dk (1 / gk )).

Thus C*, equal to S*, is approximated by this quantity. When the gk’S are all
close to 0, this is close to S- 2R, i.e., C-R; thus the ratio C/C* is approximately
1 +R/C, i.e., 1 /R/S. Our usual stopping rule as indicated in 5 is R/S <.001; thus,
typically, C will be greater than C* by no more than 1 part in 1,000, and even less,
possibly, if some g’s are far from 0. (Yet if gk is far from 0, then ug and thus dg, are
close to 0; as a result, the difference should not be much less than 1 part in 1,000.)
In other words, when we reach (a) at the end of 5’s Newton method, cost for the
exact optimum differs by somewhat less than I part in 1,000 from that for the solution
in hand.

These results may be generalized, of course, to bounds other than .001.

9. Zero variances and artificial variables. The following example, closely resem-
bling an actual situation for the Census Bureau’s monthly retail trade survey, is just
one illustration of (1) how zero variances may arise and (2) the usefulness of artificial
variables, in the following sense.

Suppose that we have a two-way stratification scheme with strata denoted, instead
of by h, the pair of integers (i,/’), 1, , 25, and j 1, , 20. For a single variable
of interest we may obtain an unbiased estimator of the population total in each region
i, 1,..., 25, and likewise in each industry/’. Corresponding to region we define
a variable which artificially is 0, and thus has 0 variance, for strata (i’,/’) with
i’ /--likewise industry/’uand impose upper bounds on the variances of the corres-
ponding estimated totals. Thus we have H 25 20 500 and K- 25 / 20 =45, so
that K << H; also, out of the HK (22,500) stratum-constraint combinations we have
nonzero variances for only 2H (1,000), a fraction 2/45. The 25 region constraints,
and likewise the 20 industry constraints, are mutually nonoverlapping in the sense
of6.

10. Nonlinear cost functions. Here we discuss results that we may obtain when
the cost function is not the simple Y. Chrlh Of (1.2).

The first extension is to Y E
Chrt h, with E an exponent independent of h. In essence,

all the results of 2 through 9 may be obtained; there is no proof for 7; yet there
appears to be no better procedure, and we conjecture that the proofholds. In practice,
E will be between 0 and 1, reflecting a diminishing cost per additional unit as sample
size increases.

A more general extension is tcr’.fh(Xh) where: (1) Xh 1/rth; and (2) f’ (Xh) >0: fh
is convex with respect to Xh, not nh. In this instance, the solution vector X
(xl, ", xH) is unique; in 4, we may again minimize Y Ukgk, with the solution vector
U being unique if (as is generally the case) the rank of ((Ba)) is K. Although Y. Ukgk
is not convex (at least, not proven to be), we may show that the matrix A is always
positive definite. Results for 7 are as for the first extension. We cannot use the rule
of 8 (but may develop a cruder rule), for estimating closeness of cost at current
solution to cost at optimum.
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THE FINITE MEMORY PREDICTION OF
COVARIANCE STATIONARY TIME SERIES*

H. JOSEPH NEWTON’ AND MARCELLO PAGANO

Abstract. An algorithm is presented for conveniently calculating h step ahead minimum mean square
error linear predictors and prediction variances given a finite number of observations from a covariance
stationary time series Y. It is shown that elements of the modified Cholesky decomposition of the covariance
matrix of observations play the role in finite memory prediction that the coefficients in the infinite order
moving average representation of Y play in infinite memory prediction. A by-product of the algorithm is
the extension of Pagano’s result (J. Assoc. Comput. Mach., 23 (1976), pp. 310-316) on the convergence
down the diagonal of the Cholesky factors of a banded Toeplitz matrix to a similar result for a general
Toeplitz matrix. This result is applied to autoregressive-moving average time series. A numerical example
illustrating the results of the paper is presented.

Key words, covariance stationary time series, minimum mean square error linear prediction, modified
Cholesky decomposition algorithm, autoregressive-moving average time series

1. Introduction. An important part of the analysis of data Y(1), ., Y(T) from
a time series Y is the construction of predictors Y(t + hit) and prediction variances

2 =E{Y(t+h)-Y(t+hlt)}2 of Y(t+h) given the data Y(1) Y(t) up to timeO’t,h
t. One often does this for several values of and h; t=tl,..., t2 -<_T and h
hi,..., h2. Then the adequacy of a model for Y can be investigated by comparing
the one step ahead prediction errors e(t)= Y(t)- Y(tlt-1), 1,. ., T with white
noise while competing models can be compared in terms of how well they predict
observed data for various horizons h. Finally, a basic aim of time series analysis is to
construct predictors Y(T + 1 IT), Y(T + 2IT), of unknown future values of Y.
Calculation of predictors and prediction variances has been particularly important in
the special case of finite parameter autoregressive-moving average (ARMA) processes
and their special cases of pure autoregressive and pure moving average processes,
particularly since their advocacy by Box and Jenkins (1970).

Many authors have proposed using approximate infinite memory predictors when
available rather than finding the exact finite memory predictors. For example in
ARMA time series one can fairly easily construct the infinite memory predictors (see
Box and Jenkins (1970, p. 126) for example) while the exact finite memory quantities
are not easy to determine. In many ARMA processes the infinite memory predictors
are entirely adequate but often in small or moderate samples from close to linearly
deterministic series the exact and approximate predictors can differ significantly. This
fact has been discussed at length in studying the evaluation of the exact Gaussian
likelihood of the parameters of an ARMA process since can be written as a
function of the one step ahead prediction errors and prediction variances conditional
on a particular set of parameters (see Ansley (1979) for example). Further, in the
case of a general covariance stationary time series, infinite memory predictors are not
available so one must construct finite memory predictors.
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Existing algorithms for finding exact finite memory predictors and prediction
variances are of two basic types: 1) solving directly the defining Toeplitz normal
equations in various efficient ways (see Kailath, Vieira and Morf (1978) or Grcar and
Sameh (1981) for example); and 2) when possible calculating them recursively; for
example using the Kalman filter algorithm (see Gardner, Harvey and Phillips (1980)
for a description of the Kalman filter algorithm applied to ARMA processes).

The purpose of this paper is to describe an algorithm for the general case and
to apply the results to ARMA processes. The algorithm is based on the modified
Cholesky decomposition (MCD) of a Toeplitz covariance matrix. It extends the results
of Pagano (1976), based on the work of Bauer (1955), concerning the MCD of the
banded covariance matrix of a pure moving average process to the case of a general
Toeplitz covariance matrix.

Section 2 contains the algorithm as Theorem 1 which also shows explicitly how
the quantities required in the algorithm approach the quantities used in infinite memory
prediction as memory length increases. In 3, Theorem 2 presents the results of
applying Theorem 1 to ARMA processes. Also Theorems 1 and 2 are used to prove
a number of results about the factors in the MCD of various covariance matrices
related to that of the ARMA process, thus greatly simplifying the algorithm. These
results are collected as a lemma. We note that our algorithm avoids the necessity of
calculating the entire state covariance matrix at each step as in the prediction algorithm
using the Kalman filter algorithm while having the advantage of the numerical stability
afforded by the MCD algorithm (see Wilkinson (1967) for example).

Finally a numerical example illustrating the lemma of 3 is given in 4.

2. Finite memory, horizon h, minimum mean square error linear prediction of
covariance stationary time series. Consider a zero mean covariance stationary time
series {Y(t),t=O,+l,...} with autocovariance function R(v)=E(Y(t)Y(t+v)).
Then given observations Y(1), ., Y(T), the horizon h, memory T, minimum mean
square error linear predictor Y(T + hiT) of Y(T + h) is given by that linear combina-
tion of Y(1), , Y(T) that is closest to Y(T + h) in mean square error. The corre-
sponding prediction variance rr. is given by this minimum mean squared error

=E{Y(T+h)-Y(T+hIT)}.O’r,h

Thus (see Whittle (1963, p. 47))
T

Y(T + hiT) E AT.h (f) Y(T + 1 -f),

where kT.h (hT,h (1), , hr,h (T))
T satisfies the normal equations FTkT,h rr,h, where

rT,h (R (h)," ", R (h + T- 1))T, and FT TOEPL (R (0),. ., R (T- 1)), i.e., FT is
the T x T symmetric Toeplitz matrix having (/’, k) element R (1/- k 1). We denote the
transpose of a matrix A by AT and the transpose of the inverse (or the inverse of the
transpose) of A by A-T.

Suppose that Y is purely nondeterministic, i.e.,

troo 2r exp log f(to) do) > 0,

where f is the spectral density function of Y. Then Y(t) can be represented as the
limit in mean square of an infinite order moving average process, i.e.,

(2.1) Y(t) Y’. o(k)e (t k),
k=0
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where e(t) is the infinite memory horizon one error in predicting Y(t), and
E(e (T)e (T-f))= ;lcr for all integer T and j, where 8i is the Kronecker delta. Also
the horizon h, minimum mean square error linear infinite memory predictor Y(T +
hiT, T 1, and prediction variance 2

trr.h.o0 are given by

(2.2) Y(T+hlT, T-1,...)= , Bo0(k)e(T+h-k),
k=h

h-1
2 2 2(2.3) crr.h,o0 cro0 Y. /8o0 (k).

k=0

The process Y being purely nondeterministic also means that its autocovariance
function is positive definite. Thtis for all T we can form the modified Cholesky
decomposition (Wilkinson (1967)) Fr LrDrL of Fr, where Lr is a T T unit lower
triangular matrix and Dr is a T T diagonal matrix. An important property of
and Dr is that they are nested for increasing T, i.e.,

LT+I IT DT+I
0T dT+l

Thus the (/, k)th element of LT will be referred to as Lk and the jth diagonal element
of DT as d for any T _-> f, k.

The following theorem shows the role played by LT and DT in finite memory
prediction.

THEOREM 1. Let Y be a purely nondeterministic covariance stationary time series
with covariance function R. Let FT LTDTL be the modified Cholesky decomposition
of the covariance matrix of YTT= (Y(1), , Y(T)). Define eTT (e(1),..., e(T)) by
LTeT "T. Then

T+h-1a) Y(T+hIT)=,k=h Lv+h,T+h-ke(T+h--k),
=E(Y(T+h)-Y(T+hlT)}2=E-b) O’T,h k=oLT+h,r+_kdr+h_k.,

C) i) limT-.o0 Lr,T- =/3o0(f), f => O,
ii) limT_.o0 dT 2

Proof of Theorem 1. a) Defining the T T permutation matrix PT to be a matrix
of zeros with ones on the main reverse diagonal, we have Y(T +hiT)= kTT,nPTYT,
where IT],T,h =[T,h since premultiplication (postmultiplication) by PT reverses row
(column) order of a matrix. Thus Y(T + hiT) r,hr’IpTYT r,hPTFF1pTPTYT
T -1IT.hFT YT, where )T.h =PTrT.h since P IT, and since for the symmetric Toeplitz

matrix F1, we have PTFrlPT=F1. Thus Y(T+hlT) T
l)T,hLTD

T F1 TI)v,L?rTD er. To show that this is the result in a) we note 1) 0r,-(R (T + h-
1),... ,R(h)) is the last row of Fr+h without its last h elements; 2) FrLr.rrDrr
for all T; and 3) because of the nesting of the Lr and Dr, LrrD1 is the T T matrix
consisting of the first T rows and columns of the upper triangular matrix LT+DT+
-1Fr+hLr+h.

r -T F1 -T -1Thus (OT,hLT D )k=(FT+hLT+hJDT+h)T+h,k=(FT+hFSFI+hLT+h)T+h,k=LT+h,k,
proving a).

To prove b), note that 2 T -1 T -1
(7" T,h R (0)- rT,hFT rT,h R (0) --OT,hL SrTD StiLT OT,h

T T TR(O)--IT,aDTIT,a, where Ir,h=Or,hLrrD which as above is the row vector
(LT+h,1, , Lr+h,r). Also

T+h

R (0)= FT+h,T+h (LT+hDT+hLTT+h)T+h,T+h E LT+,kdk,
k=l

thus proving b).
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To prove c) we first note that multiplying both sides of (2.1) for T by e (T-f)
and taking expectations gives

2E(Y(T)e(T-f)) o(1)r.

We next note that

E (e (T)e (T -j)) 8 dT,
T

E(Y(T)e(T-j))= , LT.kE(e(k)e(T-j))=LT.T-idr-i
k=l

and that e(1)= Y(1), e(t)= Y(t)- Y(t[t- 1,. ., 1), 2, ., T, where the notation
Y(t]t-1,..., 1) makes explicit which Y’s are used in predicting Y(t). Then by the
stationarity of Y we have that

LT.T-idT-i =E(Y(T)e(T-j))=E{Y(T)[Y(T-j)- Y(T-jIT-j-1, 1)]}

E{Y(0)[ Y(-j)- Y(-j]-j 1, , 1 T)]}

by subtracting T from all indices. Then letting T approach infinity gives that

E{Y(O)[Y(-j) Y(-/’]-/" 1, ,1 T)]}-E[Y(O)e(-j)] (l’)r2
since the memory T prediction error converges to the infinite memory prediction error.

2A similar argument shows dT- ro thus proving c). I-1
Thus comparing a) with (2.2) and b) with (2.3), it is clear that the elements of

LT and Dr are playing the role in finite memory prediction of B( and 2ro in the
infinite memory case, while c) makes explicit the connection. In the next section we
describe how this algorithm can be simplified for an ARMA process.

3. Application to ARMA processes. The univariate ARMA process {Y(t),
0, +1,...} of order (p, q) and parameters a(1),..., a(p),/3(1),...,/3(q) and r is
defined by

Y. a(j)Y(t-j)= , (k)e(t-k), t=0,+l,...,
=o k =0

where a(0)=/(0)= 1, and E(e(t))=O, E(e(t)e(t+v))=Svr2. We assume that the
zeros of the complex polynomial g(z) Y---o a (j)z are all greater than one in modulus
and that g (z) and h (z) Y.q kk=0/3(k)z have no common zeros so that Y does indeed
have an infinite order moving average representation.

Then given a realization YT, (Y(1), ., Y(T))7, from Y(. we define the follow-
ing quantities:

i) The T T covariance matrix Fz.7, TOEPL (Rz(O), , Rz(T- 1)) and its
MCD Fz,7, =Lz,rDz,7,L z, 7,, where Z(.) is an autoregressive process of order p with
coefficients a (1), , a (p). ThusZ(.) is referred to as the autoregressive part of Y(.).

ii) The vector XT, (X(1) Lz,7,7,, its covariance matrix Fx,r
-1 ,L-7,E(XT,X) Lz,7,F.7, z,7,, where Fr,7, TOEPL (Ry(0), , Rg(T- 1)) andtheMCD

FX,T TLx,TDx,TLx,T.

iii) The vector ear (e(1), ..,
We note that since Lz.7, and Lx.7, are nested for increasing T, then so are XT, and

eT,, i.e., X+I (X, X(T + 1)), e+l (e, e(T + 1)).
With these quantities defined, the basic ARMA algorithm is contained in the

following theorem:
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THEOREM 2. a)Y(T+hlT) =X(T+h[T)-Y.=la(j)Y(T+h-jIT), h>l,=
where

q

Y. Lx,r+n,r+n-ke(T+h-k), h 1,...,q,
i) X(T+hIT)=

O, h>=q,

ii) Y(T+h-[IT)= Y(T+h-i) ifi>=h;
b) 2 h-1

O’T,h Ek=0 (Lz,T+hLx,T+h)2T+h,T+h-k dx,T+h-k, h
2

c) (Lz,rLx,r)r.r-k
Proof. Since Fv, Lz,rFx,rL,r Lz,rLx,rDx,rL,rLz,r and the MCD of a

matrix is unique we have that Lv,r =Lz,rLx,r and Dv,r =Dx,r. Thus Theorem 2b)
and 2c) follow immediately from Theorem lb) and lc). We note also that this further
factorization Lv,r Lz,rLx.r produces in two steps the transformation Yr Lv,rer
Lz,rLx,rer from Y to the uncorrelated set of one step ahead prediction errors er.

To prove Theorem 2a), note that since Xr=Lz,r , we have xv,r,h=
E(XrY(T+h)) LZ,TY,T,h. Also for T + h > p,

]=1

p

x,r,h
]=1

where

0,r,h E(XTX T + h )).

Thus V,T,h LZ,TIlXY,T,h LZ,TIX,T,h --=10(f)OY,T,h-i" Therefore,

Y(T+h[T) T ---T---r .-.-1
Y,T,hLz,TLX,TgX,TIT

T T L-T -T -1
X,T,hLz,T z,Lx,TDX,TIT

p

@y,T,h_iLTTL-T -1
x,TOx,T eT

j=l

p
T -T -1px,r,hLx,7.Dx,ew Y. a(j) Y(T + h -j[ r).

/=1

An argument identical to that used in the proof of Theorem l a) proves part i) of 2a).
To verify 2aii) we substitute for eT and XT to obtain OY,T,h-’Lz,TT-TL-T’D-1x,T X,TeT

TT _iF!rYT Y(T + h j), since PY,T,h-i is the (T + h -/)th row of FV,T.OY,T,h
From Theorem 2 and the definitions given above then, to find Y(T + h} T) and

O’T,h for h hi, , h2 and T T1, , T. one needs the matrices Lx,r2+,2,
andDx,r=+h= as well as the vectors Xr= and er_. However the following lemma provides
significant reductions in the task of computing and storing these arrays.

Lz,r is given byLEMMA 1. a) The jth row of -1

(1, 0"-1),
I,T= J(ai_,(/" 1),..., i_,(1), 1, err_i), I" 2,..., p,

,.(OT-p-l, O(p),""", O (l), 1, 0-), j =p + 1, , T,
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where defining (i)= (J), i 1,..., p, we have

a (i) a (k)a (k -i)
a-a(]) 1--a2k(k) 1 <=] <=k 1 <=p.

b) The elements of XTcan be obtained by X(1) Y(1) while

j-1

Y(j) + Y. ai-(l) Y(i l), j 2,..., p,

X(/)
p

Y(i)+ 2 ,(l)Y(i-t), i>p.
/=1

c) The (i,/’)th element of Fx,T is given by

E ai-a(/-m) Y’. ai-a(i-l)Rv(1-m), i, j >-- 1,
=max(1,/-p) max(1,i--p)

Fx,i.i }Rx([i-f[), i, i >P, li-i[ <=q,
(0, if l <-_j<=p and i>p and i-j>q orif i, f >p and ]i-fl>q,

where Rx(v) r
2 -Y’.k=o(k)(k +v), v =0, ,q.

d) i) The unit lower triangular matrix LX,T for T >=p + q consists of zeros except
]’or the elements of its first p+q rows and columns and the q elements
Lx.k.k-q, ", Lx.k,k-a, Lx.k,k 1 of row k ]’or k >p + q,

ii) LX.T,T-k [3 (k ), k 1, , q as T ,
iii) The vector eTdefined by LX,TeT =XTcan be obtained by e(1) =X(1) while

e(f)=X(f)- x(ld_q)Lx.j,e(l), f 2.
e) Let T(0), T(1), T(2), be the coecients of the infinite order moving average

representation of the autogressive part of Y(.), i.e., T(0)=I while T(/’)
-1--2/=max(0,]-p) O (f l)y(l), >= 1.
Then
i) Lzp (L-1 -1 --YJ Lz.irLlri_k, k <f <p, where -1z,p) Lzdd-k r=i-k+l Lz.i.k

denotes the (f, k )th element ofLz,
ii) Lz.+j.o+i-k y(k ), k O, , f, f >= O,

p
iii) Lz.p+i,t --Yr= a (r)Lz,+i-r,t, 1," ", p 1, f >= 1,

K
iv) lim:_,oo Y,i=o "Y2(k) lim:_,oo Yil L2 2

z,x, 1/[I’= (1-ai (])),
p-1 L2v) limtc_,oo i=1 z,tc, 0.

Proof. The expression for l" in a) is the well-known basis for Durbin’s (1960)
recursive algorithm for calculating autoregressive parameters a (1),..., a (p) and 0-2

from covariances Rz(0),... ,Rz(p): al(1)=-Rz(1)/Rz(O), cr2 =Rz(0)(1-a(1)),

ak(k)=- Rz(k)+ 2 ak-l(j)Rz(k-j) /O’2k-1,
i=1

ak(J)=ak-l(J)+ak(k)ak-(k --i), 1 <=j <=k 1,

o-, crY,_1 (1 a (k)), k =2,...,p.
2 2Then a(/’) =a(/),/" 1,..., p and r =ro. If we write the second equation above

for [ and k -] and solve for ak-l(l) we obtain the backward recursion given in a).
The result in b) is a direct consequence of a) and the fact that XT LT.YT.

Similarly the first expression in part c) is obtained by comparing (i,/’) elements of
1-’X,T LI,Ty’y, L-Tr. Z,T, while the second expression is true since for ]>p, X(])=
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pEt=oa(l)Y(f-l)=ok=o(k)e(]-k), i.e., X(p+ 1),... ,X(T) is a realization from
a moving average process of order q with para.meters/ (1), ,./3 (q) and cr 2. Further,
if 1 -<_ f <_- p, >p and -] > q we have Fx,i,i =1 ai-l(j m Y,t=i-o a (i 1)Rv(l m)
and this second summation is equal to=0 a (l)Rv(l (i m)) 0 since m >_- -/" > q
and Y,t=oa(l)Rg(l-v)=O, v >q, for an ARMA process. Thus part c) details where
the nonzero elements are in Fx,T, and since the pattern of zeros in Lx,T is the same
as that of the lower triangle of Fx,T we have part di) from which diii) follows
immediately.

To prove part dii) we note that Theorem lc) shows that the rows of Lz,T are
converging to the coefficients 3’(" of the infinite order moving average representation
of Z(. ), while Theorem 2c) shows that the rows of Lz,TLx,r are converging to the
coefficients of the infinite order moving average representation of Y(. ). Thus the
rows of Lx,T must be converging to the coefficients of the infinite order representation
of the moving average part, i.e., to/ (1),...,/3 (q).

Part ei) is obvious, eii) follows because multiplying the (p +j)th row of LZ,T times
--1the (p +]-k)th column of Lz, for k ->0 gives y(k,p)a(l)Lz,p+i,p+i_(k_l)=8k, i.e.,

the Lz,,/i,,/j-k satisfy the same difference equation in k as 3"(k). We obtain eiii) by
multiplying the (p +/’)th row of L-1

z,T times the kth column of Lz, for k 1, , p 1
and ] _-> 1.

Finally ev) follows from eiv) and eii), while eiv) is proved as follows. The infinite
order moving average representation of Z(t) is given by Z(t)=k=o 3"(k)e(t-k) and
thus Rz(O)=r2k=o3"2(k). But from Durbin’s algorithm we have that Rz(O)=

2 P
r (1 -a (])) from which the equality of the first and third terms in eiv) follows.
The equality of the first and second terms is a restatement of the fact that the rows
of LZ,T are converging to the 3"(. )’s.

Summary of the ARMA algorithm. Given Y(1),..., Y(T2), a(1),... ,a(p),
2/3 (1), ,/ (q), o"2 and convergence factors 81, 8E one obtains Y(T + hl T) and

for h h 1, , hE and T T1, , TE by performing the following steps"
1) Find Ry(O),. ,Rv(p+q) via the algorithm of McLeod (1975), Lz.o-1 and

1/I1=1 (1-o- (f)) by Lemma la), and Xr by Lemma lb).
2) Calculate M1 and 3"(0), 3"(1),..., 3"(M1), where M1 is determined so that

11o3"2(/’)-1/1-I=1 (1-c(/’))11<81 for some norm. Then calculate the first p-1
elements of rows 1,..., M1 of LZ,T2+ha by Lemma 1 ei) and eiii). Note that Lz,r+h
is not needed if one is purely calculating predictors.

3) Calculate the first p +q elements of the first p +q rows of [’X.T+h2, Lx,r/h
and the first p /q diagonal elements of DX,T2+h2. Then successively calculate the q
nonzero elements of rows p + q 4-1, , ME Of Lx,r+h and the corresponding diagonal
elements of Dx,r+h, where ME is determined so that k --/ (k)ll < 82, k
1,..., q and IId,,= =11 < =.

4) Find er: by Lemma 1 diii) with fl (k) replacing Lx,i,j-k for/" >
25) Calculate the Y(T + hi T) and trr,h using Theorem 2a) and 2b) taking advan-

tage of Theorem 2c) in evaluating 2
17"T,h and Lemma 1 dii) in evaluating Y(T + h[ T).

We note the significant simplification of the algorithm if one only wants h h2 1
2since then e(T)= Y(T)-Y(TIT-1) and dx,T=crT_l,1. This special case, with a

slightly different factorization of Ly,T is essentially the algorithm of Ansley (1979) for
evaluating the ARMA Gaussian likelihood. Thus the results of our Lemma 1 would
greatly reduce the computations in Ansley’s algorithm. We give a numerical example
illustrating the results of the lemma in the next section.

We end this section by considering the special case of a pure autoregressive
process (q 0) and a pure moving average process (p 0). If q 0 we have Fy,T
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FZ,T Lz,TDz,TL Tz,T and thus LX,T IT, DX,T DZ,T. Thus

p

Y(T+hlT)=- .. a(f)Y(T+h-jIT), h >=1,

h-1 h-1
2 2 2 y2O’T,h-- E Lz,T+h,T+h-kdz,T+h-k--O" E (k) if T>p.

k =0 k =0

If p Owe have FZ,T IT which gives that Lz,T DZ,T IT and thus Fy,T FX,T
TOEPL(Rx(0),... ,Rx(q), 0,..., 0), so that

Lx.r+h.r+h-ke(T+h--k), h=O,...,q,
Y(T + h IT)

O, h>q,
h-1

2 2
O" T,h E T kLX,T+h, +h-kdx,T+h- h > 1

k=0

And Lx,w,w_k-(k), dX,T-9"O"2 as T-- oo. This is the result given by Pagano (1976).

TABLE
Variances and first 10 autocorrelations OY(’), Oz(’), Ow(’) of Y,

autoregressive part of Y and moving average part of Y, where Y is the above
ARMA (4, 3) process.

v py(tg) pz(t)) pw(t))

-.2227 .3806 -.4548
2 -.0749 -.0112 -.0230
3 .0616 -.2897 .1347
4 -.1949 -.4128 0
5 -.0015 -.2107 0
6 .0250 .0115 0
7 .0233 .1603 0
8 .0560 .1919 0
9 .0134 .1036 0
10 -0.102 -.0091 0

Variance 1.1306 1.3891 1.4124

TABLE 2
First 10 terms in infinite order moving average representation of each of

series in Table 1.

j ARMA AR part MA part

-.272 .336 -.608
2 -.090 .031 .083
3 .025 -.174 .190
4 -.198 -.370 0
5 .015 -.201 0
6 .041 -.018 0
7 .037 .114 0
8 .058 .166 0
9 .006 .101 0
10 -.019 .007 0
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4. A numerical example. Consider the ARMA process Y of order p 4 and
q =3 with ct(1)=-.3357, a(2)=.0821, a(3)=.1570, a(4)=.2567, /3(1)=-.6077,
/3(2) .0831, fl(3) -.1903 and tr2= 1. Then the variances and first 10 autocorrelations
of Y (denoted py(.)), the autoregressive part of Y (denoted pz(’)) and the moving
average part of Y (denoted pw(" )) are given in Table 1, while Table 2 gives the first
10 terms in the infinite order moving average representation of Y, Z and W.

Finally Table 3 illustrates the convergence proved in 3.

TABLE 3
The matrices Lz,loLx, lo, Lz.o, Lx,o.

Lz,oLx,o:
1

-.223
-.075 -.252 1
.062 -.064 -.250 1

-.195 .019 -.091 -.247
-.002 -.205 .013 -.090
.025 .004 -.206 .013
.023 .032 .008 -.206
.056 .038 .041 .007
.013 .062 .042 .041

Lz,o:
1
.381

-.011 .450
-.290 .116 .403
-.413 -.155 .053 .336
-.211 -.389 -.172 .031
.012 -.252 -.382 -.174
.160 -.058 -.226 -.370
.192 .102 -.031 -.201
.104 .178 .112 -.018

L10:
1

-.603 1
.208 -.702 1
.338 .102 -.653 1

.177 ..075 -.583
.180 .075

.180

-.266
-.094 -.271 1
.021 -.091 -.270

-.200 .024 -.090 -.271 1
.014 -,199 .025 -.090 -.272 1

1
.336 1
,031 .336

-.174 .031 .336 1
-.370 -.174 .031 .336 1
-.201 -.370 -.174 .031 .336 1

1
-.602 1
.077 -.607
.188 .082 -.606

.189" .083 -.606
.190 .083

1
-.607 1
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A MODIFIED GALERKIN PROCEDURE FOR BENDING
OF BEAMS ON ELASTIC FOUNDATIONS*

J. BIELAKt AND E. STEPHAN

Abstract. In this paper we give a formulation for bending of beams supported on elastic foundations
by incorporating the Green’s function for different foundation models, e.g., Pasternak and elastic half
space. For the corresponding Galerkin procedure we derive quasi-optimal asymptotic error estimates
showing the same order of convergence as known for the standard Galerkin procedure for beam bending
problems. The error analysis hinges on a Gtrding inequality for our bilinear form which is proved with
the calculus of pseudodifferential operators. The numerical experiments show superconvergence and
underline the theoretical results.

Key words, beam bending, elastic foundation models, Green’s function, Galerkin procedure, finite
elements, error analysis.

1. Introduction. A large number of models have been developed to describe the
behavior of an elastic foundation under surface load. Those most widely used are
discussed in [1]. The simplest model of a continuous elastic foundation has been
provided by Winkler [2] who assumed that the reactive forces of the foundation
carrying a loaded beam were proportional at every point to the deflection of the beam
at the point of application of the load. This is equivalent to assuming that the foundation
consists of closely spaced, uncoupled linear springs. In order to achieve some degree
of interaction between the springs, Filonenko-Borodich [3] introduced a modification
of the Winkler model in which the top ends of the springs were connected to a
stretched elastic membrane subjected to a constant tension field. To the same end
Pasternak [4] assumed the existence of shear interactions between the spring elements.
Both models have the effect of introducing in the expression for the reactive force a
term which is proportional at every point to the second derivative of the deflection
of the beam. This resulting model, generally known as the Pasternak foundation, is
an improvement of the Winkler model.

Analytical solutions [5] are available for the problem of a prismatic beam on a
Pasternak type foundation for several loading conditions. We develop a finite element
analysis for beam bending problems with elastic foundations. First we consider a beam
of variable cross-section on a Pasternak foundation and then we examine a foundation
model obtained via the Green’s function for the elastic halfspace.

The equation of equilibrium for the beam on an elastic foundation can be written
in normalized form as

(1.1) (Kw")"+q=p inI=(-L,L), L<,

with K as the bending stiffness of the beam, and p as the applied load. In the Pasternak
foundation (Fig. 1) the deflection w of the beam and the contact pressure q are related
by

(1.2) q -tw"+ kw in L t, k R.

We assume throughout that the beam is in perfect contact with the soil, and therefore,
that the deflection w and the contact pressure q of the beam and of the soil coincide

* Received by the editors October 16, 1981, and in revised form June 15, 1982.

" Department of Civil Engineering, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 and

Technische Hochschule, Darmstadt, German Federal Republic.
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Shear Layer
Beam in Bending

FIG. 1. Beam on Pasternak-type foundation (Problem I).

in L Substituting (1.2) into (1.1) results in

(1.3) (Kw")"- tw" + kw p in L

Here w satisfies the boundary conditions

(1.4) ((Kw")’- tw’)(+L) 0 w"(+/-L).

Thus we can pose:
Problem I. Given a force p, (x) > 0 and t, k R find the deflection w that satisfies

(1.3)-(1.4).
Note. (i) The boundary conditions (1.4) reflect the fact that the total shear force

and the total bending moment vanish at the end points x +L. Here total denotes
the sum of the effects on the soil and the beam.

(ii) Our variational formulation covers also the case of a concentrated load in L
As a more realistic model (Fig. 2) we consider the problem in which the soil

extends to infinity away from the beam. That is, instead of (1.2) there holds

(1.5) q -tw"+ kw in (-, ),

Beam in Bending

11111111111

FIG. 2. Beam on Pasternak foundation (Problem II).

or, equivalently,

Since the soil surface is traction-free outside the beam, i.e., q vanishes in N\f, (1.6)
reduces to

e-Ix-x’l q (x’) dx’, x .(1.7) w(x) --L
Now (1.7), together with (1.3) and the boundary conditions

(1.8) (Kw")’(+L) 0 w"(+/-L),

yields the following problem for the deflection of the beam and the contact pressure
in its interior.
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Problem II. For given p, K, and k as above find (w, q) satisfying, in/,

(1.9)
L

-g31x-x’l

(Kw")"+q =p,
L

q(x’) dx’=- I g(Ix -x’l)q(x’) dx’= (Gq)(x)
-L

with

(1.10) (w")’(+/-L) 0 w"(+/-L).

Note. (i) The boundary conditions (1.10) represent the vanishing of the shear
force and bending moment at the end-points of the beam. Actually, we will see in
3 that the contact pressure q includes concentrated forces at x +L; this causes the

shear force to be different from zero at both ends of the beam. Thus, if Q+ is the
concentrated soil reaction at x +L, (1.10)1 must be replaced by

(1.11) (rw")’(+/-L) Q+/- O.

(ii) Once the solution (w, q) of Problem II has been found, the displacement w
of the foundation in R\I can be obtained from (1.7).

The formulation (1.9), (1.10) can be used for studying the bending of beams
supported on any other linear elastic foundation model by changing the Green’s
function in (1.9). As an example we consider the solution for an isotropic,
homogeneous, elastic halfspace. The Green’s function for points on the soil parallel
to the beam axis is obtained by averaging the contact pressure across the width of
the beam. Thus, by averaging Boussinesq’s influence function for a point load, i.e.,
the Green’s function for the elastic halfspace, we obtain [6]

l+4i+nlx-x’l(1.12) (Ix -x’l) -- In
nix

H6re the dimensionless parameter rt e R measures the relative stiffness between the
beam and the soil. The corresponding boundary-value problem is obtained by substitut-
ing ff for g in (1.9), and will be denoted as Problem III in the sequel.

The aim of this paper is to present a functional analytical setting for the foregoing
beam bending problems and to derive an asymptotic error analysis for Galerkin
procedures with finite elements. In 2 we solve Problem I with the standard variational
formulation. Problems II and III are treated in 3 by using a modified Galerkin
procedure incorporating the Green’s function for the soil. Here we essentially use the
calculus of pseudodifferential operators. In 4 we give some numerical results and
experimental error estimates in order to underscore our error analyss.

2. Standard Galerkin procedure for Problem I. A variational formulation for
(1.3), (1.4) is obtained by multiplying (1.3) by a smooth test function v and then
integrating the resulting equation by parts. Thus we are looking for w e H2(I) such that

(2.1) a(w, ) =f()

for all H2(I). Here H2(I) is the usual Sobolev space obtained by the closure of
C(I) in the norm

2

(2.2) 11112 Y [ID[10
i=0
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where [l" IIo (’,")/2 denotes the L2-norm induced by the L2-scalar product

(2.3) (v, 7)o I vt3.

Due to the boundary condition (1.4) the bilinear form a(.,. in (2.1) reads, with (2.3),

(2.4) a (w, ) := (w", ’")o + t(w’, ’)o+ k (w, ff)o,

whereas for given p

(2.5) (p,

Obviously there exist constants c, c’, 3’ > 0 such that for all w, H2(I)

(2.6)

(2.7)

and

(2.8)

a(w,

In (2.8)11"11-2 denotes the norm of the dual space/--2(1) of H2(I) (see [7]). Since
the &distribution belongs to/_)-1/2- for any e > 0, a point force p is also allowed in
our formulation.

As usual (2.1) is solved approximately in a finite dimensional subspace Sk of
H2(I) [8], [9] with a conform Galerkin procedure, i.e., we are looking for whe
Sk H2(I) such that

(2.9) a(Wh, lh) f(l’h)

for all #h e S.
Here h denotes the meshsize; t-1 is the degree of the piecewise polynomials

and k describes the conformity, i.e. Sk c H(I). It is well-known that the one-
dimensional finite element spaces S have the following properties:

Approximation property. For any u H (I) there exists a t S with _-> r and a
constant c > 0 independent of h and u such that for q <= min {k, r}

(2.10)

Inverse assumption. For q-< r-< k there exists a constant M > 0 independent of
h such that for all t7 Sk

(2.11)

Due to (2.6)-(2.8) the Lax-Milgram lemma gives unique solvability of the
variational problem (2.1). Therefore by conformity of the method the Galerkin
procedure converges with quasi-optimal order.

THEOREM 1. (i) For given p /_-2(i) there exists exactly one solution w H2(I)
of the variational problem (2.1).

(ii) For any h, 0 < h <-_ ho, the finite system of algebraic equations (2.9) is uniquely
solvable and Cea’s lemma"

(2.12) IIw Wh[12 <= C inf Ilw -xll2
xesl,k
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(iii) Furthermore with (2.10) the error estimate (2.12) implies

(2.13) Ilw-w, llz<-_chllwll, u=min{t-2, s-2}

By the standard arguments for elliptic b.v.p.’s [10] the solution w of (1.3), (1.4)
satisfies the a priori estimate

Therefore for a given point force p 6 H--1/2- (I) we have wn7/2- (I) for any
e >0. Thus from (2.13) with piecewise cubics in S’2 there holds the energy norm
estimate, in agreement with [9, p. 347],

(2.15)

A simple application of Sobolev’s inequality [11] with 6 _-> 1, 13’1--< 1, C >0,

(2.16) Iou(x)l <= c6 +-x/=-tt) (llu II / ltu II0).

yields, for u := w wh and 6 h -1, the pointwise estimate in the sup-norm

IIw-w,ll-O(h-).
if together with (2.13) an LZ-error estimate is used. The L2-estimate could be obtained
via the Aubin-Nitsche trick. We omit the details and focus on superconvergence in
the nodal points z L This corresponds to [9, Thm. 2.4] for second order problems.
Namely, there exists a c > 0 such that

(2.17) [(w-wa)(z)l<-ch=llll_/2_, u=min{t-2,-e}.

The error estimate (2.17) is proved as follows. Let z denote an arbitrary point in I
and consider the auxiliary distributional problem

a(g, )= #(z)

for all # e H2(I), where g is the Green’s function for the beam. Then the choice
e w Wh yields

le(z)[
(2.18)

xSl,"k

For a nodal point z we have

(2.19) inf IIg-xll=ch , u min {t-2, -e}.

Hence (2.18) together with (2.19) gives (2.17). Thus (2.17), showing order 3 for the
error in w, implies with (1.2) an error in q and w" of order 1, whereas our numerical
results show further superconvergence

Ileoll- O(h-) and Ilew,,l[oo O(h-).

3. Modified Galerkin procedure for Problems II and III. For Problem II a
variational formulation is obtained by multiplying (1.1) by and (1.7) by ?/. The
resulting bilinear form

(3.1) b((w,q), (r, )):= (w", v")0+ (q, )o-(W,l)o+(Gq,)o
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is obviously continuous onH L2 whereH {w L2" W" L2} c H2(I). Thus the weak
formulation of Problem II reads as follows" Find (w,q)HL2 such that for all
(, ) H L2 there holds

(3.2) b((w, q), (, t))= (P, )o

for given p. We remark that by allowing q to include point forces at x +L, e.g.,
q H-1, (3.2) yields (1.9) together with the boundary conditions (1.10)2 and (1.11).
Moreover, these conditions are natural, which means that when we approximate, as
below, with finite elements there are no boundary restrictions on these elements.

The coercivity of b (.,.) hinges on the mapping properties of the Green’s function
g in (1.9) being a pseudo-differential operator of order-2.

LEMMA 3.1. For any r ff and q t’(I) {d/ H (R)" d/ 0 in \_} there holds

(3.3) IIGq I1*+ <-- c IIq Ilr*
with Ilqllr* -inf IlqllH,.

Proof. Taking the Fourier transform of

(3.4)

we have

Gq (x Ia g (x x ’)q (x ’) dx ’,

q() ff()4()

with the Fourier transformed Green’s function ff from (1.9)

/k(3.5) ff(:) =/;2.
But (3.5) shows that

if(C)

This implies that G is a pseudo-differential operator (0do) of order-2 and therefore
(3.3) holds.

Now (3.5) also implies coercivity of the bilinear form b(.,.) on H /--1, in the
form of a Grding inequality"

LEMMA 3.2. There exists a constant 3’ > 0 such that for all (w, q) H ISI-
(3.6) b((w, q), (w, q)) >- q), (w, q))i,

where k is a compact bilinear form on (H x-).
Proof. With the principal symbol in (3.5) of G we have, via Parseval’s equation,

(Gq, q)o (Gq 4)0 [_ (1 + I@l=)-=[q*(@)l= d + [ (1 + 112)-2- i4*(s)[= d
(3.7)

v{llq*ll--cllRq*ll,+llq*ll-},

where

q.=[q] in L
0 in \I

Here we have used the Cauchy-Schwarz inequality and the fact that R is a do of
order -(2+e)(e >0). The last operator yields a compact bilinear form k((w, q),
(w, q)) (Rq, q)o.
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On the other hand the choice w #, q reduces (3.1) to

(3.8) b((w, q), (w, q)) IIw"ll + (Gq, q)o.

Hence (3.8) together with (3.7) gives the Grding inequality (3.6).
Now our modified Galerkin procedure corresponding to the weak formulation

(3.2) of Problem II reads as" Find (Wh, qh)eSh Sk xS cH x/_-1 such that for
all (Vh, tOh) Sh there holds

(3.9) b((wh, qh), (Vh, g/h))= (P, Vh)0 b((w, q), (Vh, qh)).

Actually for our numerical results, we use an equidistant mesh in I.
Now with the results in [12], [13] the Grding inequality (3.6) together with

uniqueness of (3.2) implies convergence of the Galerkin procedure (3.9).
LEMMA 3.3. There exists a mesh width ho > 0 such that the Galerkin equations

(3.9) are uniquely solvable for any h, 0 < h <-ho. For decreasing mesh size h 0 we
have the asymptotic error estimate

(3.10) IIw"- wll,.m /llq -qhllr,-m <-c(h"llwllm / h"=llqllc.m

where tzl =rain {t-2, s -2},/z2 min {l + 3, r + 1} and c >0 independent of h.
Proof. The Grding inequality (3.6) implies, together with the results in [13], the

uniform boundedness of the Galerkin operator Gb: (w, q)-(Wh, qh) defined by (3.9),
i.e., there exists a constant c > 0 such that for all 0 < h -< ho

IIo (w, q)ll. cll(w, q)ll.-
Since, for an arbitrary pair (Xh, Oh) Sh,

Gb ()(’h, (0h) (//h, (49h),

we obtain (3.10) by triangle inequality, namely"

II(w, q)--(Wh, qh)ll<--II(w, q)--(X., qh)ll/llGb{(Xh, qh)--(W, q)}ll

<__-- (1 + IllGblll) {II(W, q) ()(’h, (0h)ll,

where II(w, q) (Wh, qh )11 :--liD=(w w, )110 / IIq qh I1,- and II1111 denotes the operator-
norm. Finally, the approximation property (2.10) yields (3.10).

Remark. For a point force p 8 at x 0 w H7/2- (I) due to (1.9), since G is
a 0do of order-2. Hence (3.10) yields

(3.11) IIw"-wgllo/llq -qhll- <={ha/2-llwl17/2-
Furthermore since q $" has the inverse property (2.11) and

Gb (0, q)h (0, (49h)

for any Oh e S there holds, in analogy to (3.11),

IIq qhllO IIq qh / qgh OhllO ----< IIq 0hllO / IIO (0, q

<- ch /=-llqll/=- /ch-ll (0, q Oh)ll-.
The last term on the right-hand side is bounded by c’llq- o,11- by the stability of the
Galerkin operator. Hence, from the preceding inequality together with the conver-
gence property of our finite elements we obtain

(3.12) IIq qh I10 --<-- ch 3/2- IIq 113/-.
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Therefore with the Sobolev inequality (2.16) from (3.11) and (3.12) there follows

(3.13) IIw"-w’ll<=ch-ltwll/2_, IIw--whlloo<--f’h 3-

and

(3.14) IIq -qhlloo <--ch- IIq 113/2-.
As for Problem I in this case our numerical results again show even superconver-

gence for w" and q, namely

(3.15) IIw"-wll-O(h2-), [Iq-q,lloo--O(h2-).
Actually the solution w of Problem II decreases exponentially with the length L of
the beam (see Hetenyi [5, p. 129]). Thus for a long beam the influence of the boundary
conditions at the endpoints x +L is negligible for w near x 0. This is also illustrated
by our numerical experiments (Fig. 3).
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FIG 3. Effect of point load on beam on (i) Winkler foundation (WF), k 1.094" (ii) elastic halfspace
(EHS), rt 2" (iii) Pasternak foundation (PF), 0.706, k 0.864.
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A comparison of the theoretical error estimates and the numerical results for
Problems I and II shows that the two formulations lead asymptotically to the same
results--even the slopes in the figures give better constants for w and q than obtained
via the modified method whereas numbers coincide for w". On the other hand the
modified method using the Green’s function in (1.9) allows one to treat even halfspace
problems whereas in a standard method like Problem I unbounded regions must be
considered. Thus, incorporating the Green’s function (1.12) for the halfspace we have
analogously to (3.1), the weak formulation (3.2) with the new bilinear form

(3.16) c((w, q), (w, )):-- (w", w")0 + (q, )o-(w, C)o + (Gq, q)o.

The kernel (1.12) of t has the decomposition

(3 17) Ix x + (x, x

with a smooth remainder k(x, x’). Taking Fourier transforms yields [12]

and thus ( is a pseudo-differential operator of order-1. ( is well defined by (3.4)
with (3.17) since q 0 in R\I.

Analogously to Lemma 3.2 for c(.,.) there also holds a Grding inequality on
H x IJI-1/2.

LEMMA 3.4. There exists a constant 3/> 0 such that [or all (w, q) H x IS1-1/2

(3.9) c((w,q), (w,q))>-{llw"ll(+llqll-=}-II((w,q), (w,q))l,

where k is a compact bilinear [orm on (H x
Furthermore since c(., .) is continuous on H x/--1/2(I) Gftrding’s inequality

(3.19) together with the assumed uniqueness of Problem III yields the convergence
of a Galerkin procedure analogous to (3.9) and again quasi-optimal error estimates.

LEMMA 3.5. For any h, 0<h <-ho, the Galerkin equations (3.9) with b(., .)
replaced by c(., have a unique solution (Wh, qh) S’h H x tr--l/2(I). Furthermore
there hoMs

11w"-
(3.20)

Remark. The estimate (3.20) differs from (3.10) since now t being a pseudo-
differential operator of order-1 yields q H/- for given w tq H7/2-.

4. Nmnerieal experiments. The numerical results reported in this section are
computed for prismatic beams ( 1) of half-length L 6 and 12, and for a unit point
load applied at the center of the beam.

Corresponding to Problem I the space $’ consists of piecewise cubic functions.
As usual the formulation (2.9) is equivalent to an algebraic system of linear equations.
With a basis/x 1," ",/xr in $; we have

N

(4.1) Wh
k=l

for unknown weights c 1, , aN. The latter are determined by (2.9), i.e.,

N

E aka (t,, txi)= (p, tXi)o
k=l
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for k 1,. ., N, or equivalently by

(4.2) K3, p.

Here the (/, k)-entry of the stiffness matrix K is given by

a(tzk, i)= (x k, txj )o + t(/x ,,/x’)o + k (k, )0.
For Problem II the space Sh consists of piecewise cubic functions Wh, and piecewise

linear functions qh. With a basis ,1,’ ", ’t we have

M

(4.3) qh
k=l

with unknown weights yl,..., yt. The coefficients a in (4.1) and y, in (4.3) are
obtained from the Galerkin equations (3.9), i.e., for 1,..., N and n 1,..., M

N M

Z Ot{(/-6,/.t,f)O--(N/,:,Pn)O}+ Z
k=l =1

or, in matrix notation

(4.4) [ K1 ]{/}=/}n/kT

Another system similar to (4.4) is obtained for Problem III"

[ K1 A o
(4.5)

Here the (m, n)-entry ff., of is given by. (dvm, v.)o.

X/L=O, L=12, Pr’obo II
X/L=O, L=12, Pr’obo
X/L=.52,, L=12, Pr-’obo I
X/L=o$2, L=12,, Pr’obo
X/L=Oo,, L=6, Pr’obo II

-- ---- ...- .... .....,;/i,’""" ---T ............ /i,’" _:

10 H101 10

FIG. 4. Relative error for displacement, w, at two points on beam on Pasternak foundations.
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The entries of the matrices K, K1 and A are obtained explicitly from [14] in terms
of the mesh-width h and the system parameters and k, but those of F and are
evaluated by Gaussian quadrature. For F we integrate numerically with standard
Gauss-Legendre formulas. Due to the logarithmic singularity of ff we use mesh
refinement to compute/,,n with the same quadrature formulas.

Equation (4.5) for the elastic halfspace is solved for L 6 and r/= 2 (in (1.12).
The corresponding values of the deflection w, bending moment w" and contact pressure
q are represented by solid lines in Fig. 3. Also in Fig. 3 there are given the solution
of (4.4) for the Pasternak foundation (t 0.706, k 0.864) and the solution of (4.2)
for the limiting case of a Winkler foundation (t 0, k 1.094). A discussion of the
above choice for the parameters t, k is given in [6]. Our numerical approximation for
the pressure under Pasternak foundation reflects the delta-function behavior at the
endpoints of the beam. The numerical experiments for Problem III show a similar
effect (Fig. 3).

0

’"1

X/L=O, L=12, robo II
X/L=O, L=2, ?obo
X/L=o525, L=12, Poobo II
X/L=o525, L=12, Probo

3 HIO
i0

FIG. 5. Relative error for bending moment, w", at two points of beam on Pasternak foundations (L 12).

For a long beam (L 12) in Figs. 4, 5 and 6 we plot against the mesh size the
relative point errors for w, w" and q, respectively, at the nodal point x/L 0 and
the interior point x/L =0.325. These relative errors are obtained by compar-
ing the numerical solutions of (4.2) and (4.4) with the analytical solution of Problem
I for a finite free-end beam given by [5, (104), (105)]. The concentrated load is applied
at the nodal point x/L O.

The numerical approximations for Problems I and II show essentially the same
order of convergence. Note that in both cases w converges to the exact solution with
the predicted rate in (2.17), (3.13) whereas w" and q converge faster than predicted
by the theoretical error estimates (super-convergence). These results are summarized
in Table 1.
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113

X/L=O, L =12, Pr-’obo TI

X/L=O,, L 12, Pr"obo

X/L =.:325, L =12, Pr-’obo .............
X/L =.:525, L =12,, Pr’ob ....... ]:

.........."
O, 11

....’ A,

,..o" II

1@1 10

FIG. 6. Relative error for pressure, q, at two points of beam on Pasternak foundation (L 12).

Figure 4 also shows the relative error in the displacement w corresponding to a
shorter beam with a half-length L 6. Notice that for this beam the rate of convergence
decreases significantly for values of h -<_ 1/2, as a consequence of the pollution from the
singularities at the endpoints. This deterioration might be prevented either by introduc-
ing special singularity functions into the Galerkin procedure or by using mesh
refinement.

TABLE 1
Relative errors for w, w", q (t 0.856, k 0.839)

Abscissa x/L 0

Relative error for w w" q

Problem II II II

numerical 2.8 3.4 1.9 1.9 1.9 2
Relative error

theoretical 3 e 3 e e e e e

Abscissa x/L 0.325

Relative error for w w" q

Problem

Relative error
numerical

theoretical

II

2.7 3.3

3--re

II

2.1 2.1

II

1.9 2



352 J. BIELAK AND E. STEPHAN

Acknowledgment. We thank D. Sriram for performing the numerical computa-
tions.

REFERENCES

[1] A. D. KERR, Elastic and viscoelastic foundation models, J. Appl. Mech., 31 (1964), pp. 491-498.
[2] E. WINKLER, Die Lehre yon der Elasticitaet und Festigkeit, Dominicus, Prag, 1867.
[3] M. M. FILONENKO-BORODICH, Some approximate theories of the elastic foundation, Uchenyie Zapiski

Moskovskogo Gosudarstvennogo Universiteta Mekhanica, no. 46, (1940), pp. 3-18 (in Russian).
[4] P. L. PASTERNAK, On a new method of analysis of an elastic foundation by means of two foundation

constants, Gosudarstvennoe Izdatelstvo Literaturi po stroitelstvu Arkhitekture, Moscow, 1964
(in Russian).

[5] M. HETENYI, Beams on Elastic Foundations, Univ. Michigan Press, Ann Arbor, 1964.
[6] J. BIELAK AND D. SRIRAM, Beams on elastic foundations revisited: a unified approach, in preparation.
[7] J. L. LIONS AND E. MAGENES, Non-homogeneous Boundary Value Problems and Applications I,

Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[8] I. BABUSKA AND A. K. AzIz, Survey lectures on the mathematical foundations of the finite element

method, The Mathematical Foundations of the Finite Element Method with Applications to Partial
Differential Equations, A. K. Aziz, ed., Academic Press, New York, 1972, pp. 5-359.

[9] J. T. ODEN AND J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John
Wiley, New York-London-Sidney-Toronto, 1976.

[10] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, NJ, 1965.
[11] G. FAIRWEATHER, Finite Element Galerkin Methods for Differential Equations, Lecture Notes in

Pure and Applied Mathematics 34, Marcel Dekker, Inc., New York-Basel, 1978.
12] E. STEPHAN AND W. WENDLAND, Remarks to Galerkin and least squares methods with finite elements

for general elliptic problems, Ordinary Partial Differential Equation, Proceedings 4th Dundee
Conference, Lecture Notes in Mathematics 564, Springer-Verlag, New York, 1976, pp. 461-471.

[13] ST. HILDEBRANDT AND E. WEINHOLTZ, Constructive proofs of representation theorems in separable
Hilbert space, Comm. Pure Appl. Math., 17 (1964), pp. 369-373.

[14] G. STRANG AND G. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs,
NJ, 1973.



SIAM J. SCI. STAT. COMPUT.
Vol. 4, No. 2, June 1983

1983 Society for Industrial and Applied Mathematics

0196-5204/83/0402-0019 $01.25/0

COMMENT: DISTRIBUTION OF QUADRATIC FORMS
IN NORMAL RANDOM VARIABLES--

EVALUATION BY NUMERICAL INTEGRATION*

CARL W. HELSTROM

Abstract. Rice’s method [SIAM J. Sci. Stat. Comput., (1980), pp. 438-448] of calculating the
cumulative distribution of a random variable by numerically integrating the inversion integral for the
characteristic function, described in the paper named in the title, is modified by a different choice of the
saddlepoint through which the path of integration passes, a modification that renders the method efficient
for values of the variable not only in the tails of the distribution, as in Rice’s paper, but even in the
neighborhood of its mean. It is shown how the method can also be applied to calculating the cumulative
distribution of a positive-integer-valued random variable from its probability generating function.

Key words, probability distribution, quadratic form, numerical integration

In [1] S. O. Rice treats the calculation of the complementary cumulative distribu-
tion Q(y) of a quadratic form y in normal random variables by numerical integration
of what is essentially the inversion integral for its Laplace transform,

-uy+d(u) fc+ioo
t(u)

(1) O(y) Pr (y > y)
e

du e____ du, c >0
.c-i 2riu c-ioo 2ri

where (u) is the cumulant generating function [1, (8)] and

(2) 4,(u)=d(u)-uy-ln u,

with arg (In u)= 0 at u c. He recommends taking the path of integration through
the saddlepoint u of exp [-uy +d(u)] when y is in one or the other tail of its
distribution, but remarks in 3 that when Q(y) is not near 0 or 1, one may as well
take the path along the imaginary axis, Im u 0. On the imaginary axis, however, the
integration passes through a singularity at u 0, which requires special treatment
(Davies [2]).

The advantages of Rice’s method can be preserved for all values of y if one takes
the path instead through a saddlepoint u0 of the entire integrand of (1). The saddle-
points are the roots of

(3) O’(u) d/(u)- y -u -1 =0,

the prime indicating differentiation. They can be quickly calculated by Newton’s
method starting from a trial value of u,

U---U

There are two principal saddlepoints, one to the left, the other to the right of the
origin, each lying between the origin and the nearest singularity of the cumulant
generating function d (u). When y ->E (y), the saddlepoint lying to the right of the
origin, u0 > 0, should be used; when y E(y), use the saddlepoint to the left of the
origin, u0<0, and as in [1, (14)], add 1 to the result of the numerical integration.

* Received by the editors October 30, 1981.
t Department of Electrical Engineering & Computer Sciences, University of California at San Diego,

La Jolla, California 92093.
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When y is at or close to the mean E(y), numerical integration along a path through
one saddlepoint is just as efficient as along a path through the other.

This modified saddlepoint method was applied to the example of [1, 4]. The
path was taken parallel to the imaginary axis, so that as in [1, (14)] u Uo+ ibv with

That form of the trapezoidal rule was used in which the integral of f(v) from v 0
[1/2r(0 to oo is approximated by h +f(h) +...], where h is the spacing and

f(v)=ReF(v), F(v) ()u-le -uy+*(’), U uo + ibv.

The summation S=1/2f(O)+.,kf(kh was stopped when the ratio IV(v)l/lsl passed
below 10-8. Table 1 shows the convergence of the values of Q(y) as the spacing h is
progressively halved; N is the number of values at which the integrand had to be
calculated. In this example E(y)= 120.

TABLE 1

y Uo h N O(y)

90 -0.08184771 0.5 18 0.85707656
0.25 33 0.85707669
0.125 62 0.85707669

120 0.03044865 0.5 21 0.46524863
0.25 38 0.46524724
0.125 71 0.46524724

150 0.04307360 1.0 11 0.14783405
0.5 19 0.14764090
0.25 34 0.14764089

In [3] the crude approximation

O(y) + [2r0"(u exp (Uo)
1, Uo<

to the complementary cumulative probability was proposed, with uo determined by
(3). It follows from approximating the integrand in (1) as

exp O(u) exp [0 (Uo) + O"(uo)(u uo)].

Often simple to calculate, it is the more accurate, the closer Q(y) lies to 0 or 1.
The method of saddlepoint integration can also be applied to calculating

the complementary cumulative distribution of a positive-integer-valued random
variable n,

Q,=Pr(n=>n)= Y. Pk, Pk=Pr(n=k), Oo=l.
k=n
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In terms of the probability generating function

h (z) Y’. pk,Z k,
k=O

{0, r>X] IcZ-h(z)dz(4) Q"=
1, r<l

+
z-1 2zri

where Cr is a circle of radius r centered at the origin [3]. By putting z --r e i this can
be written

(5) O,={O, r>l} -1 ffr-’h(re)e(-")1, r <1
+zr Re

rei-I dO.

The circle Cr is made to pass through a saddlepoint of the integrand

that is, through a root of

_,,h(z)
exp 0(z)= z

Z 1

d n 1
O’(r) -=-[In h (r)] O.

dr- r r-1

Again there are two principal saddlepoints; they lie on the positive real axis, one to
the left of z 1, the other to the right. The left-hand one, r < 1, is used for n <-E(n),
the right-hand one, r > 1, for n >-_E(n). The integral is evaluated by the trapezoidal
rule as before, taking steps of size

AO e[2/tO"(r)]1/2 radians, e 1, 0.5, 0.25,...,

and starting at 0 0. The integration can be stopped by the criterion given above; it
is seldom necessary to take it all the way to 0

The method has been applied to evaluating the probabilities Qn for the Laguerre
distribution,

(1 -v)2S
(6) Pk (1--V)MV k exp[-(1-v)S]L-(-x), x =--,

v

where Lt-( is the associated Laguerre polynomial. This distribution characterizes
the number of photo-electrons emitted during a fixed interval when coherent laser
light and incoherent background light fall simultaneously on an emissive surface.
Summing the probabilities in (6) directly becomes tedious when S, M and n are large,
and double precision may be required in order to avoid overflow or underflow [3].
Saddlepoint integration of (5) avoids these difficulties.

The mean value of the random variable n is E(n)= S +Mv/(1-v), and the
probability generating function is

h(z)
\l-vz]

exp
1-vz

Table 2 shows the results of saddlepoint integration for M 20, S 40, v 0.2; N
is the number of values of 0 at which the integrand had to be evaluated.
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TABLE 2

n A0 N

20 0.520280 1.49600 (-1) 10 1-1.54282221 (-4)
7.47998 (-2) 20 1-1.54282220 (-4)

45 0.881655 1.16355 (-1) 8 0.508049090
5.81776 (-2) 15 0.509161169
2.90888 (-2) 29 0.509162407
1.45444 (-2) 57 0.509162410

70 1.366139 1.65347 (-1) 4 2.91437293 (-3)
8.26735 (-2) 7 2.87700340 (-3)
4.13367 (-2) 14 2.87700295 (-3)
2.06684 (-2) 27 2.87700294 (-3)
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MODELING OF THE SILICON INTEGRATED-CIRCUIT DESIGN AND
MANUFACTURING PROCESS *

ROBERT W. DUTTON

Abstract. The evolution of process modeling is traced starting with bipolar technology in the 1960’s
through recent processing concerns for oxide-isolated MOS devices. The kinetics of diffusion and oxidation
are used to illustrate both physical and numerical effects. The interaction of device effects with process
modeling is discussed as well as the statistical implications of process variables. The nature of computer-aided
design tools for process and device modeling are discussed. This includes tools that bridge gaps between
technology and system design with potential application for manufacturing.

I. Introduction. The fabrication and manufacturing of integrated silicon circuits
has spawned a revolution equal in impact to that of the industrial revolution. This
so-called information revolution differs substantially from the industrial revolution in
its exploitation of computer-based technology in contrast to a technology focused
primarily at mechanical advantage over the environment. On the other hand, the
technology bases--steel and siliconmboth require a sophisticated set of capital-inten-
sive manufacturing techniques. The arsenal of silicon technology equipment in fact has
a growing connection to metallurgy since the circuit design constraints which drive the
technology are increasingly limited by interconnections--small metal lines; hence laser,
ion, and other milling tools are now commonly used. However, the fact that active
electronic elements are the primitive atoms of IC technology is the key driving force
which separates this manufacturing endeavor from most other industrial technologies.
It is the close interplay of the design of active transistor elements with the manufactur-
ing technology which is the subject of this article.

Organization of the discussion which follows is intended both to chronicle the
history and chart the future for IC manufacturing technology. The notion of process
modeling will be introduced by means of examples related to bipolar transistor
manufacturing. Next the features of MOS technology and the new concerns involved in
modeling and manufacturing will be presented. Moving to the current issues of IC
manufacturing technology, a discussion of state-of-the-art process kinetics will be given.
Finally, the issues of CAD tools for both IC design and manufacturing wi,ll be
summarized.

II. Bipolar technology and process modeling. The bipolar device technology
dominated the decade of the 1960’s while MOS technology was struggling with
isolation and threshold control issues. Moreover, during this MSI era the off-chip drive
capabilities of bipolar devices provided essential system leverage. From a production
point of view the double-diffused technology dominated the high-speed market, with
cut-off frequencies approaching 1 GHz. The desire to increase cut-off frequencies by
shrinking base width led to a growing interest in emitter and base impurity profiles.
During this period process models were developed in an effort to predict the process
dependencies of double-diffused profiles [1]. Of special interest was the problem of
push-out of the boron base impurity by heavily doped phosphorus emitters [2].

*Received by the editors May 4, 1983, and in revised form July 12, 1983. This research was supported in
part by the U. S. Army Research Office under grant DAAG-29-80-K-0013, and by DARPA under contracts
MDAg03-80-C-0432 and MDAg03-79-C-0257.

Integrated Circuits Laboratory, Stanford University, Stanford, California. 94305.
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Although empirical models were developed and used [3], the dominant limitation of the
modeling art arose from the lack of an adequate model for high-concentration
coupled-species diffusion.

Fig. 1 shows the cross section of a typical double-diffused bipolar device along
with one-dimensional impurity profiles in the emitter and base regions. A number of
features of the device are apparent from the Fig. l(b) and (c). First, the base-collector
junction depth Xsc is different for the two regions. This indicates the fact that the
boron diffusion is affected by the high-concentration phosphorus emitter. Second, the
phosphorus profile exhibits a so-called "kink" in the high-concentration region of
the profile. The implication of this kink on the resulting junction depths Xse and Xsc
as well as the base width Xs is of major importance in controlling electrical parameters
of bipolar devices. Hence, the objective of process modeling is to provide basic
understanding of the phenomena as well as engineering tools to assist in the design and
process control during manufacturing. In the next few subsections the discussion will
follow the evolution of one set of process models for bipolar device fabrication in order
to demonstrate the tight interrelationship between the models and their application.

E B C

(a) }Z. n;yk
T

u"’_2_ / k EXTERNAL

CONC. (1 /cc) CONC. (log atoms/co)
5 6 17 18 19 21 1 15 6 7 8 9 20 21

-0.051
AS OXIDE MA5 OXIDE

0

1.00

2.00
(b) (c)

FIG. 1. Double-diffused bipolar transistor: (a) cross section, (b) impurity profile under the emitter, and (c)
impurity profile under the base.

A. Models for impurity diffusion. The process of thermal diffusion of dopant
impurities into a semiconductor is one of the key steps involved in creating integrated
circuits. The dopant particles are charged and hence move by both diffusion and drift
as given by the flux equation for positively charged species

OC(1) F( x l D-Tx, + teC
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where D is the diffusivity, /x is the mobility, d is the electric field, and C is the
concentration of active dopant impurities per cubic centimeter. The diffusivity and
mobility obey the Einstein relationship so that

D kT
(2)

/ q

where k is the Boltzmann constant and T is absolute temperature. The diffusivity is a
thermally activated process so that its temperature dependence is of the form

(3) D Doe-e"/’r
where E is an activation energy--typically in the range of 3.4-3.6 eV [4]. The
conservation of particles during the diffusion process dictates that their time rate of
charge obeys the transport equation

OC OF
(4) Ot Ox"
It is the solution of this continuity equation for concentration versus both time and
distance which is the basis for early process-modeling efforts. Two physical conditions
are commonly used in the solution of (4): constant source and fixed dose impulse. Both
boundary conditions are applied at x 0.

The solution of the continuity equation for these two cases gives the following:

(5) C(x ) C erfc [ x

’-ff[
for the constant source value of surface concentration Cs, and

(6) C(x, l) Oe-x2/4Dt
vDt

for the impulse dose Q per square centimeter.
The comparison of experiments with these two classical solutionsmthe comple-

mentary error-function and Gaussian forms--soon revealed that several physical
effects altered the profiles substantially. For boron, although the diffusion process itself
obeyed (1)-(4), the growth of an oxide layer at the surface during diffusion and the
preference of the boron to be in silicon oxide rather than silicon give rise to the
experimental results shown in Fig. 2(a) [5]. The segregation coefficient m is defined as
follows:

(7) m--
Equilibrium impurity concentration in silicon
Equilibrium impurity concentration in SiO2

Numerical solutions are typically required to properly correct for the impurity
segregation; the best fit value of m is shown in Fig. 2(a). The figure also indicates that
although the junction depth may well be predicted from (6), the peak concentration will
be substantially incorrect. Since the total base doping and base width XB will be
determined by the surface concentration values, the difference between first-order
models and experiment can be significant.

Fig. 2(b) shows the comparison between experiment [3] and (5) for a phosphorus
diffusion. Clearly the results are not well represented by the complementary error
function. Moreover, the two-region nature of the profile makes it difficult to use the
equation even in an empirical sense for curve fitting since the sheet resistance will be
controlled by the first portion of the profile whereas junction depth (hence XB) will be
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FIG. 2. Diffused impurity profiles: (a) boron [5] and (b) phosphorus [3].

determined by the profile tail. In order to provide even a qualitative agreement with
experiment, a more complex set of diffusion kinetics are needed.

Although it is not the purpose of this article to consider diffusion theory in detail,
the following discussion illustrates the level of sophistication required in order to
provide suitable process models for IC technology. Three key aspects of the diffusion
process can be illustrated for arsenic; similar phenomena also apply for phosphorus,
boron, and other common dopants. First, the electrical carder concentration affects the
diffusion process. Second, diffusing species can change state and may become inactive
[6] or alter the conditions which affect the other mechanisms [7]. Finally, the generation
and consumption of point defects by the surface boundary alter impurity diffusion.

The carder concentration effect on diffusivity can be represented in a general
empirical form as [8], [9]

+D- +D
n n n

where the various D’s are superscripted to indicate components due to charge species,
n is the intrinsic cartier concentration at the diffusion temperature, and n is the local
concentration. To date the experimental evidence shows that for the p-type dopants
(boron) the DO and D/ terms contribute whereas for n-type dopants such as phos-
phorus and arsenic, the DO and D- terms dominate. Hence for arsenic the extrinsic
diffusivity (n 4: n i) can be represented by

(9) D= Do + D- ( n---).
For n greater than n the second term dominates. Fig. 3(a) shows a comparison of
calculated diffusion profiles assuming two different surface concentrations, one below n
and the other substantially greater than n i. Both calculations were made for the same
time and temperature as indicated. From the figure it is clear that for increased n the
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diffusivity is enhanced substantially. Classical theory as given by equation (5) would
yield a constant junction depth as reflected by the shallower profile.

At high concentrations, (n >> n,.) the phenomenon of clustering is hypothesized to
remove arsenic from the diffusion process by forming energetically favorable collections
of dopant. Current studies suggest that both solubility limits and electron concentra-
tions affect clustering. One such equilibrium equation relating total number of atoms
and active arsenic is given by [10]

(10) CT C + mKeqnC
where CT is the total concentration, C is the actively diffusing dopant, rn is the number
of atoms per cluster, n is the electron concentration and Keq is the equilibrium
clustering coefficient. The results of the clustering are shown in Fig. 3(b) where the total
arsenic, measured by Rutherford backscattering [11], as well as the electrically active
portion of the profile are shown. The electrically active portion of the curve reflects a
diffusion process given by (9) whereas the portion between the data and the dashed
curve indicates the clustered portion given by (10). Although this discussion has been
used to illustrate extrinsic diffusivity and clustering effects for arsenic, extrinsic
diffusion phenomena are also observed for phosphorus and boron. Although recent
reviews on the subject show phosphorus diffusion to be considerably more complex
than the mechanisms considered earlier [7], an alternative approach considers phos-
phorus diffusivity to be controlled by the Do and D components of (8) with another
enhancement in diffusivity at lower concentrations owing to generation of extrinsic
point defects [3]. This latter approach has the advantage of being practical from an
engineering point of view and it has been used widely in computer programs for
process simulation [12].
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FIG. 3. High-concentration diffusion effects: (a) numerical calculations based on (9) and (b) experimental results
for arsenic [11].
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The final mechanism of primary importance in diffusion is surface generation and
consumption of point defects. The oxidation of the silicon surface has been investigated
as a generation source [13]. Fig. 4(a) shows the effect of oxidation on diffusivity of
phosphorus in comparison to an inert surface condition. The semilog plot of diffusivity
versus reciprocal of temperature shows that the difference between the boundary
conditions is most pronounced at lower temperatures. This oxidation enhancement to
diffusivity (OED) is experimentally determined to be related to the motion of the
silicon dioxide interface. The difference in volumetric requirements for silicon in the
SiO2 and Si generate an excess of silicon determined by the oxidation rate according to
the following empirical relationship [14]

(11) I Kr dt

where 0z is the excess concentration of interstitial silicon, Xox is the oxide thickness, Kz
and q are empirical constants. The value for q is found to range between 0.4 and 0.6.
The diffusivity enhancement is then written in terms of this excess concentration of
interstitials as follows:

(12) D D* + dd;
where D* is the extrinsic diffusivity as discussed previously and dz is a proportionality
constant. Although the details of kinetic effects involved in oxidation-enhanced diffu-
sion are a subject of great interest and investigation for their own sake, the implications
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for device fabrication are indeed important. The technology trends toward lower-tem-
perature processing and high-pressure oxidation both directly affect the OED and
hence junction depths and electrical parameters. Both phosphorus and boron show
similar trends in OED effects. Fig. 4(b) shows the cross section of an experimental
structure used to investigate both OED and coupled diffusion effects for boron and
phosphorus [15]. In region III the phosphorus enhances the boron diffusion compared
to region IV. In region II the surface is oxidized and, as can be seen in Fig. 4(c), both
the boron and phosphorus diffusion is enhanced. Fig. 4(c) compares the spreading
resistance profiles in regions II and III. A more extensive discussion of OED and other
point-defect mechanisms involved in diffusion is given elsewhere [14].

In summary, the generation of point defects is a major effect in altering diffusion.
Moreover, the use of local oxidation for both bipolar and MOS device isolation
suggests there is a need to understand two-dimensional device implications as well as
the one-dimensional surface kinetics.

B. Effects of impurity profiles on bipolar devices. The previous subsection has
considered the phenomena involved in impurity diffusion and rudiments of the process
models used to describe the one-dimensional impurity distributions. In this section the
implications of these impurity profiles on device behavior are discussed. As stated at
the beginning of this section, the tight processing tolerances in the vertical dimension
for bipolar technology are responsible for advances in process modeling during the
1960’s.

Both the dc and ac parameters for bipolar devices are tightly linked to impurity
distributions. Junction capacitances are directly related to impurity profiles and the
statistics of electrical variations with process sensitivities have been studied [16]. The dc
parameters such as current gain and base transport current show the greatest sensitivity
to process variations. Two physical factors account for this sensitivity and the increased
difficulty in modeling the electrical parameters directly from process models. First, the
base width is extremely sensitive to the high-concentration emitter diffusion as well as
the coupling of base and emitter profiles. As discussed in Subsection II-A, the complete
set of kinetic effects in this regime of processing physics is indeed complex. Second, the
base current, which directly affects current gain, is a function of both the emitter profile
and minority-carrier recombination phenomena.

The problems associated with process modeling of the emitter profile have already
been discussed. Considerations of minority-carrier effects in the emitter have resulted in
improved models for cartier recombination as well as bandgap narrowing [17] which
alter both the recombination and injected minority-carrier densities. Present trends in
bipolar technology now emphasize polycrystalline emitter structures, both as a diffusion
source [18] and to provide self-aligned contacts [19]. The exact role of this multilayer
emitter is a current topic of investigation, and it appears that both interface phenomena
[20] and impurity profile effects in the emitter [21] affect base current. Recent experi-
mental evidence indicates that while the interface transport shows reproducible char-
acteristics, the tight coupling of impurity diffusion and minority-carrier transport
effects requires detailed knowledge of both in order to provide a first-principles model
for base current [22]. In addition, recent efforts to model polysilicon diffusion effects
have resulted in new simulation capabilities for multilayer systems [33].

While it has not yet been possible to model bipolar current gain directly from the
specification of process variables, the modeling and characterization of the base
transport has been a useful engineering tool. The well-known Moll-Ross relationship
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[23] defines the key variables involved in understanding the process sensitivities of the
current transported between emitter and collector

(laa) Ice Is(eqt%/T-- eqvEc/r)
where

(13b) I

and A is the emitter area, D, is the electron diffusivity, N,(x) is the base doping profile,
and XB is the base width. It is dear from this equation that the integral quantity is the
dominant process-dependent variable; it is controlled by both the impurity distribution
N,4(x) and its spatial extent XB. During the 1970’s it was found that the correlation of
the pinched-base resistance and I was an excellent means by which to monitor process
control in bipolar device fabrication [24]. More recently, correlation of I directly with
fabrication variables has shown the key role of both the integrated dopant concentra-
tion and subsequent thermal processing.

A conventional double-diffused process using POC13 predeposition shows an
extreme sensitivity of both I and current gain to predeposition time as indicated by the
simulated results in Table I. By comparison, the base-collector zero bias capacitance,

TABLE
Effect of emitterpredeposition time on the electrical characteristics

Emitter Pinched
Predeposl- Base Sheet
tion Time Resistance

31.35 Ii.4 K

33 37.3 K

34.65 117. K

170

260

410

A

1.4 10-15

3.2 10-15

1.2 10-14

CjCO

pF

.182

.179

.178

CJCO, shows no sensitivity to this emitter process variation. The tightly coupled
emitter and base profiles do not substantially alter the base-collector junction gradient.
In order to overcome these process sensitivities, ion implantation is used to accurately
control the total dose of boron and phosphorus and to reduce sensitivities to subse-
quent thermal cycles. Fig. 5 compares the sensitivity of I to variations in time and
temperature for the ion-implanted process compared to the "standard" chemically
predeposited process. Both processes were designed to have similar vertical junction
depths and maximum dc current gain. For variations of 1 min of time on all steps and 5
degrees in temperature, the resulting percentage variations in I are shown. Clearly the
temperature for the base predeposition and emitter drive-in temperatures has the
greatest impact--the ion-implanted process shows a five-fold reduction in sensitivity to
the latter variation. In addition, the sensitivity to time variation is dramatically reduced
for the ion-implanted process. As a final point, Fig. 6 compares the measured current

1The pinched-base for an n-p-n bipolar device is the p-type resistance layer vertically bounded by
emitter and collector n-type regions--essentially a JFET with emitter and collector as gate.
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gain versus collector current for the two processes. As can be seen from the figure, the
ion-implanted process shows more than a factor-of-two improvement in low-current
gain as computed by means of one-dimensional device analysis [25] based on the
appropriate simulated impurity profiles [26]. The comparison with experiment gives
excellent agreement. The results show that for identically specified processes (in terms
of junction depth and maximum current gain), the reduced surface doping for the
emitter in the ion-implanted process reduces the low-level emitter recombination
current substantially.
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From a process design point of view, the control of 1 dominates all other
considerations. A plot of the measured variation of maximum current gain versus I
(Fig. 7) shows excellent correlation (R 0.55 for a significance level of 0.28). Based on
similar plots of data and using regression analysis to fit straight lines, the equations
given in Table II are obtained [27]. The results show that both dc and ac parameters are
accurately modeled based on the dominant statistical variable, the base transport
current [27]. These linear relationships of model parameters provide a two-fold design
advantage. First, the initial phase involving circuit versus process design trade-offs can
be investigated directly. Second, the statistics of circuit behavior can be realistically
assessed. To illustrate this latter point a low-power ECL circuit shown in Fig. 8 was
fabricated using the "standard" bipolar process and characterized for input offset
current and output offset voltage. The measured values for 35 circuits and their mean
and standard deviations are given in Table III [28]. Using the correlated device model
parameters given in Table II along with the low current coefficients n e and C2 from the
Gummel-Poon model, the simulated distributions are also displayed in Table III. The
results show excellent agreement with experiment. In contrast, the use of a Monte Carlo
selection of model parameters from the complete measured set of device data gives
more than 500-percent error in the standard deviation for Vou and 1500-percent error
in the standard deviation for Iinmclearly unrealistic for yield modeling, despite the use
of measured device data.

TABLE II
Simplified bipolar transistor model based on correlation to saturation current

8F 6 I + 140

.2 I + 1.2

CjE0 .6 .01 Is (pF)

fT 16 + 583 (MHz)

I is multiple of IO-16A

TABLE III
Measured and simulated electrical results for ECL circuit based on simplified model (Table II)

Vout (mY)
Measured No Corr. With Corr.

(MC1) (MC2)
Minimum -264.4 -489.72 -265.84

Maximum -192.2 80.66 -167.18

Mean -236. 959 -214.76 -218.18

Std. Dev. 17.164 97.22 21.017

fin(hA)
Measured No Corr. With Corr.

(c (c2)
Minimum 8.793 I0.0 5.822

Maximum 90.14 1036.9 122.886

Mean 24.603 287.7 68.753

Std. Dev. 18.121 271.8 40.6
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The conclusions from this last discussion are as follows. Process modeling allows a
flexible tool for bipolar-device design. While process models for high-concentration
profiles still require substantial improvement in terms of their physical basis, they are
invaluable in designing processes with reduced sensitivity to process variations. More-
over, by constructing device models which incorporate the dominant process variations
it is possible to develop realistic yield-oriented models for circuit design. In fact, the
notion of a design centering tool which formalizes the method of relating process
sensitivities to the relevant device and even circuit variables has recently been demon-
strated [29].
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III. MOS technology and process modeling. Early in the 1970’s, MOS technology
began to emerge as the dominant high-density IC technology. The announcements of
memory chips with a factor-of-two greater storage have been the key news items each
year. By the mid-1970’s major portions of the CPU for computers were achieved on
single IC’s. Now the interest and emphasis in the 1980’s is on large word-length
computer components with extensive system features. The density of MOS provides a
unique leverage in reducing interconnections off-chip and hence improving both cost
and reliability.

Fig. 9 shows a portion of the cross section of a 2-tm channel length self-aligned
MOS device with local oxidation used for device isolation. Several features of this
structure illustrate the factors which have resulted in the density advantages of MOS as
well as the process modeling concerns to be discussed next. First, the gate region is
patterned in polysilicon, which allows the so-called self-alignment of source and drain
impuritiesmthey are introduced into the silicon after the etching of the gate. Moreover,
polysilicon is used as a diffusion source to contact the bulk region in noncritical areas
to form buried contacts. Both these features provide distinct advantages in terms of
density, and similar techniques are now being applied to advanced bipolar devices. The
second distinctive feature of the device relates to the oxide isolation. Since MOS
technology relies on electric field penetration to induce mobile charge near the silicon
surface, selectively thicker insulating regions are needed to provide isolation. The
selective isolation requires care during fabrication from several perspectives: oxidation
produces a volumetric expansion which leads to nonplanar surfaces, a potential
problem for metallization step-coverage and electrical breakdown of devices. The
oxidation process generates interstitial silicon which is thought to result in fixed charge
in the oxide which alters threshold. Moreover, the local stress and point-defect
generation can result in higher leakage currents and reduced breakdown due to
generation of surface dislocations and growth of bulk stacking faults. In the next two
subsections MOS technology will be considered with special emphasis on oxidation.
First, the basic ideas of kinetic models for oxidation will be reviewed. Then the device
implications, especially those related to local oxidation, will be discussed.

FIG. 9. Cross section of oxide-isolated MOS device.
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A. Models for oxidation of silicon. The thermal oxidation of silicon and its
excellent mechanical and electrical properties have been crucial to the advancement of
silicon integrated circuits. The first-order one-dimensional model for oxide growth was
presented by Deal and Grove in 1965 [30]. The basis for this model is the steady-state
relationship among incoming reactants, diffusion across the growing layer, and surface
reaction. For given effective oxidant concentrations CO and at the gas-oxide interface
X 0, and C at the oxide-silicon interface X Xo,, the three fluxes can be written

(14a) FI h(C* Co),

(14b) F2 D CO -C,
Xox

(14c) F3 kC
where h is the gas phase mass-transfer coefficient, D is the diffusion coefficient for
oxidant in the SiO2, and k is the surface reactor rate constant for oxidation. The three
fluxes are equal for the steady-state case. Thus solving for Co and C in terms of C*, the
flux reaching the interface to react and thereby move the oxide interface by dXo, is
given by

dXox kC*
(15) N1 dt F k kXoxI+T+T
where N is the number of oxidant molecules incorporated into a unit volume of oxide.
The resulting classical relationship for oxide thickness is then found to be

(16)
where

Xox+AXox=B(t+r)

(1 1)A 2D -- + --n B
2DC* xi + Ax

and "rN B

for an initial oxide thickness of xi.

The basic relationship given in (16) has proved to be an invaluable process model.
A variety of ambient effects can be accounted for by changing the coefficients A or B.
Dry oxidation, steam ambient, and even partial pressures of HC1 have all been modeled
in this way. Moreover, the change in dopant concentration in the silicon has been
shown to affect oxidation rate, and this too can be accurately represented by changes in
the appropriate coefficients. The following equations illustrate the nature of one such
empirical formulation [31] which accounts for these doping-level-dependent kinetic
effects

(17) -= - [I+v(C-1)1

where

+C- +C
n n n

I+C++C-+C
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and

T 2.62103exp (- 1.10eV)kT

Hence, the linear growth rate term is directly affected by the concentration of
vacancies, which is in turn controlled by cartier concentration--much as dopant
diffusivity.

The scaling of MOS devices has resulted in three important trends related to
oxidation effects. First, the growth of thin dielectrics for the gate region has become a
critical factor. Second, growth of locally oxidized regions controls device spacings.
Finally, the redistribution of impurities in all regions of the device--channel, junctions,
and isolation regions--affect performance. Examples of advances in modeling in each
of these areas are now presented.

The growth mechanisms for thin oxides is a topic of great interest, and a definitive
first-principles model is still to be developed; however, recent experiments involving in
situ characterization of oxide thickness versus time have revealed new insight. Fig. 10
shows data of oxidation rate versus oxide thickness for two orientations of the silicon
surface. In contrast to the thick oxide regime, the growth rates for thin oxides show
sharp increases for short time and thin layers. The enhanced oxidation rate is clearly
evident from Fig. 10. An extensive collection of data reveals that the oxidation rate can
be adequately modeled using the following empirical formula [32].

(18) dXox B + kle-t/*l + k2e-t/*2
dt 2x + A

I00

.E
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FIG. 10. Oxidation rate versus thickness for thin oxides [32].
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The first term is the conventional dependence as reflected in the differential form
of (16). The second two exponential terms involve exponential decaying functions,
dominant in the 20- and 200-A regimes of oxide growth, respectively. The pre-exponen-
tial coefficients show different Arrhenius plot behavior which may reveal information
on the mechanisms responsible for both the ultra- and very-thin oxide growth mecha-
nisms [32]. From a more practical viewpoint, a single exponential dependence using the
spatial rather than time variable can be used to modoify the B/A coefficient and give an
excellent fit to data for oxides greater than 50 A. Combining the thin-oxide and
heavy-doping effects in a single expression gives the following equation:

(19) -= - {[1 + 7(C -1)][1 + ke-x/L]I-Iin= }
where the heavy-doping term and thin-oxide terms are easily identified. The term
loosely denoted as a product over the th other effects suggests that partial pressure,
orientation, chlorine ambient effects--to mention only a fewmmust also be accounted
for. A more complete discussion of the present understanding related to these other
effects is presented elsewhere [4].

As one can see from the previous discussion, the kinetics of oxidation are
intimately tied to electrical activity in the substrate, ambient conditions, and even
mechanisms within the layer itself. As stated at the beginning of this section, local
oxidation (LOCOS) is a key component of modern MOS technology. Yet the growth of
LOCOS results in still other kinetic effects beyond those described earlier. Fig. 11(a)
shows the simulated cross section of a LOCOS structure during oxidation where the
two-dimensional motion of the oxide elements is shown as well as the constraining
nitride layer which exerts a normal stress. The arrows in the figure indicate oxide
motion during growth. Note that because of the nitride stress, the oxide moves laterally
out from the masking layer. Fig. 11(b) shows the measured cross section of the sample
simulated from Fig. 11(a). The "bird’s beak" and head are reflections of both the stress
and flow as simulated. A full discussion of the two-dimensional kinetics is complicated.
However, three key points should be mentioned. First, the concentration of oxidant C
satisfies the two-dimensional Laplace equation

(20) OV2.C--O.
Second, the oxide moves slowly and behaves as an incompressible fluid described by

(21) V.V=0

where V is the velocity of oxide dement.
Finally the boundary conditions involve both pressure and velocity and are mixed.

The overall governing equation is a simplified form of the general Navier-Stokes
hydrodynamic equation

(22) /,V 2V-- VP
where/, is the viscosity and P is the pressure. The velocity at the oxide-silicon interface
is given by

(23) V= (1 a)kCh
where et is the volume ratio of consumed silicon to created oxide (0.473), k and N are
given in (14c) and (15). The two-dimensional solution of (21) and (22) requires iterative
numerical techniques and is discussed elsewhere [34]. The key point to emphasize is the
fact that the LOCOS structure imposes a more complex physical set of constraints on
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FIG. 11. Simulated and measured local oxidation cross section" (a) numerical results showing key variables
and (b) electron microscope picture.

the kinetic models than the one-dimensional case. Indeed, the trends in kinetic models
for IC processes as discussed in Section IV indicate the overall importance of advances
in this kinetic understanding and the need to push further in these models to keep pace
with present and future device technology.

Having discussed both the basic one- and two-dimensional kinetic models of
oxidation as well as selected features involved in second-order phenomena, let us next
consider the electrical effects on MOS devices.

B. Effects of oxidation and lateral diffusion on MOS devices. The basic operation
of the MOS device involves field effects imposed by electrodes on doped regions of the
silicon. Hence the two- and even three-dimensional solution of Poisson’s equation,
using the correct oxide topography and selective dopings in the substrate, is essential in
understanding both the devices and their sensitivities to fabrication technology. Fig.
12(a) shows the plan view of an NMOS inverter [35] and Fig. 12(b) shows the
technology cross section of the enhancement and depletion devices as well as the nature
of the LOCOS isolation regions. In the examples which follow, the sensitivity of several
device parameters to the underlying process variables are discussed. In most of the
cases the process variations lead to two-dimensional effects. Although limited success
has been realized in test structures and other measurement tools for these effects [15],
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further technology development will dominantly use two-dimensional device simula-
tions to correlate with electrical effects. The simulations most clearly show the domi-
nant effects and in fact have facilitated initial attempts to extract process-related device
parameters similar to the bipolar quantities such as I which have been discussed in
Section II.

Fig. 13 shows the well-known curve of threshold sensitivity (simulated) with
channel length along with experimental data. The spread in/L along the channel-length
axis is the same at all channel lengths, but the resulting 8VT increases dramatically for
shorter channel lengths. Fig. 14 shows simulated punchthrough threshold curves for the
1-/m channel length device. A variation of 10 percent in junction depth, for a fixed
channel length, results in an order of magnitude change in current at a fixed VDs [36].
Although the gate patterning is the dominant factor [37] affecting the short-channel
variations in threshold, it is clear that vertical dimensions--directly changed by oxide
etching and OEDmhave a substantial role at micrometer device dimensions. Both Figs.
13 and 14 show extreme sensitivities of electrical parameters to physical parameters for
short-channel MOS devices.

Turning to the depletion load we can observe critical mask and process sensitivities
for this narrow-width device [35]. Fig. 15(a) shows the impurity and LOCOS oxide
profiles for a nominal masked 4-/xm-wide depletion device. Also shown with dashed
lines on the figure is the calculated depletion edge. The depletion edge reveals two facts:
1) the narrow-width threshold for this device is quite different from short-channel
effects due to the shape of the lateral boron diffusion; and 2) the region of strong
inversion is noticeably smaller than the masked 4-#m dimension due to both oxide and
dopant encroachment. Fig. 15(b) shows the simulated bias dependence of available
channel charge for the depletion device as a function of masked device width. While the
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FIG. 13. ThreshoM voltage versus channel length.

extrapolated negative threshold shows minor variations, the slope for +__ 1-/m variations
is dramatic. The large change reflects the dominance of the LOCOS encroachment
including diffusion especially for reduced widths. This example illustrates the need to
develop new isolation methods for reduced-dimension devices. Moreover, the need for
2D oxidation and diffusion modeling has now become critical as we continue to reduce
device dimensions.

As a final example in this section, consider the trade-offs to be made at the drain
edge of the LOCOS region. Electrical factors include sidewall capacitance, breakdown,
and leakage. From a structural point of view, the surface planarity and lateral bird’s
beak encroachment must be balanced with problems such as defect generation in the
substrate. Fig. 16 shows the simulated and measured trade-offs to be considered in
choosing boron dose in the field region [38]. The results show that over more than an
order-of-magnitude change in dose, the capacitance can be reduced while continually
increasing the breakdown. Obviously the field threshold must be factored into this
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analysis as well. Based on these experiments, the following empirical relationships are
obtained"

(24a) sw(aos ) (Xox)
(24b) CperCt (dose) + 1/3( Sox ) 0.75.

These dependences are not immediately apparent from any first-order calculations
[38]. However, the coupled 2D process and device analysis to be discussed in Section V
clearly reveals these important design relationships. It should be emphasized, much as
for the narrow-width depletion load, that the two-dimensional doping profile effects
dominate the device performance.

While the previous example has emphasized the diffusive portion of the LOCOS
step, the oxide growth itself plays a major role in determining circuit yields. In
particular, the parameters Such as pad oxide and nitride layer thickness used for the
LOCOS directly affect defect generation. Recent simulations based on the model
discussed in Subsection III-A reveal the correlation of calculated integral of stress and
measured defect densities versus the nitride thickness as shown in Fig. 17. The trends
show that factor-of-two changes in nitride thickness result in more than an order-of-
magnitude increase in defects. Similarly, increased oxide-growth temperature reduces
stress and defect generation [39]. This final example again illustrates the utility of
modeling in the formulation of a design approach over a broad range of physical
conditions.
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FIG. 17. Correlation between stress and defect density as a function of nitride thickness: (a) (stress) x (time)
integral oersus nitride thickness, and (b) measured defect densities.

IV. Trends in processing technology. The previous sections have presented an
historic view of technology modeling. The phenomena of diffusion have been discussed,
primarily from the perspective of bipolar technology. The modeling of oxidation has
been driven by the MOS technology--especially the need for local oxidation to
produce densely packed devices separated by oxide regions. These processing trends
have illustrated the fundamental concerns and motivation for process modeling. The
purpose of this section is to briefly provide a broader long-range perspective on the
future trends of IC processing.

The equipment required to fabricate submicrometer-dimension devices has ad-
vanced rapidly over the past decade. In particular many new pieces of equipment have
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been demonstrated to anneal, deposit, and etch films for a variety of silicon-compatible
materials. The technology objectives related o each of these process steps is now
considered.

Annealing originally referred to a process step which produced a positive device
effect, the activation of implanted impurities, or the final alloying of an ohmic contact,
for example by modest cycles in temperature and ambient. The present technologies for
laser, pulsed light, or other beam processing have resulted in well-controlled tempera-
ture transients. The materials effects are indeed profound, ranging from solid-phase
epitaxy through nonequilibrium creation of silicide materials. In addition the controlla-
ble growth of silicon on insulators (SOI) is likely to eliminate the need for the sapphire
substrate used in SOS. The opportunities to completely alter the nature of thermal
processing in silicon technology seem vast indeed [40]. The trends toward lower
processing temperatures and the use of materials which are sensitive to surface interface
reactions favor the nonequilibrium approach. From a process-modeling point of view,
these new technologies pose a substantial challenge. The radiation effects result in short
time-scale events driven by sharp transients and extreme temperature gradients. The
activation of point-defect mechanisms as well as intrinsic concentrations seem to be
altered substantially by beam processing. In short, the new techniques for annealing
involve highly nonequilibfium events which occur over very short time periods.

The use of deposited films in silicon technology has grown rapidly in the past few
years. Low-pressure deposition techniques in particular have experienced a phenomenal
growth. In addition to the common dielectric materialssilicon dioxide and silicon
nitfideboth silicon epitaxy [41] and contact metallization [42] are benefiting from
new deposition techniques and equipment. Silicon epitaxy is an especially exciting area
from the device point of view since many desirable device effects can be altered by
epitaxy. Emitter efficiencies for up-operated bipolar devices can be improved and
latchup sensitivities for CMOS reduced, for example. The key concern, however, has
been the defect generation properties during growth, and control of thickness and
electrical parameters. Trends show favorable progress toward better control of the
parameters and defects, suggesting that the use of epitaxial layers is likely to increase in
the future. In the area of metallization, the need to reduce contact resistance and
control interdiffusion suggest that more versatile deposition techniques are needed. The
use of deposited polysilicon layers for improved contact properties and reduced
junction depths have been discussed earlier in the context of polycrystalline bipolar
emitter effects. The successful demonstration of selective CVD deposition of refractory
metals [42] suggests one very positive trend in the direction to control MOS contact
properties although vacuum-deposition techniques are likely to dominate for several
years to come. As discussed shortly, the controlled etching of surfaces plays a key role
in all IC processing, and certainly for metallization the interface properties are a factor
of key concern in reliability and reproducibility. In the area of both metallization and
dielectric materials, concerns with step coverage are crucial. For metal one must avoid
openings due to thinning over steps while in the case of dielectrics it is essential to get
good coverage over corners to increase breakdown and improve reliability. In summary,
the role of deposition in lower-temperature processing is indeed important, and the
need for process models in this area will continue to grow. Both dielectric and
conducting layers are benefiting from new deposition techniques, especially those
utilizing lowpressure equipment. Although it is too early to identify the leading
approaches to selective deposition, the possibilities are quite attractive.

The final area suggested for special consideration is etching. The critical role of
technology advances in this area cannot be overstated. The control of gate dimensions
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and edges for MOS is a direct result of etching. New oxide isolation techniques use
careful control of steeply etched trenches [43]. Even for steps without specific spatial
constraints, the end point detection of etching can be crucial to device reliability and
defects created during subsequent thermal processing. Despite the critical dimension
constraints of etching, both lateral and vertical, the kinetic effects involved are more
complex than any other step in the fabrication process [44]. Fig. 18 shows the cross
section of a hypothetical structure during an etching step and a few of the possible
mechanisms involved in the etching which results in the observed convex-curved
surface. The set of events can range from electronic and ionic bombardment of the
surface to surface migration and desorption of reactants and products. Most etching
techniques presently use several reactants including fluorine, chlorine, and oxygen as
key active ingredients. For example, a typical etching process for silicon might involve
C2F6 + C12. There is a wide range of intermediate reactions occurring in the etching
process as indicated in Fig. 18. Moreover, the role of bombardment and surface
kinetics is not generally included in the normal rate equations. These "ambient" and
surface effects will further complicate the kinetic picture. Since patterning is the
dominant driving force in achieving smaller devices, it is this technology which is
expected to undergo the greatest advances in equipment technology--and hence be the
most in need of improved process models. A further discussion of the device implica-
tions related to etching is given elsewhere [45].

IONS & ELECTRONS

MASK

Cl* Ct* Ct* ACTIVATION OF
oT"-RADICALS

FIG. 18. Cross section of a wafer during etching and mechanisms and species involved in the kinetics.

In the previous discussion, I have emphasized annealing, deposition, and etching
as key trends in processing technology. In particular, it is these areas in which new
equipment will shape the directions of device fabrication, and hence new process
models will be needed to keep pace with process design and control. As pointed out in
both Sections II and III, the statistics of device characteristics depend critically on
some aspects of the fabrication process. In the examples cited above, the doping profile
sensitivities for the bipolar base region and the controlling factors of channel length
and source-drain junction parameters for MOS have been demonstrated. Looking
toward the next decade of IC technology, the lateral dimensional control of etched lines
and electrical properties and integrity of thin layers will dominate process control
concerns. In this spirit the trends related especially to deposition and etching will
become more apparent. The use of recrystallization and special annealing techniques
for multilayer interconnects and even active devices [46] is an area which is receiving
increased attention. Moreover, the opportunities for innovative device structures in SO1
will continue to be an exciting area for research [47]. In this field the concerns with the
basic properties of oxides, interfaces and impurity diffusion again become first-order
effects, much in the spirit discussed in Sections II and III.

Two areas of intense industrial activity and practical implication are lithography
and multilayer metallization. The need to pattern fine lines prior to etching is crucial to
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the device scaling efforts. The issues involved in this area are substantially different
from the silicon-based materials kinetics discussed here. The interested reader is thus
referred to [48], [49]. Similarly, in the area of metallization for multiple levels of
interconnect, the concerns move more into the fields of packaging and even organic
chemistry than thermal processing which affects the silicon. Again, the reader is
referred elsewhere [45].

A final overview of both the process modeling as well as new trends discussed in
this section is presented in Table IV. The dominant process steps for which process
modeling is currently an active field of endeavor are listed. The second and third
columns describe both the mathematical tools and the limiting physical kinetics
associated with the several process steps. The reader will recognize several physical
models discussed in Sections II and III as well as more complex kinetics not discussed
here. Selected references are included in the table to point the way for further study in
these areas. The first three rows in Table III refer to implantation, diffusion, and
oxidations--the key processes which are better established. Moreover, the manufactur-
ing equipment and the process modeling tools are most advanced in these areas. Both
etching and deposition represent the avant garde, in terms of both equipment and the
need for more complete process modeling.

TABLE IV
Relationship ofprocess steps, models usedfor simulation, and limitingphysical effects

Process Steps

Ion Implantation

Diffusion

Oxidation

Etching

PROCESS EFFECTS AND IMPLICATIONS

"SUPREM" 12]
"SUPRA" 38]--

Analysis Tools

-Diatributions: Gaussian, Pearson...

Boltzmann Transport [4]

Monte Carlo [51]

Fick’s Law

Multi-Stream Models [i] [7]

mLaplace + Surface Reaction

"SOAP" [34]--------Hydrodynamics (Navier-Stokes) [52]

"SAMPLE" [50] Huygen Waves [49]

pysieal Limits

Defects/Knoek-ons

Transient Annealing [40]

Diffusivity

Precipitation

Transient Kinetics

Surface Kinetics

Stress/Flow

Multi-Stream Kinetics [44]

V. CAD tools for IC design and manufacturing. The previous sections have traced
the evolution of process modeling beginning with bipolar concerns and moving to MOS
devices and local oxidation effects. Now metallization, lithography, etching, and
deposition will dominate IC processing through this decade. The development of
process models have been an integral part of the fundamental understanding needed
for control of manufacturing technology. The objective of this final section is to
consider the computer-aided design (CAD) tools which have evolved in process
modeling and to demonstrate their place in IC design and manufacturing.

For purposes of this discussion we limit our attention to the areas of technology,
devices, and circuits. Fig. 19 shows parallel paths of development from a system point
of view. The left path is that of the system design, ultimately leading to circuit design
and IC layout for custom and semicustom blocks. The right path shows the
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FIG. 19. Schematic of"system" and "technology" design processes and their interrelationships.

technology-based steps leading to the working IC devices and design rules used by the
circuit designers to create the actual cells and subsystems. Three major interfaces exist
between the two paths. At the device and layout levels, the technologists and circuit
designers communicate critical performance and layout information--dominantly
through the mechanisms of device models for circuit simulation and the rules to create
these devices. Hence model coefficients and layout rules are two key exchange formats
for communication. We will not discuss layout further, although this topic and its
ramifications for achieving greater system complexity on single IC chips is of major
importance for VLSI [53]. The third interface is less formal than the previous two, but a
critical one in the evolution of technology. This is the projection phase shown as an
arrow coming from the last generation circuit and system design efforts. At this
interface the projections must be made as to needed technology features--for example,
analog capabilities in a digital technology--and the hopes and expectations of both the
systems and technology groups must be enunciated and defined. This aspect of the
design interface will have a growing level of emphasis and importance with VLSI.
There is a need to build cell libraries of substantial complexity, for example program-
mable ALU’s and RAMs, and to scale them into new technologies and design rules.
Moreover, the growing need to fully consider system-level factors such as hybrid and
printed circuit interconnects, data conversion (A/D and D/A), and communication
channels (busses and networks) suggests that chip technology will evolve in new
directions. The choice to make on-chip hybrid technologies--for example, bipolar
compatible MOS--will reflect a careful interchange across the system/technology
interface.

We will define more narrowly the function of CAD for process design and
manufacturing at the lower two interface levels shown in Fig. 19. Moreover, the dashed
boxes shown as local feedback on the technology path (labeled "process" and "device")
indicate that there are somewhat genetic design steps involved in the development of
technology. Fig. 20 shows a bottom-up slice of CAD at the process and device levels.
The multifaceted equipment and process-models level shown at the bottom of the figure
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reflects the detailed considerations given in the previous sections. The incorporation of
these process models into CAD programs, both one- and two-dimensional, provide the
capability to simulate the effects of process steps such as oxidation and diffusion, and
thereby "inspect" quantities such as junction depth and oxide thickness. Since it is time
consuming and costly to fabricate IC’s repeatedly during design, the simulation process
is very efficient. Moreover, since measurement of physical parameters is difficult and
often inaccurate, the use of simulation can be invaluable in providing feedback and
cross-checking during both process development and manufacturing. Finally, the
complexity of IC processing as reflected in all critical dimensions of submicrometer
channel-length MOS devices requires careful design and process control over sequences
of steps, not simply single oxidation or diffusion cycles. The predictive capabilities for
process modeling CAD have grown rapidly and gained wide acceptance specifically
because of the issues of process complexity and need for tight dimensional control.

Device modeling is the level just above process modeling in Fig. 20. Historically,
these activities have been used extensively to understand fundamental limits of devices
and predict performance. The successful evolution of process modeling--both one- and
two-dimensional--now has established a basis for realistic and predictive device
models. A number of the available tools at these various levels are included on the
figure with appropriate literature references. The SUPREM program [12], [26], [4] is
now the most mature of the process-modeling tools and is used extensively in process
design. Industrial feedback suggests that there is a thousand-to-one cost savings in
simulating a process step compared to laboratory cost. As we have demonstrated in
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Section III the sensitivity of MOS devices to junction depths and oxide shape
parameters such as oxide thickness and lateral extent for local oxidation plays a key, if
not dominant, role in determining electrical characteristics. Hence, the availability of
accurate process-modeling tools has laid the foundation for increased use and accuracy
of device simulation.

The final levels of CAD tools shown in Fig. 20 are those for circuit simulation and
device model parameter extraction. The circuit simulator SPICE [54] is shown as a
specific tool because of its wide acceptance for more than a decade. The use of circuit
simulation to evaluate performance is essential to the circuit designer if not also to the
system designer. One can accurately determine speed limitations of gates and memory
as well as off-chip current drive capabilities. Circuit simulation has replaced bread-
boarding at the chip level, primarily because of its demonstrated accuracy and speed
compared to the inaccuracy and cost of breadboards.

A key limitation to simulation accuracy at the circuit level is device model
parameters. The extraction capabilities shown in Fig. 20 primarily refer to extraction
for prototype and production devices. Recent publications [55], [56], [37] have demon-
strated efficient means to extract both single sets of parameters as well as statistically
meaningful sets of parameters including critical correlations of parameters and physical
effects. Sections II and III have shown the importance of such a statistical approach,
especially for VLSI where the number of devices used and the distribution of their
parameters limits design margins and performance. Fig. 20 also shows two alternative
paths related to circuit simulation--mixed-mode simulation [60] and design centering
of circuit parameters based on process and device inputs [29]. Each of these techniques
tries to capture lower levels of detail in a form useful for circuit design. Mixed-mode
simulation allows the direct embedding of device simulation in a circuit simulator
environment. Design centering provides an environment to evaluate sensitivities of
circuit parameters based on first-order analytic models for process and device effects.

The overall intent of Fig. 20 is to show an important coupling and synergism of
process, device, and circuit CAD tools. While the present method for extracting circuit
simulation model parameters relies heavily on measurements, the increasing use of the
other tool sets will become dominant by the mid- to late 1980’s. The reasoning parallels
the motivation for process modeling itself--it will be faster and more accurate than
expefirnentation, especially as process statistics become more significant. However, the
concern with accuracy limitations of models and their coefficients will increasingly be
pushed toward the processing end of the CAD tool chain. Limitations in device models
related to resistances, capacitances, and even mobility each have an underlying set of
technology variables such as impurity doses, junction depths, and oxide thicknesses.
The factors-of-two change in device model parameters can increasingly be traced to
these underlying technology parameters as well as the associated lithography variations.
Hence, Fig. 20 contains two messages. First, the range of CAD tools between process
design and circuit simulation will be of growing importance. Second, the use of process
and device simulation as local feedback, as shown in Fig. 19, are well established for
process design and will grow quickly as manufacturing tools as well.

It is beyond the scope of this paper to consider in detail the analysis techniques or
even the state-of-the-art features of one- and two-dimensional process- and device-anal-
ysis tools. The previous sections have demonstrated several examples with a suitable
sampling of current technology-oriented device effects. Both short-channel narrow-width
effects of local oxidation on parasitic devices as well as defect generation can now be
modeled in two dimensions. Rather than project into the future concerning how far the
evolution of process modeling CAD will advance, I would like to reflect on the
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potential for the modeling concepts and technology depicted in Figs. 19 and 20 to
become an integral part of IC manufacturing. Implicit in the discussion is a firm belief
that process models will keep pace with the rapid development of manufacturing
equipment technology and device innovation.

There are four attributes of CAD for process and device modeling which are
essential to its long-term success in IC manufacturing: accuracy, speed, friendliness,
and system integrability. I will briefly discuss each of these. Accurate determination of
process and device parameters is a critical factor for scalability and manufacturing of
VLSI. The basic premise for success of CAD tools in this area is to predict the critical
performance and process control variables with sufficient accuracy so that devices can
be well designed and, more importantly, manufactured. Examples in Sections II and III
show deafly this dual role of design and manufacturability.

The factor of CAD tool speed has several implications. First, it is necessary that
process and device designers get sufficient feedback quickly so that they reduce costs in
the use of the fabrication facilities. Simulation obviously does not replace fabrication--it
reduces the trial and error needed to converge to a stable process. Moreover, simulation
allows the exploration of the process window and helps identify factors which can
affect manufacturing and process control. A second factor related to speed is the
growing possibility to use process models directly in the manufacturing environ-
ment--for example, as very sophisticated controllers for equipment. Although this
aspect of simulation is only beginning to become practical, the prerequisite for its
success is simulation speed in real time on the small computers used for process
control. Finally, the growing complexity of process and device simulators, dictated by
more complex kinetic models of physical processes, has caused a lag in available CPU
cycles. The increased speed of next-generation computers has helped substantially.
Nonetheless, there will be an ongoing effort in developing better algorithms to match
the physics and yet provide real-time computations as suggested earlier.

The user interface for CAD tools, including process and device modeling, is a
major factor in establishing broad usage in both engineering and manufacturing
environments. In the area of process modeling the user input has evolved from text
descriptions similar to SPICE-type syntax for device models. From the manufacturing
point of view the text looks very similar to instructions used to control processing
equipment. Fig. 21(a) shows one simple sequence of step specifications for an implanta-
tion and diffusion sequence. The internal program calculations used to solve for the
resulting impurity distributions are shown schematically in Fig. 21(b). The physical
changes refer to steps such as oxidation (16) and the chemical changes refer to diffusion
(4). The discrete time solution of the respective partial differential equations results in
the impurity profile shown in Fig. 21(c). Here the deposited oxide-layer thickness is
shown as well as the impurity profile both in the oxide and into the silicon bulk. From
the user interface point of view the pictures of profiles are extremely valuable, although
more qualitative than quantitative. The transformation of impurity profiles into mea-
surable quantities is the key step to get to the end result. For example, junction depth,
sheet resistance, junction capacitance, and threshold voltage are typically desired user
outputs. Fig. 21(d) shows one further post-processing capability for process simulation
output. The profile from Fig. 21(c) has been converted into a plot of channel charge
versus gate potential which can in turn be compared with measurements. From the
viewpoint of manufacturing it will be increasingly important that such on-line monitor-
ing of electrical as well physical outputs be generated so that feedback between results
and design intent can be critically evaluated.
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In the area of two-dimensional process and device simulation the user interface
requires a different set of considerations. Here the topography is a dominant concern
and text descriptions alone are not sufficient. Fig. 22 shows cross-sectional views of a
portion of a CMOS device structure. Fig. 22(b) shows the cross section as viewed by the
technologist when considering the trade-offs related to the boron implant and LOCOS
steps. Fig. 22(c) shows the simulation grid used for 2D process modeling where
high-concentration diffusion is to be modeled [57]. The discretization used to solve both
the impurity diffusion and oxide interface effects place constraints on the most
appropriate positioning of the grid. In addition, there are numerical analysis constraints
implicit in the grid specification since the efficiency of the solution is affected by both
the number of points and the form of their interconnection. For example, techniques
such as line-relaxation (SLOR) or finite-difference (FD) methods each impose different
constraints on the spacing of the grid [36]. The grid shown in Fig. 22(c) can also be
used for device analysis of the physical structure shown in Fig. 22(a). As stated above,
the physical as well as numerical constraints dictate how this grid must be refined or
altered for the device modeling application. In this case, since electrical rather than
impurity diffusion effects are involved, the grid must be altered in several regions. For
example, the electronic analysis now requires solution for depletion edges and carrier
distribution which occur in regions physically quite separate from the regions of
maximum concentration as shown in Fig. 22(b). The user interface problems associated
with the systematic progression from Fig. 22(c) into device analysis is still an art rather
than a science. Fig. 23 defines schematically the problems of grid definition and the
associated physical constraints imposed by the process and device simulation. The user
interfaces indicate required interaction. Recent research results indicate successful
automation of parts of the process, and hence the ability to relieve the user of these
time-consuming and error-prone steps [58]. The vertical sequence of choices in process
and device-modeling grids indicate options at several levels. The physical constraints of
the systems of equationsmFick’s law contrasted with the Poisson and continuity
equations--suggest the need for substantially different grids. The total merging of grids
for both process and device modeling offers the user a great relief, but may excessively
compromise the underlying numerical solvers. The choices to be made both at a user
level and in the underlying algorithms will evolve rapidly over the next decade.
Certainly automation of algorithms to increase numerical efficiency and simultaneously
enhance the user interface are the preferred directions of evolution.

The final essential attribute of CAD tools for process and device modeling is
system integrability. The meaning of this term can be discussed at three levels. These
levels of integration have been implicitly defined in Figs. 19, 20, and 23meach
indicating a lower level of interfacing and simultaneously a higher level of demands on
performance and algorithms. The long-range wish is for an "Integrated CAD System"
--a cradle-to-grave approach in the design, production, and testing of IC’s. Certainly
the need for CAD tools at all levels shown in the figures discussed throughout this
section are crucial to the success of IC design and manufacturing. Extensive algorithmic
research will produce the desired interfaces depicted in Fig. 23. The integration of the
CAD tools shown in Fig. 20 will be driven by the increasingly tight manufacturing
controls needed for scaled-down devices. Moreover, the device and interconnect models
needed for SPICE will dictate increased use of process and device simulation to extract
the current physical parameters and coefficients. Finally at the system level shown in
Fig. 19, the need to manage and control production will mandate the high-level
integration of process and device modeling CAD. Recent efforts to create CAD
languages for IC manufacturing [59] suggest a very positive and far-sighted perspective
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on solutions to the system needs implied by Fig. 19. The needs to automate
production-trained personnel, schedule equipment, and document procedures and
results are all key ingredients of manufacturing system. Indeed, the CAD tools
discussed in this article are one set of specific computer aids to be incorporated into
such a manufacturing system of the future.

Vl. Conclusion. The intent of this article is to put the details of process and device
modeling in perspective, relative to the history and future of IC manufacturing. Since
its inception, technology modeling has been used to understand the fundamental limits
of process and device control. This paper has traced primarily the evolution of process
models for impurity diffusion and oxidation. Examples for bipolar and MOS technolo-
gies have been given to show details of application to both device design and
manufacturing control. In considering the future for process and device modeling two
aspects have been emphasized. The trends in equipment technology for IC manufactur-
ing will play a major role in dictating the need for further modeling work. Furthermore,
the CAD tools for technology modeling fit into an overall system-design approach. This
system must integrate individual CAD tools to meet the overall objectives of IC
manufacturing.
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SEMICONDUCTOR DEVICE SIMULATION,

WOLFGANG FICHTNER*, DONALD J. ROSE AND RANDOLPH E. BANK*

Abstract. The most effective way to design VLSI device structures is to use sophisticated, complex
two-dimensional (2D) and three-dimensional (3D) models. This paper and its companion [1] discusses the
numerical simulation of such device models. Here we describe the basic semiconductor equations including
several choices of variables. Our examples illustrate results obtained from finite-difference and finite-element
implementations. We stress the necessary 3D calculations for small-size MOSFET’s. Numerical results on
inter-electrode capacitive coupling are included.

I. Introduction. The development of new semiconductor technologies and novel
semiconductor device structures has traditionally been guided by an experimental
approach. Starting from an established process sequence, fabrication steps are changed
together with geometrical (feature size) dimensions. The modified process is then
realized by fabricating several lots. Finished devices are tested to insure their perfor-
mance conforms to the initial design. This approach usually includes several iterations
of the processing to testing loop.

With the advent of increasingly complex integrated circuits, the traditional empiri-
cal approach has become expensive and time consuming. An alternative approach using
sophisticated numerical simulations in process and device development has proved to
be both cost effective and reliable.

For example, the development of a new CMOS process might involve nine
lithography steps, six ion implantations and several diffusion, annealing, and oxidation
steps. In a medium-size computer, one can simulate all critical process steps and the
corresponding device performance in a matter of minutes to hours. A real experiment,
on the other hand, would usually take from several weeks to months.

For devices and circuits of VLSI complexity, process conditions are tightly coupled
to the behavior of the finished device. Therefore, device simulation cannot be a stand
alone fidd, but has to be closdy coupled to process simulation.

In this paper and its companion [1] to follow we present our approach to
semiconductor device simulation. We assume that the necessary input from process
simulation is available. We do not treat process simulation extensively here, although
many of the numerical techniques presented in [1] are applicable. See other papers in
this issue [2] and [3] for a summary of the current state of process simulation.

The coupled nonlinear partial differential equations describing the intrinsic behav-
ior of semiconductor devices provide a significant challenge to the scientific computing
community. While most of the work in this field has been performed by researchers
with electrical engineering and physics backgrounds, there has recently been increased
interest by numerical analysts in investigating this problem. As a result advanced
numerical algorithms such as sparse-matrix techniques and adaptive multigrid methods
have been applied to solve the semiconductor equations.

The guiding principles in the design of our software package were robustness,
speed, and easy user access. Robustness is an absolute necessity for any software
creator, otherwise his codes will not be used at all. In our computing environment with
a large number of active users from different areas, robustness has priority. Neverthe-
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less, execution times were of major concern to us. The search for a best device under
worst case operating conditions can result in tens of different runs, where one run can
be a complete device I-V curve. The interface to a program is crucial for obtaining
easy user access. We have attempted to relieve the user completely from any aspects of
information transfer between the process and the device simulator, grid generation and
numerical fine-tuning.

In Section II, we present the semiconductor equations, a set of coupled nonlinear
partial differential equations (PDE’s). After we formulate the equations, we discuss
boundary conditions. The description of high-field phenomena and heavy doping
effects is also included in this section.

Section III deals mainly with the simulation of intrinsic silicon device structures.
We state our approach to hierarchical simulation as a cost effective albeit physical way
to analyze devices. Several examples are included in this section, illustrating results
obtained from finite-difference and finite-element implementations. Furthermore, we
present methodology and results from three-dimensional (3D) simulations. We stress
the necessity of 3D calculations for small-size MOSFET’s. Part of this section is also
devoted to user-oriented device simulation. One example illustrates how we have
coupled a general purpose two-dimensional process simulator to our device simulation
software.

Parasitic dements begin to have an increased impact on device and circuit
performance. In Section IV, we shall present numerical results on inter-electrode
capacitive coupling.

II. Semiconductor equations. In this section we formulate the partial differential
equations (PDE’s) which describe the static and dynamic behavior of carriers in
semiconductors under the influence of external fields. We state the equations in a
general form valid for all semiconductors of practical importance, although our primary
interest is in silicon devices. However, the following discussion is not restricted to
silicon; by using the appropriate material constants the equations can be easily
transformed and generalized. We state various boundary conditions which are encoun-
tered in real device simulations. Several changes of variable which simplify the PDE
system are discussed. Finally, we briefly discuss how hot-cartier effects and high-doping
phenomena can be incorporated.

A. Equation |ormation. The equations which describe the transport of electrons
and holes in semiconductor devices can be derived in a straightforward way from the
Boltzmann Transport Equation (BTE), if the motion of carriers is treated to be
semiclassical [4]. In this simplified, but nevertheless physical description, cartier motion
in a semiconductor crystal with applied external field can be regarded as a series of
acceleration (treated by classical mechanics) and scattering (treated by quantum mecha-
nics) events. For the electric field strengths and temperatures encountered in small
silicon devices, this semiclassical picture accounts very well for all cartier transport
effects of interest (e.g., [4]-[6]).

The applicability of the BTE for the description of small semiconductor structures
has been recently studied by various authors [7]-[9]. Based on the results of these
papers, we can conclude that for silicon devices with actioe dimensions of 0.1/xm and
larger, cartier transport can be described by the semiclassical BTE approach. The
method of solution of the BTE is guided by the active dopant concentration level,
which is normally well above 1016 cm-3 for small devices to insure proper current-volt-
age behavior. At these doping levels, however, it has been shown that cartier-cartier
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interactions dominate the shape of the cartier distribution function [10]-[12]. This fact
allows the assumption of an effective cartier temperature. Recently, Hess [13] has
critically reviewed the applicability of the cartier temperature concept for the simu-
lation of silicon device structures. His results indicate that for MOS devices and CCD’s,
the cartier temperature concept is well suited to describe high-field transport effects.

Based on these assumptions in the semiclassical picture, the operation of devices
can be evaluated by solving the BTE [14]-[16], although for real applications the direct
solution of the BTE is impractical. However, we can go one step further and make the
quasi-static local field approximation [17], which reduces the problem from one in
space and momentum coordinates to one in space coordinates alone. In this approxi-
mation, it is assumed that the response of carriers to a change in the electric field is
much faster than the effective rate of change in the field; i.e., the device response and
the dielectric relaxation processes in the device interior are slow compared to the
fundamental response of the carriers. As a consequence, the product of the maximum
particle velocities and relaxation times is negligible compared to active device dimen-
sions, especially for the case of silicon.

Assuming the above conditions hold, we can write the basic equations of semicon-
ductor transport in the form most commonly used in numerical device simulations
[181-[201.

The static and dynamic behavior of carriers under the influence of external fields
can be partitioned into three groups: Maxwell’s equation, the current-density relations
and the cartier continuity equations.

a) The Maxwell equations form the basis of all electromagnetic phenomena in
semiconductors. They are given by

B
VXE= 0t

OD
(1) V XH-" -}- Jcond J,o,,

v.D=o,
v.B=0

where the electric displacement vector D and the electric field vector E are related by
the constitutive relation

with the semiconductor permittivity es. A similar relation holds between the magnetic
induction vector B and the magnetic field vector H

B=/H
with the permeability/. In (1), Jcond and Jtot are the total current and the conduction
current, respectively; 0 is the total charge density.

When combined with the current equations, (1) provide a complete description of
cartier dynamics in semiconductor structures.

For our purpose, the Poisson equation is of major interest. It relates the total
space-charge to the divergence of the electric field, namely

(2) esV- E eV 2q O

where the electrostatic potential q is defined via

E=- Vtk
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and the total space-charge #, assuming complete ionization, is given by

(3) o=-q(n-p+N)
where N N-N- is the electrically active net impurity concentration, q is the
electric charge, and n and p are the electron and hole cartier densities.

b) The current equations for electrons and holes are given by

(4) Jn qlnnE+ qDVn,
(5) Jp qtxppE qDpVp
where/ and/p are the electron and hole mobility, and D and Dp are the correspond-
ing diffusion coefficients. Both mobilities and diffusion coefficients depend on the
electric field.

Under nondegenerate conditions, the diffusion coefficients and the mobilities are
related by the Einstein relation [5], [21], [22]

kT kT(6)

where k is Boltzmann’s constant and T is the cartier temperature.
For nondegenerate materials, if the electrostatic potential is taken with reference to

the intrinsic Fermi level Ei, the cartier densities are given by the Boltzmann approxima-
tion

(7)

(8)

q(4’ q’V) ]n nexp kT

p niexp kT

where n is the intrinsic density and EF qF is the Fermi level position under
equilibrium conditions. From (7) and (8), it follows immediately, that

(9) np= n2i
Under nonequilibrium conditions, the electron and hole concentrations will depart
from their equilibrium values and they can no longer be represented via the single
quantity EF. However, we may introduce two new energy parameters EF, and EFp,
which allow us to write n and p in a form similar to that in (7) and (8), namely

(10) n nexp [ q( q’) ]kT

(11) P nexp[ q(qp- )
where EF, qdp, and EFp qqp. The quantities EFn and EFp are the quasi-Fermi levels
(also called imrefs), and , and p are the corresponding quasi-Fermi potentials.

The simple relationship in (9) is replaced by

EFn- EFp
(12) np= n2i exp kT

and the difference in the quasi-Fermi levels indicates the deviation of the np-product
from its equilibrium value.

Rewriting (4) and (5), using (6), (10), and (11), yields for the current densities in
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terms of quasi-Fermi levels

(13) J qtnV,

(14) Jp q#ppVdp.

c) The continuity equations for electrons and holes are given by

1 On
(15) V-J G + R + 0,

q

1 Op
XT.Jp G + R + =0(16) q --where G incorporates generation phenomena, such as impact ionization or carrier

generation by external radiation and R describes recombination processes. We shall
comment on specific expressions for these terms in Subsection II-D.

Equations (1), (15), (16) with either (4) and (5) or (13) and (14) describe the
current flow in the semiconductor and determine the electrical performance of the
devices.

In this paper we are concerned with the numerical solution of the steady-state
semiconductor equations. Thus we summarize (1)-(6) as

(17) ev-E q(p n + N),

(18)
1 1v-an V-ap G- R
q q

(19) a qlnnE + qDnXTn,

(20) Jp qp,ppE- qDpVp.
Equations (17)-(20) are usually normalized into dimensionless form. We have followed
the work of de Mari [23]; several other ways exist and have been reported e.g., [24]. If
we express all spatial dimensions in terms of the intrinsic Debye length,

esksT

all densities in units of n and all voltage terms in units of kT/q, (17)-(20) read

(21)
(22)
(23)
(24)
with

-Au+n-p-k=O,

v.j= v.jp= g- r,

jn= IXn[nTu- 7n] nnTv,

jp p,p[pVu + Vp] p,ppVW,

(25) n=eu-, p=ew-u.
Here u, v, and w are the normalized potential and the electron and hole quasi-Fermi
level, respectively, and k is the normalized impurity distribution. In the transition from
(7)-(20) to (21)-(25), we have kept the symbols n, p, and/n and/Xp. The reader should
be aware that in (21)-(25), these are actually normalized variables.

The PDE system (21)-(25) is posed on a region (in 2D) such as shown in Fig. 1.
For MOS technology the gate contact is insulated from the channel between the source
and drain contacts in the silicon region by SiO2. In this oxide region, (21) is augmented
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GATE

SOURCE / DRAIN

BULK

FIG. 1. Idealized cross section of a planar n-channel MOSFET.
by

(21a) e0AU 0.

Equation (24) is normalized form, and e0 is the ratio of permittivities in silicon-
dioxide and silicon.

B. Boundary conditions. Equations (21)-(25) summarize the coupled system of
PDE’s describing the semiconductor device. It remains to specify boundary conditions
for a particular geometry.

Fig. 1 shows a representative example a two-dimensional cross section of an
n-channel MOS device. For the ohmic contacts of the source, drain, and bulk we derive
Dirichlet boundary conditions as follows. Assuming space-charge neutrality on these
contacts (p 0 in (23)) we obtain

(26) n p k 0.

Carrier equilibrium defines the condition

(27) pn =1.

Recalling (25) we obtain o w uF, where uF is the normalized equilibrium Fermi
level (see (7) and (8)). Finally uF is taken to be equal to the applied voltage at the
contact; e.g., for the drain

(28) o=w=uos
where Uos is the normalized drain-to-source voltage.

From (26) and (27) we find

n k/2 + (k2/4) + l

which combined with (25) and (28) produces the Dirichlet condition at the drain

(29) u=uz)s+ln(k/2+(k2/4)+l)
The other contacts are treated similarly.

Along the side boundaries, homogeneous Neumann (reflecting) boundary condi-
tions insure that no current can flow in or out of the device along these edges. This
statement is equivalent to equality of drift and diffusion along the sides.

The gate contact is treated as a Dirichlet boundary condition with an appropriate
work function for the material. Along the side of the gate oxide homogeneous
Newmann boundary conditions are used.
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C. Choice of variables and earlier work. The origin of semiconductor device
modeling using numerical instead of analytical methods can be traced back to the early
work of Gummel [25] on one-dimensional bipolar transistor modeling. This algorithm
has since been extensively used both in its original one-dimensional form and also in
two dimensions by Slotboom [26], [27], Mock [28], [29], Heimeier [30], Manck [31], and
others. The major difference between the various attempts to solve the semiconductor
equations lies in the choice of variables and the treatment of the carrier continuity
equations [32]. In our companion paper, we present a discussion of the various
possibilities that exist.

The basis for Gummel’s algorithm [25] is as follows. Estimates are made for the
quasi-Fermi level distributions v and w, and a solution for u is obtained from Poisson’s
equation. The solution for u so found is then used in the transport equations to improve
the initial estimates of w and v. The cycle is repeated until some convergence criterion is
satisfied. The important point is that the equations are decoupled. We shall call this
solution process Block Nonlinear Iteration (BNI). Although Mock [33] has claimed that
under certain circumstances the algorithm does not converge, the scheme itself has
proved to be of considerable value.

Some workers have chosen the cartier concentration n and p as variables in which
to apply the Gummel algorithm, for example de Mari [23], Petersen [34], Manck [31].
This choice of variables is attractive as it can be seen that if an estimate for u is known,
(22) and (23) are linear in n and p, and that given an estimate for n and p, then (21) is
linear in u. Consequently, only successive solutions of linear problems are required.
However, because of the large range of values to be accommodated, care must be taken
in the discretization scheme, as small errors may produce inadmissible (and unphysical)
negative cartier concentrations. In addition, large spatial variations make an adequate
numerical representation of derivatives difficult.

Others [26], [27], [35], [36], [37] used exponentials of the quasi-Fermi levels as
dependent variables

(30) jp p,ppVW I.l,pe Vew= p,pe
(31) Jn ,,nTv Ix,,e"Te l.t,neUTp.

The BNI algorithm produces linear transport equations in the new variables , e -v

and o ew, although the Poisson equation is nonlinear. An advantage of this scheme is
that the quantities , and 0 are nearly constant over large regions of the device, thus
allowing a reduction of meshpoints. The range of numerical values, however, is greater
than that in n and p. In our companion paper [1], we suggest several strategies to scale
the original equations (30) and (31).

Mock [28], Sutherland [38], and others [39], [40] have adopted the so-called stream
function as a variable in the continuity equations. The main assumption is that no
generation and recombination process exist, i.e.

=0,

(33) V’j =0.

This divergence-free flow of the electron and hole current can be enforced by
introducing a stream-function 0 as a vector potential for j, e.g., for the electrons

(34) Jn ,V X 0

where is the total current. For a two-dimensional problem the components of Jn are,
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respectively

(35) j,,,x ],,--y
(36) J" Y J" --ffx
Identifying the x and y components of (24) with the corresponding expressions of (35)
and (36) we have

(37) ,,-y p, e -x ( ne )

(38) Jn 0X ne (ne-)

using /x(ne-) -e-(v/Ox) and (24).
By dividing both sides of these intermediate equations by eu, and differentiating

the first equation partially with respect to y, the second partially with respect to x, and
adding the two, we obtain

(39) Ox
e-U

A silar equation holds for the holes. The iterative procedure starts with initial guesses
for u, 0, and 0. Then the nonlinear Poisson equation is solved, followed by a solution
of (39) and the equivalent hole equation. The stream-function approach has recently
been generalized to include generation-recombination processes [41].

One alternative to the above mentioned schemes is to work in the quasi-Fermi
levels themselves, as defined in (9) and (10). TNs is a natural choice because, in
addition to a range compression, the current equations simplify to some extent and also
the bounda conditions are directly expressed in v and w and are therefore simple. The
arising diculty is that the continuity equations are nonlinear in v and w when an
estimate for u is available, so that with tNs choice of variables all equations are
nonlinear. However, with a proper nonlinear equation solver tNs is a small price to pay.
If a simultaneous solution scheme is used, tNs choice of variables seems preferable.

A problem usually encountered with the decoupled solution scheme is slow
convergence of the overall solution under certain physical conditions such as bounda
conditions in Ngh-current reNmes. Physically, tNs implies a strong coupling between
the Poisson and the continuity equations.

Histocally, Manck [42] recognized tNs problem first and tried to avoid it by
solving the equations simultaneously using a LSOR-scheme to solve the nearized
system. Adler [43], and Buturla et al. [] presented solutions of the coupled system
using sparse mat tecques. Recently, we have presented an alternative approach to
the simultaneous solution of (21) to (23) [45]. By ordering the physical variables u, v,
and w in blocks, we can utilize the advantages of both a global Newton strategy and
ecient near equation solution (for detNls, see [1]).

D. Ng-eiee egeffects. In (22) and (23), the terms g
and r describe the variable generation-recombination phenomena which occur in
silicon devices. The relative importance of recombination phenomena depends on the
particular device; e.g., for bipolar devices, recombination strongly influences the
current gain, but for MOS deces, it is usually not of importance. On the other hand, it
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is imperative to include the avalanche generation term under high field conditions.
Furthermore, under strong breakdown conditions, recombination phenomena become
important due to the large increase of electron and hole densities. For complex
structures, it is not always possible to choose the "right" physics a priori for the
simulation, since the intrinsic behavior of the structure might change for different
operating points. In Section III-B, we present as an illustrative example the case of
parasitic structure which is typical for a CMOS bulk technology.

We can partition the various phenomena according to

(40) g-r= (g--r)thermal+(g)av+(g--r)Auger
where (g-r)thermal describes thermal processes in the volume and at the surface
(Shockley-Read-Hall processes), the second term describes generation of carriers due
to impact ionization and (g-r)Auger stands for Auger phenomena [46].

For silicon, the dominant recombination mechanism is an indirect process in-
volving a trap center in the energy gap. This process can be well modeled by the
expression

n pn
(41) (g- r)thermal "rp(n + nt)+’rn(p + pt)

where % and rp are the electron-hole lifetimes and n and Pt are associated with defect
levels in the energy gap. The most effective trap center occurs in the middle of the gap,
and in this case nt= Pt n i.

Surface recombination effects are modeled similar to (40), where the lifetimes are
approximated by reciprocal surface velocities.

The term gav describes the number of generated electron-hole pairs per unit
volume and time

1
(42) (g)av "-(OlnlJn[-- Olp[jp[)

where a and ap are the ionization coefficients andj and jp are the current densities in
(24) and (25).

The coefficients a and Ctp depend on the electric field. For multidimensional
simulations, we treat the field dependence of a by the relations

(43) a,,,p E’jn,p ’P

O, E’jn, p < O

thus taking only the field component parallel to the current flow into account.
Auger recombination is the reverse process to impact ionization, involving three

particles. The recombination of an electron-hole pair releases energy for a third
particle. The probability for this process is proportional to the density of involved
particles, i.e.,

(44) (g-r)Auger (n2i pn)(Cnn + Cpp)
with the Auger coefficients C, and Cp. It is obvious from (44) that Auger recombination
will only become important if the electron and the hole density are high in the same
area.

In various silicon devices, the active device regions contain doping levels above
1018 cm-3. This is particularly true for bipolar devices, where heavily doped emitter-base
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regions have a crucial influence on the transistor behavior. For essentially all devices, in
which high doping levels are necessary, the transport of minority carriers is essential.

At these high doping levels, several phenomena occur which are unique. These
phenomena can be classified in 1) effects concerning the band structure of silicon, 2) an
increase in recombination with a corresponding decrease in minority-cartier lifetime,
and 3) questions concerning the validity of Maxwell-Boltzmann statistics.

In this paper, we shall not dwell on the physics of high doping phenomena a
complicated and still active area of research (for a review, see [47]).

To incorporate these high doping effects into our system (21) to (25), we have to
take into account Auger recombination, (44), and correct the intrinsic carder con-
centration, n, which is replaced by an effective intrinsic concentration ne

(45) n2ie ni exp kt

where AEg describes bandgap narrowing. The effective cartier concentration has to be
used in (10) and (11)

(46) n nieexp
q( / ") ]kT

(47) p neexp[ q(p- ) ]kT

Experimental values for n ie are available in the literature [48].

IlL Intrinsic device simulation. In this section, we present some practical aspects
of numerical device simulation. Several examples should illustrate our points. These
examples have been constructed from typical simulations of MOS (metal-oxide-semi-
conductor) devices. In Subsection Ill-A, we discuss hierarchical device simulation, and
Subsections III-B and III-C give two-dimensional and three-dimensional examples.

A. Hierarchical device simulation. In simulations one is normally interested in the
behavior of semiconductor devices over a wide range of operating conditions. In the
case of MOS devices, these operating conditions range from the subthreshold region to
high current conditions in the saturation region, possibly including impact ionization
effects. If the device operates in the subthreshold region, it is essentially close to
turn-off and a very small current is flowing between source and drain (see Fig. 1). This
current flow is caused by diffusion only, resulting in a small perturbation in the
quasi-Fermi level distributions, i.e.,

(48) V’j. -- O,

(49)
Therefore, constant quasi-Fermi levels can be assumed for low-current operating
conditions. This fact has been utilized successfully by various authors [21], [49].

The assumption of a constant minority-cartier quasi-Fermi level breaks down
under operating conditions resulting in medium to high current flow. For our hypo-
thetic n-channel example, this means that (48) no longer holds. However, if generation
phenomena such as impact ionization effects can be neglected, the majority-cartier
current in the substrate is zero, i.e.

v-+ =o
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for an n-channel device and the hole quasi-Fermi level w is constant. This reduces the
problem to one of solving only two equations, namely (21) and (22) with (23). This case
of constant quasi-Fermi level for majority carriers is the standard case for most MOS
simulations.

Under bias conditions resulting in majority-current flow, all three equations have
to be solved. For MOS-like structures, these situations usually arise under high bias
conditions with impact ionization.

The concept of modeling hierarchies can be generalized for arbitrary semiconductor
structures. Dirks and Engl [50] have successfully used their stepsolving strategy to
analyze bipolar structures.

The utilization of the hierarchical solution scheme to a complex simulation
problem can result in dramatic reduction of CPU-time needed. The bottom-up philoso-
phy allows to start with the lowest level solution (e.g., a Poisson solution), which is a
good starting approximation to the next level, and so on. Fig. 2 presents a schematic
summary of the hierarchy concept. The motivation for the use of the hierarchical
solution scheme is easy to understand when the alternative for obtaining the same
informationma full solution of the coupled set of equationsmis considered.

In the next subsection, we present two simulation examples where we utilized the
hierarchy scheme.

-Au + eu-v-ew-u-k 0

v,w piecewise constant

II

III

-Au + eU-V-eW-U-k 0

--V’jn r

w piecewise constant

-Au + eU-V-eW-U-k 0

FIG. 2. Hierarchical device simulation.

B. Intrinsic device simulation. We have developed a software package for the
solution of (21)-(25) which is capable of dealing with most two-dimensional device
structures arising in modem IC technology. The package consists of two parts, a
finite-difference (FD) code and a finite-element (FE) code. In our environment, with
many users having widely varying problems, this has proved to be a good solution to
the tradeoff between general software and computer resource requirements.

The finite-difference code is used for device structures comprised of unions of
rectangles. We use a tensor product mesh, which is the same for all three equations. The
box method (see [1], Section 3.1) is used to discretize the equations. This allows us to
take some advantage of vector processing capabilities available in our CRAY-1.
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The finite-element code is used for device structures with nonrectangular geometry.
Our implementation is based on Bank’s PLTMG [51] package. We use elements of
triangular shape with linear basis functions. This package utilizes a multigrid strategy
with adaptive mesh refinement. For details on the discretization, we refer the reader
again to our companion paper (see [1, sec. 3.5]). The implementation of our FE package
is inherently more costly in the assembly process than the FD code.

In the following, we compare both implementations on an example of a planar
MOSFET structure with a 1-/xm gate length, 0.25-/xm junctions and a gate oxide
thickness of 250 ,. This device has a constant substrate doping of 1015 cm-3 and has
not been implanted in the channel. We chose bias voltages of Vg V0s 0 V and
Va 1 . Under these conditions, the device operates close to punchthrough mode
with part of the total current flowing through the bulk. The total current is Ia 0.7 mA
(W 30/m). The device operation is illustrated in Figs. 3-6. Fig. 3 shows a surface
plot (a) and the corresponding contour plot (b) of the electrostatic potential. We note
that the depletion edge (-0.3-V line) has been pushed deep into the substrate. Fig. 4
presents the surface plot (a) and contour plot (b) of the electron concentration (note the
different depth scales).

Electric field plots and a gate view of the lateral current density are shown in Figs.
5 and 6.

Although the current is relatively high under these bias conditions, no impact
ionization occurs due to the modest drain bias (Va 1 V). Therefore, we have only
solved the Poisson equation and the electron continuity equation. We used a block
nonlinear iteration scheme (BNI, see above) since our FE code presently does not allow
a fully coupled, simultaneous scheme. For both cases, our choice of variables results in
a nonlinear Poisson equation, and a linear continuity equation (see Equation (3.38),
[1]). The finite-difference run was performed on one grid level whereas the finite-ele-
ment run used to multigrid levels with uniform triangle refinement.

DRAIN (IV)
GATE (OV)

O
SOURCE(OV) [--- ---1 DRAIN(IV)

$OURCEIOV)

GATE (OV)

3OO

(a)

DISTANCE (/m)

FIG. 3. (a) Surface plot of the electrostatic potential, (b) contour plot as seen from the bulk for Vg Vbs 0 and
l/ds 1V.
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FIG. 4. (a) Surface and (b) contour plot of the electron density.

(a)

LATERAL DISTANCE (y.m)
0.50 1.00

0.50

SUBSTRATE

(b)

FIG. 5. (a) Surface plot of the lateral electric field, and (b) the corresponding contour plot of the lateral
electric fieM (kV/cm) near the drain contact.
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FIG. 6. Surfaceplot of the electron current density, as seen through the gate.

In Table I, we illustrate several performance aspects of the FD calculation. The
nonlinear iteration scheme for the Poisson equation is the one we proposed in [53].
Initially, we solve the Poisson equation assuming constant quasi-Fermi levels (iteration

0). This is equivalent to the lowest complexity in our solution hierarchy, and it gives
a good initial condition for the electrostatic potential. Then, the electron continuity
equation is solved, alternating with the Poisson equation, corresponding to next level of
complexity in the solution hierarchy. The need for a stable algorithm to treat the
nonlinear equations becomes obvious from the result in Table I. In order for the

TABLE

Plug llg,ll t

0.17253e+0,, O.O0000e+O0 0.10000e+Ol
0.57084e+03 0.38984e+00 0.67667e+00
0.60836e+02 0.I 8406e+00 O. lO000e+Ol
0.20709e+02 0.28712e-01 O. 10000e+O1
0.65792e+01 0.86180e-02 0.10000e+01
0.16669e+01 0.49293e-02 0.10000e+01
0.19886e+00 0.22268e-02 0.10000+01

7 0.37518-02 0.34863e-03 0.10000+0

0.65712e+06 0.00000e+00 0.10000e+01
0.64050e+06 0.15065e+01 0.25596e-0
0.50558e+06 0.56559e-01 0.23063e+00
0.15807e+06 0.13187e-01 0.10000e+0
0.47666e+05 0.77781 e-02 0. 10000+0
0.14562e+05 0.58847e-02 0.10000e+01
0.50547e+04 0.51173e-02 0.10000e+01
0.17475e+IM 0.43824e-02 0.10000e+01
0.53914e+03 0.34663e-02 0.10000e+01
0.11990e+03 0.21785e-02 0.10000e+01

l0 0.10935e+02 0.77098e-03 0. 10000e+01

0.33754e+03 0.00000e+00 0.10000e+01
0.14364e+03 0.21290e-01 0.70140e+00
0.26625e+02 0.45202e-02 0.10000e+01
0.31638e+01 0.13968e-02 0.10000e+01
0.13390e+00 0.29081e-03 0.10000e+01

0.8’937S+01 O.O0000e+O0 0.10000+01
0.32373e+01 0.61739e-02 0.1000)e+01

0.21459e+00 0.10030e-02 0.10000e+01
0.10522e-02 0.63353e-IM 0.10000+01

0’ 0.19269e+01 0.00000e+00 0.10000e+01
0.18654e+00 0.34266e-02 0. 10000e+0
0.20050e-02 0.29986e-03 0.10000e+01

0.68586e+00 0.00000e+00 0. 0000e+01
0.36458e--01 0.20029e-02 0.10000e+01
0.10573e--03 0.95605e--04 0.10000e+01

0.29356e+00 0.00000e+00 0.10000e+01
0.81300e-02 0.11044e--02 0.10000e+01
0.61425e--05 0.27700e-04 0. 0000e+01

function

evaluations
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equations to converge rapidly, it is imperative to select the right stepsize. The algorithm
used allows a proper choice by reevaluating the right hand sides, which is a relatively
cheap process.

The use of the hierarchical solution methodology can result in a large reduction of
CPU time. In this example, eleven BNI iterations (" plugs") would have been necessary
without the initial Poisson solution. For operating points resulting in high current or in
cases requiring a solution of all three equations (such as avalanche breakdown) the BNI
iteration strategy would be replaced by a (coupled) Newton-like iteration (see [1] and
[451).

The result obtained from the FE code is similar to the FD case. An initial
triangulation with NV= 847 vertices and NT= 1532 triangles was used, which should
be compared with a total number of 4070 gridpoints of the FD run.

The power of our FE package lies in its ability to model complex nonrectangular
structures. To illustrate this point, we have chosen a structure which arises in twin-tub
CMOS technology [54]. Fig. 7 schematically shows a cross section. Depending on the
kind of dopant, this structure can contain several parasitic devices, and it can operate
in various modes for different bias conditions. In Fig. 8(a) and 8(b), the parasitic
element is either a p-channel field transistor (a) or a lateral p-n-p device (b). Situations
c and d are equivalent to a SCR-structure and a vertical n-p-n device, respectively.

p+(n+)

p TUB

p+(n+)

/
FIELD OXIDE

EPI

n+ SUBSTRATE

FIG. 7. Schematic cross section of the parasitic devices which arise in CMOS technology.

(a)

F IIII,IIIIIIE/aL D 0X

(c

(b) (d)

Fit;. 8. (a) Parasitic devices: p,channel MOSFET, (b) lateral bipolar p-n-p transistor, (c) vertical n-p-n
transistor, and (d) SCR-structure.
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(a)

1019
101e_
1017/

1016

1015

10t4

1019
1016

(b)

Fzt3. 9. (a) Initial triangulation and (b) doping concentration.

The automatically generated initial grid is shown in Fig. 9, together with the
doping profile for the case in Fig. 8(a) and (b). Fig. 10 presents surface plots of the
electrostatic potential for the cases in Fig. 8(a) and 8(b).

C. Numerical simulation of three-dimensional structures. Silicon devices are inher-
ently three-dimensional (3D) structures. For most problems, however, the behavior of
devices can be modeled in either one or two dimensions. This is normally the case for
bipolar devices with a vertical emitter-base-collector structure or for MOS devices with
a "wide" short-channel or a "small" long-channel geometry. For MOS devices with
aspect ratios close to one, 3D simulation becomes necessary, especially in the sub-
threshold regime and under high-field conditions.
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FIG. 10. Surfaceplot of electrostaticpotential distribution forparasitic devices in Fig. 8(a) and (b).



408 W. FICHTNER, D. J. ROSE AND R. E. BANK

The simulation of three-dimensional device structures presents a formidable prob-
lem requiting large computing resources. Nevertheless, several successful attempts have
been reported in the engineering literature [55]-[57].

In the following, we present the basic methodology and several results of three-
dimensional numerical solutions of the nonlinear system

(51) h(z)=- g2(u,v,w) --0

g3(U,O,W)

corresponding to the coupled PDE system in (21)-(25).
Fig. 11 shows the basic geometry of a planar MOSFET in three dimensions. We

have employed a "standard" seven-point finite-difference scheme on tensor-product
nonuniform grids to discretize the linearized equations. To account for the coupling
along directions of current flow, the unknowns are arranged into blocks for different
planes in the z-direction. The number p of planes varies between 15 and 30, depending
on the operating conditions. To illustrate the interdependence of the variables, Fig. 12
shows the coupling graph G(h’), h’ being the Jacobian of (51) for p 4. Each node

VSB
VDS

VBS

FIG. 11. Basic geometry of a planar MOSFET in three dimensions.

2 3 4

FIG. 12. Coupfing graph between variable planes.
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represents approximately 2K unknowns, 10K nonzeros and has the structure of a
conventional 2D grid graph. Since the CRAY-1 has no virtual memory capabilities, we
were forced to utilize out-of-core storage in the calculations and to recalculate matrix
elements. In analogy to the 2D case, the linear systems of the form

Hx h

have been solved by block iteration. The sub-blocks corresponding to the variables u, v,
and w have been solved by an iterative method (vectorized SOR with RB-ordering).

The results of 3D simulations have been successfully used to design small,
submicrometer-size devices fabricated using a 1-/m NMOS process. As an example, we
consider the enhancement-driver and the depletion-load device in this technology.
Depletion devices are more susceptible to geometry effects than enhancement devices,
because of the internal doping distribution. Fig. 13 shows a surface plot of the
two-dimensional net impurity concentration profile in this device. In order to shift the
threshold voltage to a proper negative value, the channel of this device is implanted
with a shallow, low-dose arsenic implant. The maximum arsenic concentration in the
channel is 3.1017 cm--3 with a junction depth of 800 .. Depending on the operating
conditions, the device works either in bulk mode (Vg < VFB) or in surface mode
(Vg., > VFB ). Fig. 14 compares 2D and 3D results with experimental data for enhance-
ment and depletion devices with a gatelength of 1/m and different widths. In the case
of the driver device we can observe a moderate short-channel effect (illustrated by the
increase in Ia at higher Vas ) and a proper dependence of Id on the channel width. In
the case of the load device, however, we can observe a large short-channel effect (the
current increases by two orders of magnitude for high Vd). The width dependence of Ia

I’

tO

FXG. 13. Surface plot of net impurity distribution of a depletion load MOSFET.
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FIG. 14. Comparison of simulated 2D and 3D results with experimental data (a) enhancement device, 2D and
3D results are the same; (b) depletion device, 2D and 3D are the same for W---15, 5 and 2/tm.

is again linear, if the width is 2/m or larger. For smaller devices, however, the current
is reduced drastically. As we can see from agreement between the simulated and
experimental results, 2D simulation is certainly adequate for devices with W> 2/m.
Smaller devices, however, can only be modeled by a full 3D calculation. Similar
conclusions have been obtained by the authors in the simulation of avalanche effects in
depletion devices [56].

IV. Simulation of circuit interconnects. The ability to calculate accurately the
capacitances of interconnection wires is of major importance as the circuit density
increases and wire length and width decrease. For very large circuits, the total delay on
an integrated circuit chip is given to a large extent by the capacitance of the
interconnection wires.

In the past, capacitances of conductors and wires have been calculated using the
parallel plate approximation, thus neglecting effects such as fringing and coupling. As
transistors are scaled down, the width and the length of the conductor are also reduced
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according to the scaling factor. However, the thickness of the conductor and that of the
dielectric are not scaled down, but reduced by different factors. This fact has two
serious consequences. It not only increases the two-dimensional fringe effect but results
in a considerable increase of coupling capacitance where lines are neighboring.

A typical situation for today’s integrated circuits is shown in Fig. 15. In this
example, two levels of interconnects are used: a polysilicon level, made up of conduc-
tors 1 and 2, and an aluminum level at the top (conductors 3 and 4). Since the situation
is symmetric, we shown only half of the geometry.

" ss

Ct2
"r"

FIG. 15. Schematic cross section illustrating a double level interconnect geometry.

The capacitances associated with this system of conductors are given by the
relation

(52) Qi Cil ( lzi V1) + Ci2 ( l/i V2 ) + + Ciili + + C/n(l/- lZn)
where Qi, , and Ci are the charge, the potential and the self-capacitance of the th
conductor, respectively; Cj is the coupling capacitance between the th and the jth
conductor.

Generally, for a N-conductor problem, we obtain an N N capacitance matrix C
which is simply defined as a collection of all capacitances, analogous to (52). Histori-
cally, the diagonal elements of the capacitance are called coefficients of capacitance
while the off-diagonal terms are called coefficients of electrostatic induction.

If Maxwell’s equations hold, then (1),

(53) v E+ -- 0,

can be rewritten in terms of a vector potential A using

B=vA
to yield

(54) V X ( V X A) 0

and since X7 (- X7)= 0, we obtain

A(55) =-v, at
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In terms of the charge and current density, we can calculate the electric field at time
and at r

where O’ and J’ are the charge and current densities in the volume element d,’ at time
[t- (Ir-r’V,)] with the propagation velocity ,. The exact calculation of E(r, t) would
involve the knowledge of the retarded source distributions. In integrated circuit
problems, however, we can ignore retardation effects because the sources of interest are
only microns away from each other, leading to propagation times much shorter than
the time scales of circuit operation.

Estimating the magnitude of the two terms for E leads to the result that the second
term may be neglected. Therefore, we can calculate E from

(57)
It is therefore possible to use a solution of Laplace’s equation

to calculate the electric field. The total charge on a conductor is then obtained by
integrating the normal field component along the conductor boundary.

Different techniques have been applied to analyze the interconnect problem. For
simple conductor arrangements, analytical expressions [58] and numerical techniques
[59] have been successfully utilized. Systems with conductors of nonrectangular shape
are difficult to simulate with the above techniques. We have used a multigrid finite-ele-
ment method to solve (58) for arbitrary geometries. The multigrid method lends itself
naturally to problems of this kind. Fig. 16 shows the finite-element triangulation at
increased levels of refinement around center conductor 1. Fig. 16(a) is the initial
triangulation which is automatically generated. Fig. 16(b) and (c) show the adaptively
refined meshes.

A typical result of a capacitance calculation is shown in Fig. 17 for a three-conduc-
tor problem. All variables are defined in the inset of the figure. The self-capacitance C,
the capacitance to ground Cll and the coupling capacitance C1 have been calculated
by biasing the center conductor at 1 V and by grounding all the others. The figure
shows the basic problem that arises if we reduce conductor sizes. Below a certain
ratio, the coupling capacitance C19_ increases above the capacitance-to-ground C1. One
possible way to make C smaller is to reduce the conductors thickness (see T/H 0.5
in the figure), at the expense of an increased conductor resistance.

V. Conclusion. The development of new device technologies has traditionally been
guided by an experimental approach. The use of software tools to aid process and
device engineers presents a challenging alternative to the original approach. We feel
that the simulation of semiconductor structures by accurate numerical models is an
efficient way to optimize process conditions and the corresponding device performance.
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(a) (b)

0.
02, 0 3

(c) (d)

FIG. 16. Finite element triangulation around center conductorw(a) initial triangulation, level one, (b) level two,
(c) level three refinement, and (d) potential contours.
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FIG. 17. Capacitance between conductors as a function of conductor width/insulation thickness (W/H)for two

thickness-to-height (T/H) ratios.
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SIMULATION*

RANDOLPH E. BANK ,DONALD J. ROSE AND WOLFGANG FICHTNER*

Abstract. This paper describes the numerical techniques used to solve the coupled system of nonlinear
partial differential equations which model semiconductor devices. These methods have been encoded into our
device simulation package which has successfully simulated complex devices in two and three space
dimensions. We focus our discussion on nonlinear operator iteration, discretization and scaling procedures,
and the efficient solution of the resulting nonlinear and linear algebraic equations. Our companion paper [13]
discusses physical aspects of the model equations and presents results from several actual device simulations.

I. Introduction. We focus our discussion here on the numerical techniques used to
solve the coupled system of nonlinear partial differential equations describing the
intrinsic behavior of semiconductor devices. For convenience in exposition we restrict
our attention to the steady-state equations in two space dimensions, although the
techniques and ideas presented are applicable to the time-dependent equations and to
the system in three space dimensions. A physical description of these equations and
results from numerical simulations several transistor devices are presented in our
companion paper [13].

We begin in Section II by summarizing the PDE system and describing our basic
approach to solving the equations. In Subsection II-B we discuss nonlinear iteration at
the operator level, finding it convenient to defer until Section III discretization
procedures. By considering nonlinear operator iteration we are led naturally to examine
properties of the linear operators that will be solved at each iteration. For example, in
Subsection II-C we examine the role of scaling and change of variables. Subsection
II-D discusses aspects of grid selection and refinement and is a transition to Section III
on discrete equation formulation.

We have used both a finite-difference and a finite-element approach to discretiza-
tion. Subsection III-A reviews the box method for obtaining finite-difference equations.
Subsections III-B and III-C apply the box method to derive the discrete equations for
our particular PDE systems, and Subsection III-D compares these discrete equations
with the commonly used, physically motivated discretization of Scharfetter and
Gummel [16]. Our finite-element approach is presented in Subsection III-E. Although
we use piecewise linear elements on triangles here as contrasted with rectangular-
oriented finite differences, nevertheless, the two approaches lead to discrete systems
with nearly identical properties when the finite-element quadrature rule is chosen to
correspond to a generalized box-type method. Finally in Subsection III-F we make
some comparative remarks on methods for solving the discrete equations.

II. Equations and basic methodology. In this section we present the central ideas
used in our numerical approaches to solving the system of nonlinear PDE’s modeling
semiconductor devices. The discussion here is descriptive and methodologically ori-
ented with pointers to the published literature included for many details of the
algorithms and their analyses. After summarizing the equations, we focus on the issues
of nonlinear iterations, choice of variables and scaling, and grid continuation.
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A. Equations. We begin by summarizing the static system of PDE’s derived in
[13]. We consider them in dimensionless form with mixed Neumann and Dirichlet
conditions as described there. Furthermore, the Laplace equation, elAU 0, and the
constant e: are explicitly suppressed and considered implicitly in the Poisson equation
gl--0 following, although they will be treated in more detail during discretization.

As in [13] we consider the coupled system of PDE’s

(la) gl(u, n, p) Au + n p k O,

(lb) g2 (u, n, p) V-j,, + k2 O,

(lc) g3(u, n, p) V’jp "[- k2 O.

The continuity equations, (lb), (lc), are further specified by writing the current
densities Jn and jp in the (drift-diffusion) form

(2a) Jn IXnnvu + DnVn,
(2b) + tl,ppVU- DpVp

where the mobility and diffusivity coefficients,/x and D;, n, p, respectively, may be
field dependent as well as spatially dependent. The doping profile k is assumed to be
spatially dependent only, while the recombination term k2 is usually of the form
k2 k2 (u, n, p). Our methods apply to two- and three-dimensional geometries.

When the Einstein relation is valid, it takes the form/ D, and we write

(3a) n=eu-’,

(3b) p=ew-u.
Using these quasi-Fermi variables o and w, we may write (1) as

(4a) gX ( U, O, W) mu "-[- e e k O,

(4b) g2 ( u, v, w) V,,eU-’Vv + k. O,

(4c) g3(u,o,w)= VlpeW-’vw+ k:z=O.
B. Nonlinear iterations. There are two basic approaches to solving the system (1)

or (4) which dominate the literature on device simulation. The first approach would be
known to numerical analysts as a nonlinear operator Gauss-Seidel/Jacobi (G-S/J)
iteration. The iteration associates with each g the highest-order differential dependent
variable, e.g., u in (la) and (4a), as the "output" variable for that equation. Given
values of the dependent variables (including possibly the output variable itself), the
operator equation g 0 is solved (approximately) to obtain a new approximation to
the output variable. Consider the formulation (4). Symbolically we can write the
iteration as follows. Let zk (uk, t;,, w)r, z0 given. The iteration proceeds by looping
through solutions of

(5a) gx(z, Uk+i) O,

(5b) gz(z,, Uk+ " Ok+X) O,

(5C) g3(Zk, Uk+l, Ok+ " Wk+l) 0.

The variables to the left of are regarded as input variables; the output variable is on
the right.

The symbolic representation of the iteration (5) allows considerable flexibility in
determining the one-variable operator equation. For example, consider gl as in (4a). If
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the entire vector zk is "selected" by the linear operator equation is

(6) AUk+ + eu’-, ew’-u" k 0

while the selection of only o and w explicitly leads to the nonlinear equation

(7) Auk+ - eUk+l--vk- eWk--Uk+l- kl O.

Some suggestions on variants of the iteration (5) as well as methods to solve the
individual nonlinear and/or linear discretized equations are given in [12], [5], [6]. For
the types of problems we have encountered, the G-S/J iteration works well when the
applied voltages insure that the solution currents are relatively small and the recombi-
nation-generation term k2 can be neglected (k2 =- 0). In this setting (4b) and (4c) can be
regarded as small perturbations of the electrostatic potential equation (4a), and we
suggest solving (7), rather than (6), fairly accurately. Equations (Sb) and (5c) can be
taken as linear equations by selecting v and w from z or by introducing the changes
of variables v e-, e in (4b), (4c), respectively; however, in some computing
environments such changes of variables may lead to undesirable numerical difficulties
(underflow, overflow, loss of precision).

The major objection to G-S/J iteration is slow convergence for high currents and
complicated functions k2 0. Although the multilevel adaptive refinement approach
discussed in Subsection III-E attempts to circumvent this objection, an approach which
couples the equations more tightly is desirable. This leads to the second basic approach
which attempts to apply some form of Newton-like iteration.

In most of the literature dealing with the system (1) or (4), the (perhaps approxi-
mate) Jacobian needed for a Newton-like iteration is calculated after the discretization
procedure. That is, (1) is discretized, perhaps by finite differences, yielding a system of
nonlinear equations like (1) where each gi is now a vector valued function of three
vectors u, v, w. Each "block" of the Jacobian is a matrix; for example, the diagonal
blocks are square matrices Ogl/Ou, OgE/On and Og3 /Op, respectively.

We have found an alternative view more convenient. Consider the formal Jacobian
of the differential system (1) or (4). This is a 3 3 matrix of linear operators all in
differential form. It is computed by repeatedly applying the identity

(8) ( O/Ou[d/dxf(x, u)]} * d/dx[ Of/Ou * 1.
Here d/dx is a derivative, usually a gradient or a divergence operator, and Of/Ou is a
linear operator acting on the "placeholder" function,. For example, (considering (1))

(9a) Ogl/tgU A ,,
(9b) OgE/On V’(0jn/0n *)- Ok2/On *,

(9c) Og3/Op V’( Ojp/Op * )-- Ok2/Op *,

are the diagonal entries (* has been suppressed on the left-hand side). Similarly, using
(2a) we see that

(10) Oj,,/On [- I,,Vu + D,,V *.

We consider now the operator Jacobian of the system (4) in greater detail,
assuming momentarily that the functions/, and/ are only spatially dependent. Using
(8) and (4) we obtain the 3 3 operator Jacobian (letting k2 =- 0 for convenience)
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_A,+(eU-O+eW-U), _e,-v, _eW-U,

g’= V(n * eU-vv) V(neUV( e *)) 0

V(tp,eW-Uvw) 0 -V(tzpe-’V(eW,))
In a typical application of an approximate Newton method such as suggested in [6], the
nonlinear iteration proceeds as

(12a) g’x g,,

(12b) z+ z + tx
for g, as in (11), gk (gl, g2, g3)T as in (4), and x =-(iu, iv, iw)r corresponding to
z= (u,v,w)r. In the matrix vector product of (12a), the in each matrix entry
indicates where to put the appropriate component of x. The parameters k are chosen to
make the iteration converge in an orderly fashion; see [6].

There are several advantages in viewing the solution process abstractly as indicated
by (11) and (12). First we see clearly the differential form of the linear operator g’ we
must ultimately discretize. Note that each matrix entry is a linear operator in divergence
form. This is ideal for discretizations based on the box method or the finite-element
method as discussed in Section III. Note also that the diagonal linear operators are in
self-adjoint form if we view them as operating on u, , e-v, and to eWiw,
respectively. , and to correspond to the variables , e- and to ew, although this
change of variables is not applied explicitly to the entire system (4).

Another advantage of the operator view is that it immediately suggests solving
(12a) by the iterative Gauss-Seidel splitting (or more general SOR splitting)

(13) L,(x,- x,,_l)= -(g’x, + gk)
where L, is the lower triangular part of g;,. Note that each iteration (13) requires, in
addition to the assembly of the system, the solution of three self-adjoint PDE’s. In an
abstract (conceptual) mathematical software environment, solving (13) might involve
calls to a precomputed (divergence form) discretization procedure as part of the
necessary calls to appropriate elliptic solvers. In practice, however, the distinction
between discretization and solution of (12a) or (13) often becomes blurred as the details
of implementation become important to the overall efficiency of the computation. It
then becomes useful to view (13) as a block iterative method for the discretized block
system arising from (12a). We have found such iterative methods for solving systems
(12a) (after discretization) far more effective than solving the discrete analogue of (12a)
by a sparse direct method. We comment in greater detail in Subsection III-F.

Computing the operator Jacobian has the additional advantage of providing
motivation for the choice of an approximation to the exact operator Jacobian g’ of the
operator system g(z)= 0. Recall that (11) was derived under the tacit assumption that
/, and/p were only spatially dependent. In most models, this function depends upon
the dependent variable u in fact, usually on the field X7 u. This implies that (again take
k2 ----0)

(laa) 392/3u V" ( 3/3u j ,),
(lab) j ,,eU-XTv.

Expanding, we see (suppressing ,)
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0j./0. ( +
[1-(3g,,/Ou)/g,,]j,,= [1- 3/3ulngn]j,,.

A similar expression holds for Ojp/3u. Hence (11) can be viewed as an approximation
to the exact Jacobian where the factor 3/3ulng,, is neglected in the computation of
392/Ou (similarly for 393/Ou). In many cases such approximations cause little
deterioriation in the observed rate of convergence for the iteration (12), although,
theoretically, (see [6]) the convergence rate cannot be superlinear in general. Of course,
if 3/3ulng,, can be computed analytically, there is little reason not to include it.
However, gn is often obtained experimentally, and in such cases either neglecting it as
in (11) or approximating O/Oulngn by differences is indicated. In any event, we
suggest approximating the individual terms in the operator Jacobian when necessary,
rather than using some finite-difference approximation to the discretized system.

C. Choice of variables and scaling. As we have indicated in Subsection II-A, the
assumption of the Einstein relation allows the electron and hole densities n and p,
respectively, to be written in terms of the potentials u, v, and w as in (3). The functions
o and w are "smoother" than n and p, although the variation of

(16a) j,, g,,(nVu- Vn) g,,eU-VVv
and

(16b) jp p,p(p7u + Vp) p,peW-U7w
due to the dependent variables u, v, and w is significant. Hence we may anticipate the
linear operators i)j,,/Ov and 3jp/3W which appear on the diagonal of (11) to be
somewhat ill-conditioned. Indeed, the coefficient functions e and e in the expres-
sions V(g,euXT( e ,)) and XZ(gpe-UV(e ,)) indicate that these operators can
be poorly scaled due to the variation in u(x, y); in some computing environments even
the evaluation of the corresponding discrete operator may be difficult.

Part of the cause of the misscaling is the desire to force the diagonal operators to
be self-adjoint and positive definite. Hence in (11) we implicitly consider the variables

(17a) v=e

and

(17b) to e

in the sense that we "solve" for ir and ito and then obtain 8v and iw. We suggest that
such a procedure is preferable, in a coupled approximate Newton strategy, to using the
variables u, r, and to throughout the calculation since the range of values for , and to is
much greater than for v and w. On the other hand, when the Poisson equation
dominates and a G-S/J iteration strategy is used, the variables u, , and to can often be
used successfully. For k2 0, note that the linear PDE’s g2(u, ) and g3(u, to) of (4)
have the form

(18a) g2(u, t’) TP,neUVv 0

and

(18b) g3(u, to) VtJ,pe-U Vto O.

We suggest that the scaling problem for the linear operators
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(19a) LI*/= V" (/neUV*/)
and

(19b) L2*/= V. (#pe-UVr/)
which appear on the diagonal of (11) and in (18) be addressed as follows. Consider
(18a). Discretization of L1./= 0 as we shall see in Sections III and IV, leads to a matrix
vector product

(20) A ( lzneU ) , k

where A(neu) is an mm matrix and */ and k are now m. vectors. For the
discretizations we consider, A(lne’) will be symmetric positive definite; however, the
entries a;j. will vary as e varies on the discretization mesh.

We have tried several scalings of (20). A symmetric scaling

(21a) hi*/1 D-1/2AD-1/2( D1/2"q)= D-l/2k kl,
where

(21b) D=diag[e
is a diagonal matrix with entries e evaluated at meshpoints, preserves the symmetry
and positive definiteness in the matrix A D-1/2AD 1/2. It is easy to compute the
scaled matrix A during assembly. Alternatively, we have considered the scaled linear
system

(22) AD-I(DI) k,

D as in (21b). The linear system

(23) A2,/2 =k

is no longer symmetric. However, since A 2 is a diagonal scaling of A, most iterative
methods (SOR, SSOR, and SSOR-CG with slight modification), in exact arithmetic,
have the same convergence rate when applied to (20), (21a), (23), and (24) following.

If an approximation to the quasi-Fermi variable o associated with (3a) is known,
which would be the case in any setting discussed in Subsection II-B, the scaling (22)
with

(24) D diag[ e
is natural. This leads to the linear system

(25) A3’o3--- k
which we may further scale as

(26) D1A313 A413 k2 Dlk D diag e ].

Note that/13 and h4 are not symmetric, although our comment regarding solution by
iterative methods applies.

Some insight can be gained into the choice of scaling by examining the variables
corresponding to the rli given earlier. Suppose (20) is a discretization of (18a); then rt
represents the variable u e in (17a). ,ix represents the variable 0 e u/2-v, a variable
seemingly less volatile than , but more so than n---e represented by 2 of (23). In
the context of (25) and (26), ,/will usually represent e as in (11). Then */3 *
and the matrix entries in A are like the variable n while those in A4 will contain
exponentials of differences in v.



422 R. E. BANK, D. J. ROSE AND W. FICHTNER

D. Grid continuation: two approaches. Our discussion of grid continuation is
motivated by several concerns. First, as can be seen in the examples described in [13],
the solutions of (1) or (4) exhibit large variations in the regions near the junctions but
are generally quite smooth over most of the domain. In this situation, the straightfor-
ward use of uniform discretization meshes seems inappropriate, since a mesh suffi-
ciently fine to achieve the desired accuracy in small regions where the solution is rough
introduces many unnecessary unknowns in regions where the solution is smooth,
greatly inflating the storage and computational time requirements.

Second, assuming that one has an appropriate mesh for a given problem, geomet-
ric complexity of the device and accuracy requirements can still lead to discrete systems
of nonlinear equations whose dimension is quite large. Irrespective of the choice of
nonlinear iterative method, it is clear one should seek to minimize the work associated
with solving these nonlinear equations. One strategy for achieving this goal is to start
from a good initial guess, so that only a few nonlinear iterations, perhaps only one or
two, will be required to achieve the desired accuracy.

By grid continuation we mean the use of some strategy involving several
gridscoarse grids with relatively few unknowns, inexpensive computational costs and
low accuracy, and (locally) finer grids, on which accurate solutions may be computed.
Coarse grids are used to obtain good starting iterates for the finer meshes, and can also
be used in the creation of the finer meshes by indicating regions where refinement is
necessary.

We have considered two different grid continuation approaches which we call local
mesh refinement and domain partitioning.

The local mesh refinement scheme consists of generating a sequence of nested
meshes on the entire domain. The meshes generally become increasingly nonuniform
since most of the refinement is confined to small regions near the contacts. The decision
of where to refine can be done manually (i.e., using human intervention) or automati-
cally through the use of local aposteriori error estimates as in [1] and [9]. The problems
are solved sequentially starting at the coarsest grid and using thejth computed solution
as the initial iterate for the (j + 1)st problem. Since all meshes cover the entire domain,
it is easy to make use of multilevel iterative methods in solving the systems of equations
arising from any particular nonlinear iterative scheme. A mathematical analysis of such
a scheme is given in [7]. Local mesh refinement seems most appropriate for finite-ele-
ment discretization, since it can more easily cope with the host of technical difficulties
which arise.

The domain partitioning idea makes use of (possibly nonuniform) tensor product
grids. The coarsest grid(s) cover the entire domain. The problem is solved to (say)
second-order accuracy, and then the accuracy is improved using Richardson extrapola-
tion, deferred correction or some similar technique (see for example [4]). At this point
we assume that the solution is sufficiently accurate in large portions of the domain
where the solution is smooth. We take the improved solution and fit it with a tensor
product (say, cubic) spline interpolant, which we take as the "exact" solution on the
smooth region. We may then consider one or more small subregions of the original
domain where the solution is still deemed inaccurate. On these subregions, we solve
reduced problems, using the spline interpolants to set both the boundary conditions
and provide the initial iterate. This approach seems well suited to finite-difference
calculations, which are relatively easy to implement on tensor product grids. The tensor
product structure also allows for easy vectorization of many of the inner loop
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computations, and thus leads to extremely efficient implementations on vector com-
puters.

III. Discrete equation Iormulation. As we suggested in Subsection II-B, the nonlin-
ear iteration schemes we have discussed there implicitly assume that the operator
systems (1), (2), or (4) will be solved approximately in the sense that they will be solved
in discrete form. In this section we present some of the details of our discretization
schemes. Both the finite-difference and finite-element methods discussed are suitable for
dealing with systems such as (1), (2), or (4) which are in divergence form. Furthermore,
linearization of the system which gives rise to the Jacobian operator g’ of (11) or
linearization of any component operator gi again yield operators in divergence form.
We will limit our detailed discussion to discretization of the component operators gi of
(1) and (4). Discretization of any of the operators in (11) not included in this discussion
is similar and straightforward.

Our finite-difference discretization is based on the box method as discussed, for
example, in [19, sec. 6.3]. Subsection III-A reviews this method and Subsections III-B
and III-C apply the method to derive our discretizations. Subsection III-D discusses the
relation of our discretizations to the Scharfetter-Gummel [16] approach often used in
semiconductor simulation. In Subsection III-E we present our finite-element approach
which is an adaptation of the piecewise-linear-triangular element approach of Bank et
al. [2], [3], [7], [9]. Interestingly we show that, with the right choice of quadrature rule,
this finite-element discretization is a box-method finite-difference discretization where
now the boxes are general polygons rather than rectangles. Finally in Subsection III-F
we discuss briefly some of the linear equations schemes for solving the linearized
discrete equations.

A. Finite differences: box method. Often the domain of our PDE system is
essentially a rectangle (or unions of rectangles). For such regions a rectangular-grid
finite-difference approach is convenient and easy to implement allowing us, in solving
the equations, to take some advantage of fast vector processing capabilities like those
available on a CRAY-1. In both the silicon and oxide rectangles we use a tensor
product mesh

(27) M= ((xi, Yj)), 0<i<n+l, 0<j<m+l.

We use the same mesh for each of the three equations; although some authors (see [17],
for example) favor using different meshes, our choice saves memory and implementa-
tion detail. The box method is well suited to equations in divergence form, i.e., in the
form

(28) v.F=s
where XT. is the divergence operator. We briefly review this method in two dimensions,
and then apply the method to derive various discretizations. The 3-D case is completely
analogous; we restrict our attention in this section to 2-D.

Let the vector function F be written F (fx, f). Formally applying the divergence
theorem, we recall

(29) ffnv.Fdxdy= fcftdy- f2dx

where R is a region of the x, y plane and C is its boundary curve. The right-hand side
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of (29)’is a line integral with counter-clockwise orientation. Let h x -xi_ and
kj yj yj_ 1- For interior mesh points, i.e., points (xi, Yi) with 4:0 or n + 1 andj 4: 0,
m + 1, the region R is the box as indicated in Fig. 1. Notice that the edges of the box
intersect the discretization mesh lines at midpoints; call the midpoint between (xi, yj)
and (xi/ 1, yj) (xr, yj) or (i’, j), etc.

(x i-,Yj)
o,

(xi, Yj)

(xi ,Y j+,l)

(xi+,YJ)
o

__J

(xi, Yj-,I

FIG. 1. Finite-difference "box."

Combining (28) and (29) in the box of Fig. 1 we obtain

(30) Ii_l,,j d- Ii,j_ 1, 4- Ii,,j

where

(31a)

+ z’, f.oxf u uY

f+k+l/Zf(xi,, y)dyIf’J=
yj-kj/2

fx, + ki+ x/2(31b) Ii j-v f2( x, Yj-I’) dx
x ki/2

and similarly for Ii_ l’,j and Ii, j,. Note that (30) is exact, and we now appromate both
sides of ts equation. The fit-hand side of (30) is appromated by

(32) rhs(i, j)= (si)area(Box)= sij[(kj + kj+x)(h + hi+)/4].
Here sj s(x, y). Silarly, the integrals in (31) can be appromated by

(33a) ,,j= [(kj + kj+)/2] fl(xi,, yj),
(33b) i,,_,= [(h, + h,+l)/2] f2(i, y_,).

As we shall see below, fl and f2 usually involve derivatives and other functions
known (or to be deterned) at the meshpoints M. Hence fx and f2 are further
appromated by functions, say, and 2, usually using centered difference quotients
and inteolated values of mesh functions. Ts leads to an appromate left-hand side
of (30), say

(34) ms(i, j)= i,-1,,; + ,,;-1, + i,,,; + ,,;,.
The finite-difference equations are then
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(35) rhs( i, j ) lhs( i, j )
for each (i, j) meshpoint where a box was defined; these will be all meshpoints except
those on boundaries where Dirichlet boundary conditions are applied.

For meshpoints (i, j) where a homogeneous Neumann boundary condition is
applied, one edge of the box is the mesh line segment which includes the (i, j) point
(see Fig. 2). In this case fl 0 or f2 0 on the mesh line segment and hence an
expression in (31), (33), and (34) will vanish. Also in (32) the area is determined by the
smaller box of Fig. 2.

(xi-,i,Yj) o

FIG. 2. Finite-difference "box" at boundary.

(x i,Yj+’l

(xi,Yj)

(Xi, Yj-,I)

For meshpoints on the silicon/oxide interface of the Poisson equation, we will
require f2 to be continuous along the interface. If we then apply (29) separately to each
of the two smaller rectangles in Fig. 1 above and below the interface line, the two
contributions along the interface line will cancel. The contributions I;,j_ v and Ii, j., in
(30) will remain the same; however, Ii,,j and I_v, j will consist of two parts as in

(36) I" J fy. kj./2fl(xi"y)dy+fy,,j+lj+l/2fl(xi’’y)dy’’.
allowing for piecewise continuous functions fx. The corresponding modification to (33a)
is

(37) ]g’,j= (kj/2)[f(xi’, Y)]sincon+(k+/2)[fl(x’’ YJ)] oxiae"

Similarly (32) is replaced by

(38) rhs(i, j)-- (kj(h q- hi+x)/a)[sij]silicon+(kj+l(hi q- hi+l)/4)[sij]oxide.

B. The Poisson equation. We have from [13, eq. (21)] the equation

(39a) e1Au s

in the semiconductor and

(39b) E2AU 0

in the insulator regions. Along the interface we impose the continuity relation
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(39c) [llUy]silicon [e2Uy]oxide
as suggested earlier; hence f2 is continuous there. Application of (32)-(35) is straight-
forward. Consider a point (i, j) as in Fig. 1 in the silicon region. Then, with fl elUx
and f2 exuy, we will apprordmatef(xr, yj) and f2(xi, Yj- 1’) by

fl(Xi’, Yj)= (el/hi+x)(Ui, j Ui+l,j)(40a)
and

(40b)
respectively, giving

(41a)
and

L(X,, Yj-I’)"-- (8l/kj)(uij ui,j-1)

i’,j [el(kj + kj+ l)/2hi+ l] ( Uij Ui+ l,j)

(41b) i,j-l’-" [el(hi + hi+l)/2kj](uij- ui,j-).
Similar expressions complete the sum in (34), and (32) with (35) complete the
discretization at this point.

If (i, j) is a meshpoint on the oxide/silicon interface we proceed as in (36)-(38),
noting that (39c) insures that f2 is continuous along the interface. Approximating
fl eUx for e e or e e2 where appropriate in (37), we obtain

(42) i,,j ((ek+ + e2kj)/Zhj+l)(Uij- Ui+l,j).
Since [Sij]oxide 0 at this point (38) becomes

rhs(i, j)= (kj(h + hi+l)/a)[sij]silicon.
Note that in both these cases

(43) [so.]smcon n(x, y)+ p(x, y)+ ka(x, yj)
for n, p, and k as in (1). When n and p are as specified as in (3), the equations are
nonlinear in the uo..

C. Continuity equations. We consider first the continuity equations of (1) written
as

(44a) XT.jn s

and

(44b) V’jp s

with the current densities in terms of quasi-Fermi levels

(45a) L I,,e"-Vv

and

(458) j= p,peW-U gTw.

We also consider simultaneously the variables v e-, and 0 e which allows (45) to
be rewritten as

(46a) L ,eu Vv
and
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(46b) j, tXpe-U V.
To minimize notation we first discretize the equation

(47a) XT-j s,

(47b) j tzeuxTv
the other carrier continuity equation in (44) being similar. We apply the box method as
in (30)-(35) for the two cases of meshpoints (i, j) as in Figs. 1 and 2, respectively.
Consider first the case of Fig. 1.

We approximate XTv by centered differences exactly as in (40). Thus

(48a) ?l(Xi,, yj) --(ll,eU)i,j(pi,j- Pi+x,j)/hi+x
and

(48b) iV,j= -((kj + kj+l)/2hi+l)(txeU)i,j(l,ij -//+l,j).
In (48) we have not specified the interpolated value of (tzeU)r.i. Recall that/ may be
field dependent, i.e., /z=/x(XTu). While we are using the approximation (Ui+l, j

uij)/hj+ for u at (i’, j), we do not have readily available such an approximation for
Uy. Hence we do not attempt to compute u;,j as/,((XTu);,), approximating (XTu);,j..
Rather, we approximate ( X7 u), at meshpoints M, using standard differences, and then
evaluate/, with this approximation. Call these values/,. We evaluate (tzeU)i,j as the
product/,ra (e u)r using

(49) /zi, (t.tij +/Zi+a,j)/2.
The evaluation of (eU), is more interesting and has been the subject of consider-

able discussion in the semiconductor simulation literature. The analogue of (49),
namely

(50) E1 (e u’’ + eU’+,’)/2,
is regarded to be a poor candidate even though it leads to fewer evaluations of e u. If u
varies significantly between meshpoints and if this variation is at least linear, then (50)
will be relatively inaccurate. If u were indeed linear between meshpoints (eU)<i would
be

(51) E2=e(U,+u,+.)/2,
a tempting approximation for (e"),j in general. The use of E2 is controversial; Mock
[15], for example, claims that (51) will lead to inaccuracies.

An alternative expression for (e"), can be motivated by considering the equation

(52) d udu-x e U=-e- -x
and then integrating

(53) fii+Xeud fi+xdu-x e-" dx -x dX uij Ui+ l,j.

The mean value theorem says that the integral on the left-hand side is

(54) eU(x,, yx) fii + d u’( u;+,,.-x e-U dx e e-

If we identify x’ [x, x+l,] with the midpoint, we obtain for (eU)i,
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Uij- Ui+l,j)
(55) E

(e_ui+l, e_U,j)
n(Au)e uij n(- Au)e ui+x..i

where Au uij- ui+ 1, and B(x) is the Bernoulli function

B(x)=x/(eX-1).
Note that

(56a)
( 6b)

E/E S(Au/2),
S(x) x/sinh x

and that for Au large E can be considerably smaller than E1, e.g., S(10/2 5) 0.0674.
Whether the use of (55) as opposed to (51) is more accurate a priori or rather that its
use leads to a more stable computation with respect to roundoff is not well understood.
The expression (55) will arise again in our discussion of the Scharfetter-Gummel
discretization.

If (i, j) is a meshpoint as in Fig. 2, there is no term of the form ;, in (34), and
coefficients of f2 in ],9-1’ and ,9, in the modified (33) will be hg/2. For example, we
obtain

?i,j-l’’-- -(hi/2kj)(t’teU)i,j-a’(Pij li,j-x)"
Finally, in this case, we have

(57) rhs(/, j)= sij[(kj + kj+a)hi/4
replacing (32).

The derivation of the discretization for the current densities as given by (45a) is
completely analogous to (47)-(56). We obtain, in place of (48b), the expression

(58) ?i’j ((kj + kj+l)/2hi+l)(txeU-V)i,j(Oi+x,j- vij ).
Here (/e"-V)i,j can be calculated as in our discussion of (49), (51), and (55). The
analogue of (55) for (e"-V),j could be

(59a) B(A(u-v))e"’-’
or

(59b) (B(Au)eU’)(B(
(59b) being derived from (55) and taking (eu-) (eU)<i(e-’) As an alternativei’j i’j"

to (58) we frequently take

(60) ?i,j -((kj + kj+l)/2hi+l)(p,eU)i,j(e-vi e-vi+lj)

obtained by substituting vgj e-O’ into the expression (48b). Interestingly, (58) and
(60) are identical if (e")i, is evaluated as in (55) and (eU-V)i,j is written as (eU)i,j/(e)i,j
with (e")i,j and (eO)i,j again evaluated as in (55).

The main difference in the discretization using v and 0 or v and w is in the form of
the function lhs(i, j), (i, j) M and reflects our comments in Section II. It is easy to
see.that, given the uj, the function lhs(i, j) of (34) with, the as in (48b) is a linear

function of the vii. However, this function with the I as in (58) or (60) produces a
nonlinear function of the v. On the other hand, we anticipate that the v and w variables
will be smoother (less range in value) than the v and variables.
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D. Physically motivated discretizations and comparative remarks. Consider the
general equation (28) which led us (via Fig. 1) to the approximations (33)-(35). The
essential difference in the approaches we wish to compare is in approximating the
quantities fl and f2 at midpoints of the mesh M.

Let F of (28) bej (jl, j2) of (47a) withj specified as in (2a), i.e., forj we obtain

(61) Jl l,(du/dx)n + D(dn/dx).
Assume that the currentjl, the field component E du/dx, and/, and D are constant
from meshpoints (i, j) to (i + 1, j). Then (61) specifies a constant coefficient ODE as

(62) dn /dx + n +]
where

IxE/D,.[1 j/D.

Suppressing the index j, the solution to (62) for x [xix+l] is

(63) n(x) (n(x,)e-(x-x’) + (]//))(1- e-’(x-x’)).
Since E was assumed constant, we have E =-(u/ -ug)/h/l; substituting into (63)
and rearranging gives

(64) Jx--(Iz/hi+x)(Ui- Ui+x)(ea(Ui+Ui+)-l)-X(ni+lea(ui-ui+)- ni)
with a =/z/D. The componentJ2 is obtained similarly.

The SG discretization uses the value of Jl in (64) for the value of fl(xr)
approximatingfx(x,j) of (33a). , is computed as before, contributing a multiplicative
factor of -(k + k+1)/2 (recalling the "-" in (44a)). When a 1 and n e we
obtain

(65) iij -((kj + kj+l)/2hi+l)txB(Au)(e u’-vi e u’-v’+)

-((kj + kj+,)/2hi+l)tXB(Au)eU’(e-v’

This expression is identical to (48a) and (60) when/z is taken as/z =/*i’ of (49) and (55)
is used to evaluate (e")r. Hence an alternative view of the discretization (65) is that
presented in (47), (48), and (52)-(55).

Note that the derivation of jl in (61)-(64) appears to be more general than our
discussion in Subsection III-C since (64) does not explicitly assume the Einstein
relation (3). However, the assumption that/, and D are constant from meshpoints (i, j)
to (i + 1, j) implies a localized Einstein relation which leads to interesting algorithmic
possibilities.

Let

(66) ar. Ixr.i/Dr.i
be assumed constant between (i, j) and (i + 1, j). Then (61) can be rewritten as

(67a) j pi,je’"(’-)dvdx
with

(67b) n=e’"(u-’)

between (i, j) and (i + 1, j). Assuming further that jl is constant between these
meshpoints, we obtain
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Di,j ( e-arjVi e-arjvi+ )
(68) Jl x,+e_,,,,,dxOli’j

xi

If the expression, fx,+xe-,’" dx, is evaluated by assuming u is linear between (i, j) and
(i + 1, j), we find

(69) Jl Drjear/U’B(ti’jAu)( e-arv’ e-arjVi+x)

where B(x) is again the Bernoulli function. Note that (69) is a direct generalization of
the appropriate expressions in (65) and (55).

We see that the use of (67) in conjunction with the box method as presented in
Subsection III-C not only generalizes the SG discretization as in (69), but generalizes
the entire discussion there. Note that in the complete discretization involving all the
mesh constants of the form a, and Dry, the quantities v (and w) are well defined at
meshpoints while the quantities n. (and p.) are ambiguous (ill-defined) at meshpoints.
Nevertheless, these quantities can be defined, when necessary, in an "average" or
integrated sense, for example, in a generalized calculation of rhs(i, j) of (32) for the
Poisson equation. The calculation of the currents as in (67a) is well defined.

We are presently examining the application of discretizations like (69) in cases of
physical interest where the Einstein relation is suspect.

E. The finite-element discretization. The finite-element method offers several
potential advantages as a discretization procedure. Perhaps most important is its ability
to handle unusual geometry and nonuniform meshes in a straightforward fashion. In
our experience, its main disadvantage has been the relatively costly process of assem-
bling the Jacobian (stiffness) matrices and nonlinear residuals (right-hand sides) re-
quired by approximate Newton methods.

The finite-element procedure is based on a weak formulation of the system of
partial-differential equations. (See [18] for standard terminology.) As with the finite-
difference discretization, we consider the variables (u, v, w) and (u, v, 0). Let HI() be
the usual Sobolev space equipped with the norm

Ilull a= f f.lxTul *u2dxdy

and denote by H(ft) the subspace of H(f) whose elements satisfy homogeneous
boundary conditions on the Dirichlet portion of the boundary. Let Hu(f) be the affine
space whose dements satisfy the Dirichlet boundary conditions satisfi.ed by u (i.e.,
p, q I-I implies p q H). Similar spaces can be defined for , w, ,, and

LetH Ho(R)Hw, H(R) H(R)H, and H0 (H0) Then a weak form ofH(R) H
(4) is: find (u, v, w) H, such that, for all (, xt,,) Ho

fuXT uXT, + ( e e k ) dx O

(70) O,

#peW-’VtoV
+ k27dx O.

Using the variables u, v, and t a weak form is" find (u, ,, o)//, such that, for all
(,/,,’I’, v) H0
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(71)

VuVq + (,e we kl)ch dx O,

.e V,V’I’ + k2’I" dx O,

ppe-UVto7y + k2Ydx O.

Let T be a shape regular but possibly nonuniform triangulation of the domain
Let S

___
Hl(fl) be the space of Co piecewise linear polynomials corresponding to the

triangulation T. Let So denote the subspace of S whose elements satisfy homogeneous
boundary conditions on the Dirichlet portion of the boundary. Similarly we define the
affine spaces S,,So,Sw, etc. (The Dirichlet boundary conditions typically imposed are
constant on each segment of the Dirichlet boundary, and hence can be exactly satisfied
by piecewise linear polynomials provided the triangulation T satisfies some modest
requirements.) Let S S,(R) So(R) S and define and So in an analogous fashion.

The finite-element discretizations of (70), (71) come from replacing H,/2/, and H0

by S, , and S0, respectively. If the dimension of So is N, (70), (71) effectively become
systems of 3N nonlinear equations.

Our strategy for the finite-element discretization closely parallels that for the
finite-difference discretization in terms of our choice of variables (u, o, w), and most of
the remarks made in Section II remain valid here. The important new consideration is
in the choice of numerical quadrature rules to be used in the assembly of matrices and
fight-hand sides. While we certainly need quadrature rules of sufficient accuracy, we
also want the matrices corresponding to the diagonal blocks of the linearized equations
(11) to be either symmetric and positive definite or such that they may be transformed
to that state using diagonal matrices in a fashion analogous to the finite-difference case.

This second requirement is not satisfied by many of the usual quadrature rules
associated with triangles. The rules which we propose are motivated by the extension of
the box method to triangular meshes. Consider vertex in the triangulation depicted in
Fig. 3. The region shown is the support of the nodal basis function associated with
node i. We construct a box around each node using the perpendicular bisectors of each
edge in the mesh to define the boundaries of the box (Fig. 4). The box method can be
applied in a fashion analogous to the finite-difference case to obtain a difference
equation corresponding to node i.

We now consider the implications of this example in the elementwise assembly
process usually employed in the finite-element method. Let T be an element in the
mesh as depicted in Fig. 5. Let qi, 1 < < 3 denote the linear polynomials satisfying
qi(Pj) io- These polynomials may be associated with the three nonzero basis func-
tions in element t. We define the dot products d, 1 < < 3 by

(72) d ljlk cos 0

where the triple (i, j, k) is any cyclic permutation of (1, 2, 3). Note

(73) 12i di + dk"
The di are not computed using (72), but rather as dot products which arise naturally in
the affine mapping of to the "reference element" i with vertices (0, 0), (1,0), and (0,1)
and the q to the reference basis functions , )9, and 1- 2- , as is typically done in
finite-element assembly procedures.
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FIG. 3. Vertex in triangulation.

FIG. 4. Box discretization.

P3

FIG. 5. Definition of terms for triangularfinite element.
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As an example, we consider in detail the approximation of

(74) feUV(e-V,)Vdpjdxdy, 1 < < 3, 1 < j < 3.

The 3 3 element stiffness matrix corresponding to one possible box-method quadra-
ture rule is
(75)

1 [ d3eu(m3)-v(pl) + d2eU(mz)-(Pa)

4It---] [ d3eU(m)-t’(p)
d2eU(mD-v(pD

d3eU(m2)-o(p2)

d3eu(m2)-v(p2) "l- dleu(m)-u(p2)
dleu(ml)-V(p2)

d2eu(m:)-o(p3)
dleu(mt)-o(p3)

d2eu(mz)-v(p3) + dleu(mO-o(P3

where Itl is the area of t. The quadrature rule is exact for u constant, v constant;
i.e., it is exact for the highest order term XTXTqj, which is the main requirement for
any quadrature rule used in the finite-element method.

The global stiffness matrix can be symmetrized using the same diagonal scalings as
in the finite-difference case. Indeed, one can compute the scaled element stiffness
matrix directly in order to save storage, function evaluations, and arithmetic opera-
tions.

Quadrature rules for the remaining terms can be worked out using the same types
of manipulations as in the previous example. When all interior angles of all the
elements in T are bounded above by r/2, the d will be nonnegative (and the
perpendicular bisectors of the three edges of an element will meet at a point inside of
t). In this case the resulting (scaled) Jacobians will be Stieltjes matrices (as in the
finite-difference case). When angles are allowed to be larger than r/2 one d will be
negative and the matrices will lose this property. Other box-method quadrature rules
will still lead to positive definite (although not Stieltjes) matrices.

F. Solution of the discrete equations. After discretization the operator iterations of
(5) and (11), (12) are viewed as finite dimensional systems of equations. In (5) each
system g may be nonlinear or linear depending on the choice of variables and the
particular choice of z as in (6) and (7). In the finite-difference package we solve the
nonlinear equations by the approximate Newton schemes discussed in [5] and [6]. In
our finite-element package we solve the nonlinear equations by the approximate
Newton-multilevel iteration scheme discussed in [6], an extension of the linear multi-
level iteration scheme [3] which we use for the linear equations. To date our finite-ele-
ment package adapts the PLTMG software [2] for the nonlinear iteration (5) carrying
any particular specification of (5) through a series of refined grids as discussed in
Subsection III-E. There are several alternatives when considering a multilevel iterative
method for solving systems of PDE either by (5) or (11), (12); see [8] for some
discussion of continuing investigations.

Most of our simulations use the finite-difference package which has been tuned for
efficient execution on a CRAY-1. Since both iterations (5) and (11), (12) use approxi-
mate Newton methods, sparse linear equations comprise an "inner loop" of the
computation. We summarize our experience with various direct and iterative methods
for solving the linear equations.

When solving the coupled system by a Newton-type iteration as indicated in (11),
(12), we suggest that a block iterative method be used to solve (12a) as indicated in (13).
We found an alternative which uses a sparse direct method to be less efficient (see [12]
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for some comparisons). There are several reasons for this. First, even with a good
ordering the arithmetic operation count is relatively high; since the equations are
coupled, a 2D ordering analogous to nested dissection requires about 13 times the
arithmetic operations required for a single PDE. (In 3D sparse direct solution methods
can safely be labeled a disaster.) Second, sparse direct methods are relatively memory
inefficient, and, again, this inefficiency increases with the number of coupled PDE’s and
certainly with the spatial dimension (2D to 3D). Finally, sparse direct methods do not
vectorize well (with current compilers), whereas a block iterative approach allows the
flexibility of solving some or all the diagonal block linear equations (which correspond
to single PDE’s) by highly specialized vectorized iterative methods. Note that the
inefficiency of sparse direct methods in this context is not due to the sparse matrix
software itself, but to the naive application of this software to a sparse linear system
not well suited to that methodology.

We found the block iterative method to converge well for the problems we have
encountered. Although a mathematical analysis of the convergence characteristics of
block iteration of (12a) has proved illusive, it seems clear that the convergence rate does
not depend upon the mesh parameter as the mesh is refined. There may conceivably be
problems where block iteration converges so slowly (or even diverges) that the sparse
direct solution (in 2D) becomes attractive. However, even in cases where we applied
sparse direct methods to (12a), we used them most efficiently in conjunction with a
Newton-Richardson iteration which only occasionally refactors the large linear sys-
tems; see [12] and [6]. Notice that such an approach still requires substantial memory.

If block iteration is used to solve the Newton equations as in (12a), the linear
systems corresponding to the diagonal of (11) must be solved repeatedly in the inner
loop of the overall computation. This is one reason for focusing attention in Sections II
and III on obtaining self-adjoint elliptic operators on the diagonal of (11) which yield
scaled symmetric positive definite systems of linear equations upon discretization. We
solve these linear systems by vectorizable highly tuned iterative methods (such as SSOR
with conjugate-gradient acceleration) [14] or by the Yale Sparse Matrix codes [10], [11].
In our CRAY-1 computing environment the iterative approach has proved to be
somewhat more efficient, both in computing time and memory.
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NUMERICAL SIMULATION OF HOT-ELECTRON PHENOMENA *

DANIEL S. WATANABE AND SUMANTRI SLAMET

Abstract. An accurate two-dimensional numerical model for MOS transistors incorporating avalanche
processes is presented. The Laplace and Poisson equations for the electrostatic potential in the gate oxide and
bulk and the current-continuity equations for the electron and hole densities are solved using finite-difference
techniques. The current-continuity equations incorporate terms modeling avalanche generation, bulk and
surface Shockley-Read-Hall thermal generation-recombination,, and Auger recombination processes. The
simulation is performed to a depth in the substrate sufficient to include the depletion region, and the
remaining substrate is modeled as a parasitic resistance. The increase in the substrate potential caused by
the substrate current flowing through the substrate resistance is also included. The hot-electron distribution
function is modeled using Baraft’s maximum anisotropy distribution function.

The model is used to study hot-electron phenomena including negative-resistance avalanche breakdown
in short-channel MOSFET’s and electron injection into the gate oxide. The model accurately predicts the
positive-resistance branch of the drain current-voltage characteristic and could, in principle, predict the
negative-resistance branch and the sustain voltage.

The gate injection current is computed by summing the flux of electrons scattered into the gate oxide by
each mesh volume element. The number of electrons in each element whose component of momentum
normal to the oxide is sufficient to surmount the oxide potential barrier is approximated using BaratVs
distribution function, and scattering along the electron trajectories is modeled using an appropriate mean free
path. The flux scattered into the oxide can be expressed as an iterated six-fold integral which is evaluated
using the potential and electron current density distributions produced by the model. Nakagome et al. [1]
recently observed two new types of gate injection phenomena: avalanche injection and secondary ionization
induced injection. The former is caused by carriers heated in the drain avalanche plasma, and the latter is
caused by electrons generated by secondary impact ionization in the depletion region. The model yields gate
current curves qualitatively similar to the experimental results.

I. Introduction. The high electric fields in scaled-down MOSFET’s cause carrier
multiplication and the injection of electrons into the oxide. Avalanche multiplication
occurs when the field in the drain-depletion region becomes high enough for carriers to
gain sufficient energy to create electron-hole pairs by impact ionization. The holes flow
to the substrate, and a positive space charge accumulates in the ionization region. The
process increases the drain current and thereby increases the creation of electron-hole
pairs. This positive-feedback mechanism leads to avalanche breakdown when the gain
is larger than unity. Avalanche breakdown limits the maximum voltage applicable to a
MOSFET and hence limits the speed and power-handling capacity of the device.
Water-related centers in silicon dioxide can trap electrons. Since these centers are
present even in "dry" thermal oxides, any electron current in the oxide causes oxide
charging. In a short-channel device, the charging may affect a significant pQrtion of the
channel. The charging increases with time, and eventually the device threshold drifts far
enough to disable the device. Electron injection into the oxide also can create interface
traps which degrade the transconductance of the device. Because of this cumulative
degradation, oxide charging limits the maximum voltage that can be applied to a
MOSFET given a specified device lifetime and duty cycle. A detailed understanding of
these phenomena clearly is essential for the design of reliable MOSFET’s.

This paper presents an accurate two-dimensional numerical model for MOSFET’s
incorporating avalanche processes. The Laplace and Poisson equations for the electro-
static potential in the gate oxide and bulk and the current-continuity equations for the
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electron and hole densities are solved using finite-difference techniques. The current-
continuity equations incorporate terms modeling avalanche generation, bulk and surface
Shockley-Read-Hall thermal generation-recombination, and Auger recombination
processes. The simulation is performed to a depth in the substrate sufficient to include
the depletion region, and the remaining substrate is modeled as a parasitic resistance.
The increase in the substrate potential caused by the substrate current flowing through
the substrate resistance is also included. The hot-electron distribution function is
modeled using Baraff’s maximum anisotropy distribution function.

In the following sections, the model is first described. The numerical procedure for
solving the model equations is then described. Finally the model is used to study
negative-resistance avalanche breakdown in short-channel MOSFET’s and electron
injection into the gate oxide, and examples illustrating the accuracy and utility of the
model are presented.

II. Device model. The device is modeled by the Poisson and current-continuity
equations

-V2u+n-p=k,
V.J,, G- R,

X7.Jp=G-R
where

J, g,nVu + DnVn,
Jp ppVu- DpVp.

Here u is the electrostatic potential, n and p are the electron and hole densities, G and R
are the generation and recombination rates, Jn and Jp are the electron and hole current
densities, g and gp are the electron and hole mobilities, and D and Dp are the electron
and hole diffusion coefficients. The equations are nondimensionalized with respect to
the Boltzmann voltage kT/q, intrinsic cartier density n i, and Debye length
(eskT/q2ni)1/2. Here kT is the thermal energy, q is the magnitude of the electron
charge, and e is the permittivity of silicon. In the gate oxide, the electrostatic potential
u satisfies the Laplace equation

-V2u=0.
At the oxide interface, the normal component of the electrical displacement vector
eOu/Oy is required to be continuous. The applied voltages and doping provide
Dirichlet boundary conditions for the electrostatic potential at the gate, source, drain,
and substrate and for the electron and hole densities at the source and drain electrodes
and substrate. Neumann boundary conditions are assumed for the potential at the
vertical boundaries, and current is not allowed to flow across the oxide interface and
vertical boundaries.

The avalanche generation, bulk and surface Shockley-Read-Hall thermal genera-
tion- recombination, and Auger recombination processes are modeled by

Ga alJnl+ aplJpl,

(G- R)t= (n2i rlp)/[’rn(p A- pl)d-"rp(n -1- nl)],
(G- R)s 8(y- yi)(n2i np)/[(p + pl)/sn +(n + nl)/Sp]
(G- R), (ni np)(Cn + Cpp)
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where (-) is the Dirac delta function and y Yi at the oxide interface. It is assumed
that carriers gain energy only from the component of the electric field E parallel to the
current density. Hence the ionization coefficients depend only on E’J/IJI and have the
form

a =- ae- bl JI/IE" JI.

The values of the parameters are taken from the literature. For example, the mobilities
are taken from Yamaguchi [2] and the ionization coefficients are taken from Niehaus et
al. [3].

Fig. 1 presents the device geometry. The voltages are measured with respect to the
source voltage. The simulation is restricted for efficiency to the depletion region and the
adjacent substrate, and an effective substrate voltage Ve is used on the computational
substrate boundary. The remaining substrate is modeled by a parasitic resistance R B-
The resistance can be estimated, but it is generally chosen to match the predicted and
experimental drain currents.

FIG. 1. Device geometry.

Baraff’s maximum anisotropy approximation [4] to the hot-electron distribution
function is

f(p) [m0(E)+ mx(E)cos(O)]/E
where E p-p/2m is the energy of an electron with mass m, and/9 is the angle between
the electron momentum p and the local electric field E. The approximation is obtained
by truncating the conventional spherical harmonics expansion of the velocity-distribu-
tion function under the assumption that all the electrons are traveling in the field
direction. When E < Ei, the threshold energy for impact ionization, the distribution
function is

m0(E) [Q/(3Er)]ml(E)+c,

m(E) (Qbc/a)(1 + bE-ae-bEfEtaebtdt)+(ot-- Qbc/a)(E/Ei)-aeb(E’-E)

E
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where

Q qXrlEI,

a=(Er-Q)/(2Er+Q),
b=3E/(2ErQ+Q-),
c=l-aa/(3Er).

When E > Ei, the distribution function is

mo(E) (E/E) -a*-e b*(E- El)

ml(E)=amo(F)
where

a* (ct 3)/(2ct + 3),
b* 3a/(2ctQ* + 3Q*),

a (3r+[r+3(1 r)Efl/(2Q*)]2) 1/2
+ r + 3(1 r) Er*/(2Q* ),

E* Er[1- (1- r)-l]/ln(1 r),

Q* OX,/(Xr +

Here E is the optical-phonon energy, t is the mean free path for optical-phonon
scattering, and X is the mean free path for impact ionization. The approximation has
several advantages: it is tractable, agrees well with numerical solutions of the Boltz-
mann equation in which the angular dependence is treated exactly, and reduces to
Shockley’s "spike" distribution which is valid in the limit Q E and Wolf’s isotropic
distribution which is valid in the limit Q >> Er.

Baraff’s assumption that all electrons travel in the field direction is not always
satisfied. Recall that the ionization coefficients are defined under the assumption that
carriers gain energy only from the component of the electric field parallel to the current
density. Consistency with this assumption requires that /9 be redefined as the angle
between the momentum p and the electron current density J and that the energy Q be
redefined as Q qh,.IE.JI/iJ [. The electron distribution is modeled using this modified
distribution function aligned with the current density J.

III. Numerical solution. The device is covered with a nonuniform mesh ((x, y.)}.
The mesh must be chosen with care to minimize the discretization error and the number
of mesh points. Since it is impossible to determine an optimal mesh without knowing
the solution, the mesh is refined adaptively during the computation so that the
difference in the electrostatic potential u between any two mesh points is less than a
prescribed value. This criterion is chosen because the ionization coefficients are ex-
ponentially sensitive to the electric field.

The equations are discretized using the box-integration method based on the
divergence theorem
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Fig. 2 presents the influence region associated with the mesh point (xi, yj). Let
hi xi+ x and kj Y+I-Y. Approximating the line integral using the midpoint
rule yields

fv.nds (hi_ + hi)(o Vn_l)/2+(kj_l + kj)(o Vm_l)/2.

It is well known that this procedure when applied to Poisson’s equation yields a system
of difference equations with a symmetric positive definite coefficient matrix. Consider
the electron current-continuity equation where v J. If the Einstein relation/ D is
assumed, and the new dependent variable /= e-"n is introduced, then the current
density J can be written as

J De"vrl.
If the x component of the current density J is assumed constant on the interval
[xi, Xi+l], and the exponent u is modeled by the linear function interpolating ui, j and

ui+,j, then it follows that

J,,, D,eU,.Jb(ui,j- Ui+l,j)(ni+l, j "rli,j)/h
where the Bernoulli function b(x) x/(eX-1). This procedure yields a system of
difference equations A(u)l k with a symmetric positive definite coefficient matrix.
The elements of the coefficient matrix A(u) may be large because of the factor e",,J. This
factor can be "absorbed" by transforming 1 to n through the linear transformation
n DI, where the diagonal matrix D (e",,). This transformation yields a system of
difference equations AD-Xn k for the electron density n with a nonsymmetric positive
definite coefficient matrix. The hole current-continuity equation is discretized in a
similar manner.

i,j/

i-I id

i,]-I

i/ ,j

FIG. 2. Box-integration method.

The discretized equations have the form

Au+n-p-k =0,

A2(u)n-k2(u,n,p) =0,

A3 (u)p- k3(u,n,p) 0

where the A’s are sparse positive definite matrices, and the k’s represent the doping
profile k, the boundary conditions, and the generation and recombination terms.
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For high fields D 4: . The equations in this case are more complicated but have
similar characteristics. The electron current density can be written as

Jn DeVr + (D #)rleUVu
and the discretization procedure yields

Jm D,,,e""’b(ui,g- Ui+l,j)(i+X,j--Tli,j)/hi
+ (D )m [(rli,j + i+, j)/2] e"’,,b(ui, j ui+ ,j)(ui+ 1,j ui,j)/hi.

The difference equations have the form [A(u)+ B(u)]l k. The matrix B (bi, j) is
generated by the second term in J, and the elements contain a first-order difference of
the potential u and satisfy bi, j bj, for 4: j. For sufficiently small mesh stepsizes,
the elements of B are small in magnitude relative to the corresponding elements of A,
and it can be shown that the coefficient matrix A + B is an M-matrix. However, the
Einstein relation is assumed for simplicity in the following sections.

The discretized equations are solved using the sequential approach first used by
Gummel. The equations are decoupled and solved sequentially until a self-consistent
solution is obtained. The Newton-LSOR method is used to solve Poisson’s equation,
and the LSOR method is used for the continuity equations. These methods were chosen
for simplicity after experiments with various methods including the preconditioned
conjugate-gradient method and sparse-direct methods. The mobility and generation
and recombination terms are evaluated periodically for efficiency.

IV. Avalanche breakdown. The breakdown phenomenon determines the maximum
voltage applicable to a MOSFET, and hence limits the speed and power-handling
capacity of the device. Normal breakdown occurs in long-channel n-MOSFET’s, where
the drain current increases rapidly at-a breakdown voltage which increases with
increasing gate voltage. Negative-resistance breakdown occurs in short-channel n-
MOSFET’s. The drain current increases rapidly at a breakdown voltage which de-
creases with increasing gate voltage. With further increases of the drain current, the
drain voltage decreases to a sustain voltage following a current-controlled negative-
resistance characteristic. The sustain voltage puts a practical limit on the maximum
voltage applicable to a MOSFET, and hence is as important as the transconductance or
threshold voltage in device design.

Eitan and Frohman-Bentchkowsky [5] explain avalanche breakdown as follows.
Impact ionization by hot electrons in the drain-depletion region creates electron-hole
pairs. The electrons are removed through the drain terminal, and the holes flow toward
lower potential terminals. A positive space charge accumulates in the ionization region
because the hole-collection efficiency and mobility are lower than those of electrons.
They propose the following current-enhancement mechanisms: 1) the net positive
charge in the pinchoff region increases the inversion-layer conductivity which, in turn,
increases the source current; 2) the hole-current flow through the depletion region
toward the substrate lowers the potential barriers between the source and channel and
drain which, in turn, increases the current injected from the source and channel to the
drain; and 3) the hole-current flow through the neutral-substrate resistance increases
the substrate potential, resulting in current injection from the source through the
substrate to the drain. Fig. 3 presents the current components in avalanche breakdown.
The increased current then increases the impact-ionization current. This positive-feed-
back mechanism leads to avalanche breakdown when the gain is larger than unity.
Eitan and Frohman-Bentchkowksy present experimental results and a qualitative
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FIG. 3. Current components in avalanche breakdown.

model demonstrating the primary importance of the first two current-enhancement
mechanisms.

The effective substrate-to-source voltage is

Ve= InR + Vo.
The substrate current I is a function of u, n, and p which are functions of the effective
substrate voltage. Hence the problem reduces to the solution of the scalar nonlinear
equation

Note that the evaluation of F requires the solution of the system of nonlinear partial
differential equations describing the device.

Toyabe et al. [6] analyzed avalanche breakdown using the Poisson and electron
current-continuity equations with G R 0. The equations are solved and the solution
is used to evaluate the ionization integral

I= fa exp(- f d,

along the channel-current path to obtain the multiplication factor M=I/(1-I)
describing the increase in the drain current due to avalanche multiplication. The
increase in the substrate potential caused by the substrate current flowing through the
substrate resistance is also included in their model. This approach, while efficient,
ignores the primary current-enhancement mechanisms. Kotani and Kawazu [7] use a
similar approach but include the avalanche-multiplication term in the eleciron-continu-
ity equation. However, they assume a zero ionization rate for holes and ignore the effect
of the substrate current on the substrate potential. Schiitz et al. [8], [9] use the present
model equations, but their procedure is designed to compute only the positive-resis-
tance branch of the current-voltage characteristic. The present procedure, however,
yields both branches of the characteristic. For a given gate and drain voltage, the
substrate potential is incremented in small steps until the first root of F(V)= 0
corresponding to the lower branch is bracketed. The process is repeated for the second
root corresponding to the upper branch. This scheme was used for simplicity, but it is
possible to use more sophisticated root-finding algorithms.

The model was applied to a device considered by Toyabe et al. [6]. The device
parameters are: effective channel length 2/m, width 13/xm, gate-oxide thickness 48
nm, substrate doping 3.2 1021 m-3, drain-junction depth 0.4 ttm, surface concentra-
tion of diffused layer 2.4 .1026 m-3, flatband voltage -0.91 V, and applied substrate
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voltage 0 V. Fig. 4 presents the computed and experimental current-voltage character-
istics for VG 1 V. A substrate resistance of 9 kfl is assumed. Toyabe et al. were forced
to use a resistance of 20 kf to match the data because they ignored two of the three
current-enhancement mechanisms. The predicted results are in good agreement with the
experimental results. Figs. 5, 6, and 7 present the electron density, hole density, and
electrostatic potential distributions for VG =1 V and Vo 8 V. Consider the hole
density distribution. All holes outside the undisturbed bulk region are generated by
impact ionization. Note the accumulation of holes at the interface and near the source.
The holes near the source lower the source-potential barrier. The distribution demon-
strates that the holes do not flow directly to the bulk substrate, but instead first flow
toward the interface, then toward the source, and finally into the substrate. Consider
the electrostatic potential distribution. The lateral electric field is small in the channel
and very large in the pinchoff region. Hence impact ionization should occur mainly in
that region, and the hole density distribution confirms this expectation. The transverse
electric field attracts the holes to the interface near the drain, but repels them in the
adjacent channel region.
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FIG. 5. Electron density distribution.

VD=8.0

."

FIG. 6. Hole density distribution.
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VD=8.0 VG=I.O
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FIG. 7. Electrostaticpotential distribution.

V. Gate injection current. Nakagome et al. [1] recently observed two new types of
hot-carder injection phenomena in short-channel MOSFET’s: avalanche injection and
secondary ionization induced injection. They attribute avalanche injection to carriers
heated in the avalanche region between the pinchoff point and the drain junction.
Holes are injected into the gate in the region near the drain where the y component of
the electric field Ey > 0, while electrons are injected in the region where Ey < 0. Since
the point at which Ey 0 moves toward the drain as 1/ increases, electron injection
should dominate at higher gate voltages. They attribute secondary ionization induced
injection to electrons generated by secondary impact ionization. Holes generated in the
drain-avalanche region are accelerated toward the substrate and generate electron-hole
pairs in the depletion region. Some of the excess electrons are accelerated toward the
surface and are injected into the gate. Figs. 8 and 9 illustrate these injection mecha-
nisms.

The gate-injection current is computed by summing the flux of electrons scattered
into the gate by each mesh element in the plane z 0. It is assumed that an electron
originating at the point (x, y, 0) will cross the oxide potential barrier if: 1) it is directed
at a point (xi, yi, zi) on the interface where the y component of the electric field Ey < 0;
2) the y component of the electron momentum py > (2mEe)1/2, where the effective
potential barrier

E =- Eb + u(x, y,O)-u(.xi, Yi, zi)
and Eb is the silicon silicon-dioxide potential barrier; and 3) the electron is not
scattered by an optical phonon. Assumption 2) implies that the difference in potential
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FIG. 8. Avalanche injection. FIG. 9. Secondary ionization induced injection.

energy between the points (x, y,0) and (xi, yi, z) is converted into kinetic energy. The
fraction of the electrons in the neighborhood of (x, y, 0) scattered into the gate is the
injection efficiency

r= ffsfl,.,,e-/Xr/(p) dp/f_=f_f_=(p.J/IJI)f(p) dp

where S is the set of p for which p intersects the gate at a point (xi, y, zi) where Ey < 0
and py > (2mEe)l/z, and d is the distance from (x, y, O) to the point of intersection. The
factor e-a/x. is the probability that an electron reaches the interface without being
scattered by an optical phonon. The denominator in F is the modulus of the electron
current density IJI at (x, y,O). Now fFIJIdy is the flux scattered into the gate as the
current passes through the plane with fixed value x. Hence the gate current is given by

Note that this is a six-fold integral because the distribution function f(p) contains an
integral.

The injection efficiency F at the point (x, y,0) is more conveniently written in
terms of a new set of variables X, q, and E. Let (X, Y, Z) denote the coordinate system
with origin at the point (x, y, 0), and let (X, Y, Z) denote the point of intersection. Let
k denote the angle between the X axis and J, and recall that 0 is the angle between the
momentum p and J. Let q, denote the angle between p and the line passing through
the origin and (X, Y, 0), and let E denote the energy of an electron measured from the
conduction band edge. Then

Px (2mE)1/2 cos () x,/,

py (2mE):cos()/,

Pz (2mE)a/2sin(q’)
where (Xi2 + y2)1/2. The numerator in F can be written as

2 b(x) r/2
4mY f dXif ddf dEf( Xi, , E)

a(x) 0 Eo(Xi,d?
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where

Ey < 0 for a(x) < X < b(x), Eo Ee( /[Y/cos(t)] }2,
and

f( Xi, dp,E ) COS2 ( )e-d/hr[ mo( E) q ml ( E ) cos( O )]/3,
d  /cos

cos ( 0 ) cos () Xcos ( k ) + Ysin ( k )]/8-
It is impractical to evaluate the gate current using only numerical quadrature

methods because it involves a six-fold integral. A combination of numerical and
analytical techniques is required. The integration with respect to E is performed
analytically. For example, the integral term in ml(E) for E < E has the series
expansion

bE-ae-bEfFitaebtdt= (E/Ei) , cnbn(Ei E)n/n!
"E n --1

where the coefficient c is the series

c,, =1- a/(bEi)+ a(a-1)/(bEi)2+
+( a(a-1)..- (a- n +2)/(bEi) 1.

Hence a series expansion of ff’ml(E ) dE can be derived by integrating this series. The
integration yields the integral

’(tlE,) abn(Ei-t)ndt=Ei(bE,) a(1-t)ndt

which is related to the incomplete beta function. An integration by parts yields
nt-a(1 t) dt ’l’l-a(1- ’r) /(1- a)

2-ap(1- z)"-l/[(1- a)(2- a)]
"l’n+l-ap!l[(1 a)(2- a)---(n + 1- a)]

+ p!/[(1- a)(2- a).--(n +1- a)].
Thus the coefficients in the series expansion are themselves products of series. The
integral

mo(t ) dt (t/Ei) e_b.(t_E, dt

for E > E can be written as (b*Ei)a*-iEieb*e’F(1-a*,b*E), where F(et, fl) is the
incomplete gamma function. Hence this integral can be evaluated using the power
series or continued-fraction representations of the incomplete gamma function. The
representations are

F(1- a*,b*E)= F(1- a*)-(b*E)-a* _, (- b*E)nl[(1 a* + n)n!]
n---O
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and

F(1- a* b’E) e- b*E

1 a* 1 a* + 1 2 a* + 2
)b’E+ 1+ b’E+ 1+ b’E+ 1+

The more rapidly convergent of the two representations of F(1-a*, b’E) is used for
any given set of arguments. Aitken’s i2-method is used, if necessary, to accelerate the
convergence of the various series and continued-fraction representations. The remain-
ing integrations with respect to q and X are performed numerically using the adaptive
quadrature routine QUANC8 [10] which is based on the eight-panel Newton-Cotes
rule. The product FIJI is evaluated at the centers (xi+/2, Yj+/2) of the relevant mesh
elements and the gate current is approximated using the midpoint rule.

Phillips et al. [11] first used the present approach with a simple model of the
electron distribution function. Eitan and Frohman-Bentchkowsky [12] present a quali-
tative model based on similar assumptions. Rather than evaluate their integral expres-
sion for the gate current, they use it to provide an explanation of the gate-current
parameter and voltage dependence and to predict a correlation between the gate and
substrate currents. Wada et al. [13] combine an expression for the injection efficiency
based on Baraff’s distribution function and a uniform channel electron density with the
scattering factor e-a/x. They also assume that an electron will reach the gate only if
tan-(Ey/E) is greater than a critical injection angle. By assuming a critical angle of
60 degrees, they obtain good agreement between the computed and experimental
results.

The preceding papers are concerned only with the channel-injection current due to
channel electrons accelerated by the high field near the drain junction. The present
model, however, includes avalanche generation and should, in principle, predict the
avalanche-injection phenomena reported by Nakagome et al. They report measure-
ments for two types of devices. For the first the electron-injection current versus
gate-voltage curve exhibits a secondary peak at V--3.5 V attributed to avalanche
injection as well as the primary peak at V Vo associated with channel injection. For
the second the channel-injection current is suppressed, the gate-current curve is
generally unimodal, and the gate current is strongly correlated with the substrate
current. The peak in the gate-current curve occurs at a gate voltage slightly higher than
that for the substrate-current curve. At sufficiently high drain voltages, however, the
gate-current curve is bimodal. Both devices have ion-implanted channels. Since the
doping profiles are proprietary information, a hypothetical short-clannel n-MOSFET
with a uniformly doped substrate was studied instead. The device parameters are:
effective channel length 1 #m, width 14 #m, gate-oxide thickness 10 nm, substrate
doping 3.5 10 22 m-3, drain-junction depth 0.2/m, surface concentration of diffused
layer 5.5 10 26 m-3, and applied substrate voltage 0 V. Since the substrate doping is
uniform, the device presumably may exhibit a combination of the properties of the two
devices studied by Nakagome et al. Figs. 10 and 11 present the gate and substrate
currents for Vo 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 V. The gate current is strongly
correlated as expected with the substrate current for VD < 4.5 V, and the first peak in
the gate-current curve occurs at a gate voltage slightly higher than that for the peak in
the substrate-current curve. It is tempting to speculate that the peak in the gate-current
curve at V--3.5 V for VD 3.5, 4.0, and 4.5 V is due to avalanche injection. For
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Vo 5.0 and 5.5 V, however, the gate-current curve resembles the normal unimodal
channel-injection current curve. The substrate current saturates as expected with
increasing drain bias. It saturates because the source-substrate junction becomes
forward biased, and the substrate current saturates at the value needed to make the
voltage drop across the substrate equal the forward bias.
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AUTOMATIC PROBLEMSIZE REDUCTION FOR ON-STATE
SEMICONDUCTOR PROBLEMS*

SIMON J. POLAK, WILLY H. A. SCHILDERS, COR DEN HEIJER,
ARTHUR J. H. WACHTERS, AND HARRY M. VAES

Abstract. Two algorithms are presented for the analysis of a large class of on-state semiconductor
problems.

The algorithms only involve the strictly necessary equations in the discretized problem.
Equations that are satisfied and solution values that are found are not unnecessarily present in the

calculations. Some examples of their use are shown.

I. Introduction. The analysis of 2D on-state semiconductor problems usually
involves a large computational effort. Special device properties are therefore used to
minimize computing times.

In analyzing a MOS device, for example, one may omit the equations for the
minority carriers or only calculate the quasi-Fermi level in the channel.

The two algorithms presented here automatically recognize device properties that
can be used to omit equations and unknowns from the discretized problem.

The basis for the solution of the semiconductor problems with both algorithms is
the following: The continuous problems are discretized using a FEM. Then a continua-
tion method [6], [11] is used to step up from a nearby problem, e.g., with a lower
applied voltage or with a different dopant, to the problem to be solved. At each step of
the continuation method a damped Newton method is used.

In both algorithms the set of discrete equations involved in one damped Newton
iteration is kept as small as possible in some sense. In one algorithm we always start
with the full set of equations and omit equations thus reducing the set until it is empty.
Then we return to the full set as a safeguard. This algorithm is called Down Subsetsolv-
ing (D3S).

In the other algorithm we start with only those equations giving large residuals
from the initial estimate for a Newton process. Then, after one iteration on this (usually
small) set we omit all equations with small residuals involving only small corrections
and we omit the associated variables. Furthermore, equations and variables outside the
original set which are associated with too large residuals are added to the set. This
algorithm is called Up and Down Subsetsolving (U + D3S).

We have developed a program package CURRY for the solution of 2D time
independent on-state semiconductor problems. Both 2D MOS and transistor devices
can be analyzed with it. For the solution one can choose either of the two algorithms.
Some examples and comparisons are presented in this paper.

In Section II we describe the basic equations and some notations. In Section III we
briefly present the continuation method and the damped Newton method. In Section
IV the linear algebra is discussed. In Section V the Down Subsetsolving algorithm and in
Section VI the Up and Down Subsetsolving algorithm are presented. Section VII
contains remarks on convergence of both algorithms. In Section VIII some practical
remarks concerning the algorithms are given. In Section IX the package CURRY is
briefly described together with some implementation remarks. In Section X we give
examples calculated with both algorithms.

*Received by the editors November 2, 1982, and in revised form May 16, 1983.
Philips Research Laboratories, Eindhoven, the Netherlands.
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(1)

(2)
(3)
where

II. Fundamental equations and notations. The equations to be solved have been
much discussed, e.g., [5] and [10]. Therefore it is sufficient to give the equations here
without much comment.

Furthermore, the algorithms presented in this paper may be used for other classes
of problems as well. So a symbolic representation of the problem often will be enough
for the discussion in this paper. The equations are:

div e grad k P ( , n, t/)p ) F (, n, p ) 0,

div/,nn(k, n)grad n + R(/,qn,qp)= F2 (k, ,, p ) =0,
div/xpp ( k, p)grad +p R(, ,, p) F3( k, ft,, +p ) 0

and

and

p(p,q,,qp) q(p(,qp)-n(,qn)+ D)

P( k, p) n,exp (( q/ICr)(%

n( p,) n,exp ((q/KT)( )).
R is the recombination and may be of SRH or Auger type [8]. They are discretized with
a FEM with bilinear quadrilaterals and linear triangles as described for (1) in [6]. Then
we have a set of N nonlinear equations with N unknowns indicated by r(x)= O,
i= 1,.--,N or R(x)= 0 where x is the vector of nodal p, bn, and ffp values. S will
indicate the index set { }= 1- Equation and unknown will be termed associated if they
have the same index S.

III. The continuation method. Descriptions of the continuation method can be
found in [4] and [7]. A brief explanation follows here.

Suppose we want to solve a nonlinear N N set of equations, R(x)= 0. Then we
replace the equation by a family of sets of equations R(x(t), t)= 0, [0,1] with x(0)
known or easily calculated and R(x(1), 1)= R(x(1))= 0. Let o 0; for o the solution is
known. If the solution has been found for t_ 1, k > 1, then a small enough step r
will give a convergent Newton process for t t_ + r with x(t_l) as an initial
estimate.

We use the following damped Newton method:

1) calculate dx J-1R(x), J is the Jacobian of R(x)
2) if Ildxll < eb, / Ire * Ilxll, terminate
3) else calculate , with

IIR(x / h dx)ll2 < IIR(x / ), dx)ll for all , > 0
4) set x" x + dx, return to 1).

In the subset solving algorithms we also encounter the following situation. Suppose
S= S11OS2, S1(’) S2

Jp is the submatrix of J with coefficients Jm,, with m, n $1. So all the rows and
columns with indices in S2 are omitted. Also Rp(x) is the vector of ri(x) with i S1.
Then dx J-1Rp(x). dx is defined by assigning the dx components to the associ-
ated dx components and by setting all other components to zero. k is established from
IIRp(x + X dx)ll2 < IIRp(x + X dx)ll2 for all h > 0. h is obtained numerically by the
method of Davies, Swann, and Campey (see [15]).
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IV. Linear algebra. The problem Jdx R(x) is equilibrated [12] and all the
considerations involving J and R(x) concern the equilibrated problem. Only in the
damping procedure the equilibration factors are kept constant as updating them would
involve a re-evaluation of J for each ,. (For equilibration, optimal scaling etc., see e.g.
[1], [9].) The Jacobian J can be conceived as a 3 3 block matrix, with main diagonal
blocks (0/0b)F1, (tg/dPn)F2, and (tg/tgdpp)F3 (see also Section II.)

Instead of Jdx=- R(x), we solve the preconditioned system J*dx=- R(x)*,
where J* (L + D)-IJ and R(x)* (L + D)-IR(x). Here (L + D) is the block lower-
diagonal part of J. Then we use ORTHOMIN (see [3], [14]) to solve this problem. In J*
we use the L- U decomposition of the main diagonal blocks. We are investigating
cheaper preconditionings.

V. Down subsetsoiving (D3S). The simplest way to reduce the number of equa-
tions in the discrete set is the following.

After each iteration of the Newton algorithm select those corrections satisfying the
convergence criteria and omit the associated equations and variables from the set until
it.is empty. Then again restart the process with the full set. Terminate if the empty set is
found with one Newton iteration for the whole set. More precisely the algorithm has
the following form:

t=0, setx, T=0, R=S
while < 1
do evaluate -, t / "

while T R
doR=S

while R 0
do Sa= R, S2= S\R
,dx is calculated as in Section III, x x + ,dx
T=R
R {i RIIdxl > C )

od
od

od

Remark 1. The disadvantage of this algorithm is that the total set of equations has
to be solved at least twice per Newton process whereas most of the solutions may
remain unchanged. In the U + D3S algorithm this is not the case.

Remark 2. We decide that the algorithm diverges if
(the Ildxll increases "OR" Ildxll > MIIxlI)!’AND" 2 decreases
"AND" if the number of points in S stays constant
then the step z, is decreased.

We chose M 103, because of the expected range of the solution.

VI. Up and down subsetsolving (U + D3S). A more complicated algorithm that
keeps the set of equations each Newton iteration as small as possible is the following.
Select the equations with a large residual from the substituted initial estimate. This
usually is a far smaller set than the total set. After each following Newton iteration
those equations and associated variables with both a small residual and a small
associated correction are omitted. Also equations with too large a residual are added.
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This way we start with a small set and keep the set small if possible. More precisely the
algorithm has the following form:

0, set x
while < 1
do evaluate ,, /

T= {i SIIr(x)l > C eabs / erelllXl[ }
while T 4: 0
do Sl= T, S2 S\T

calculate Adx as in Section III, x x + Adx
Td ( Tlldx, > C )
T (i SIIr,.(x)l > C)
T= Tr t3 Td

od
od

Remark 1. Although the set is kept minimal, the process of finding the largest of
the S does involve an amount of work (see examples) that decreases the expected
advantage. Therefore one might consider further combinations of D3S and U + D3S.
Starting with a larger set than is done is U + D3S, e.g., the second set of the previous
iteration may be faster. We are investigating such possibilities. See also Remark 1 in
Section XI.

Remark 2. S can be established by considering only

(Or Or4:0 and -- 4:0 for some rn

Remark 3. Suppose the emitter potential is increased in step k of the continuation
process from Vk_ to Vk. Then the set S will contain only indexes of the points
adjacent to the emitter contact. The set then will grow to involve all points influenced
by the voltage change, though the original points may drop out earlier.

Remark 4. We take the criterion C eab / erelllXll. This is a necessary condition
(not sufficient) for Ildxll-< Eabs / erlllXll as can easily be seen from the equilibrated
problem.

Remark 5. We decide that the algorithm diverges if
((lldxll increases "OR" Ildxll > MIIxlI)"AND" , decreases)
"OR" if A < ex
"OR" if Ildxll > N,
then the step *k is decreased.

We chose M 103, N 104, and ex 10 -4.

VII. Convergence considerations. There is no proof of the convergence of the
algorithms presented. However, it is reasonable to expect the Newton process for the
full problem to converge if ,k is small enough. It is less obvious that this is also the case
for the subsetsolving process. Still, one Newton iteration for a subset may be consid-
ered out of a Newton process for this subset. Then if the previous iterand had been
sufficiently close, which for a small enough ,g is the case, the new iterand will be closer.
No thoroughness is pretended in this reasoning of course.

Let us now consider the functional IIR(x)ll2. This functional has a minimum zero
for the solution. In the algorithms presented, there is no guarantee that the functional
will decrease from step to step even when a A > 0 is found. This is so because the
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corrections dxi, S may change some rm(X) with rn S1. One might consider the
adding of all those rm(X + X dx)2 with (O/Oxi)rm(x)O to the functional giving
the functional II_R(x)ll2. However, this easily introduces the situation where the Newton
direction dx is not a descent direction for the functional. So k 0. Or the functional
generates a series of ’s converging to zero. Theoretically the descent direction can be
found by not solving Jdx R(x) but by taking the overdetermined Jacobian J with
coefficients (0/0xi)r(x) for (tg/tgxi)rm(X) 0 for some S and solving J_rJ_dxl

JrR(x). Then d/dll_R(x + , dx)ll 2(_J(x + dx) dx, _R(x + h dx)). For , 0
this gives

d/d,ll_R(x + X dx)l122x__0 -2([J_rJ_ ]-ljrRp, JrRp) < 0

from substitution of dx. However, _J is a badly conditioned matrix already so that it is
not advisable to use jrj.

VIII. Practical remarks. Some remarks can be made on the implementation and
actual usage of the algorithm.

Remark 1. Step strategies for continuation methods are as yet all unsatisfactory in
practice. Theoretical information can be found in [16]. However, for this particular
problem we simply apply multiplication by 1.3 after two consecutive successful steps
and we divide by 2 in case of rejected step.

Remark 2. The damping procedure shows sometimes X’s converging to zero,
sometimes diverging ,’s. In the first case we reject the step, in the second case we take

Remark 3. The computational effort involved in calculating , appeared to be
approximately half of the time needed to solve the linear system.

IX. CURRY. The examples were calculated with the program package CURRY.
This is a package similar to MAGGY [13] and SEMMY [6]. The problem oriented
language of SEMMY has been extended for the specification of mobilities, recombina-
tion, and contact potentials.

X. Examples. In this section two examples of totally different devices are dis-
cussed to show flexibility of the algorithm and the program. In Figs. 1 and 2, cross
sections of both devices are depicted. The meshes used for the calculations are also
shown in the same figures.

The first example is a bipolar transistor for low-voltage analog applications. For
the calculations the mobility is modeled dependent on electric field, dopant, and
temperature. As recombination mechanisms both SHR and Auger have been taken into
account.

In Figs. 3 and 4 the full log Ic/VBe and log IB/Vne curves are given. The resulting
current gain is shown in an hFe/log Ic plot in Fig. 5.

The second example is an MOS transistor with a gate length of 15 /m. Both
electron and hole currents have been taken into account. In Fig. 6 the log Id/
characteristic is shown at gate voltage l/’gs 3 V.

XI. Algorithm behavior. The behavior of the algorithms for the two examples is
shown in Tables I-IV. The tables show the number of unknowns in each Newton step
(vertical) for each t-level in the continuation process (horizontal). So a column
represents a t-step. Table I shows the behavior of D3S for the bipolar transistor
problem. Table II shows the behavior of U + D3S for the same problem. Table III
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shows the behavior of D3S for the MOS transistor problem and Table IV shows part of
the U + D3S for the same problem. The performance of U + D3S may be improved by
calculating a better starting point for the process to solve the problem. As a referee
pointed out, by routinely initializing the majority Fermi potential to the applied bias in
the region corresponding to the contact, while choosing the electrostatic potential to
maintain the previous space-charge density.

TABLE I
D3Sfor bipolar transistor

BASE-EwITTER VOLTAGE

0.09 O.14 O.IB 0.24 0.31 0.39 O.t,4 0.,9

MAXIMUM NUMBER OF UNKNOWNS IN NEWTON PROCESS

1950 1950 1930 1950 195C 1950 1950 195C

NUMBER O UNKNOWNS PER NEWTON STEP

1950 1950 1950 1950 1950 1950 1950 1950
273 221 229 286 297 319 337 364
265 ZZl 216 277 296 313 318 351
258 220 215 277 26 299 317 351
252 206 210 275 296 299 315 351
243 60 9 25 294 298 170 210
238 1950 1950 I18 Z94 298
229 31 12/, 1950 293 296 1950 1950
199 7 Z0 56 268 296 91, 117
16 1950 190 19 30 4 290 1950 1950

1950 1930 136
78 15 1950

1950 56
1950 1950
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TABLE II
U + D3Sfor bipolar transistor

BASE-EMITTER VOLTAGE

0.09 0.18 0.21 0.26 0.28 0.32 0.36 0.39 0.63 0.69 0.52 0.56 0.60

MAXIMUM NUMBER OF UNKNOWNS IN NEWTON PROCESS

22.0 265 196 202 232 271 215 217 266 31 232 23 308

NUMBER OF UNKNOWNS PER NEWTON STEP

2 2 Z 26 26 2 2 2 Z 2 24 24 24

45 5 5 65 65 65 5 4 5 45 5 45 45

68 68 62 62 68 62 62 62 68 68 6Z 62 68

96 96 87 87 8"/ 87 87 87 93 93 J7 87 93

116 116 113 113 113 113 113 113 113 119 113 113 119

135 138 138 161 11 141 141 161 161 167 161 161 167

157 163 160 166 166 167 168 167 167 176 168 167 173

171 181 177 185 186 195 186 185 185 192 186 186 191

186 198 196 202 206 206 203 206 203 2.10 203 204 206

201 210 156 165 221 223 215 21"/ 221 228 221 221 223

216 22.2 133 139 232 235 203 208 235 261 232 236 235

218 230 133 166 232 247 1]7 202 266 253 229 230 267

220 261 129 146 225 260 179 1?8 26 267 223 223 259

99 269 117 138 213 271 177 178 262 273 209 210 270

63 257 37 120 190 255 155 178 235 285 197 197 272

72 262 97 130 148 21, 159 17, 216 296 203 203 271

71 26Z 102 136 19 210 162 181 215 310 217 225 289

61 265 101 106 146 206 156 179 215 316 217 232 308

2,2 21 43 57 175 150 172 207 313 138 162 207

61 21 20 19 25 148 154 59 65 139

20 16 26 36 39 50 125

18 18 36 60 53 163

8 42 65 55 169

11 11 56 61 70 100
12 4 30 88

15 77
33
31
15

TABLE III
D3Sfor MOS transistor

DRAIN-SOURCE V"’LT
0.05 0.09 0.18 0.27 0.42 0.5/* 0.69

MAXIMUM NUMBEE O UNKNOWNS IN NEWTON PROCESS

205g 2056 2054 205/, 2034 2054 2054

NUMBER OF UNKNOWNS IN NEWTON PROCESS

2054 2054 2054 .054 2054 2054 2054
1023 1085 112 1193 1235 1257 1275
927 973 1081 1139 1178 1235 1252
845 854 955 1066 111 1228 125
109 551 771 873 11 13 1210 1236
054 205/* 2054 39 1030 1199 1222

0 112 2054 745 1179 1211
2054 205 72 57 1162 1194

2054 2054 1125 1172
228 956 886
2056 843 449

36 B
6 2054

2054 294
257

205/* 2054
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TABLE IV
U + D3Sfor MOS transistor

OR AI N-SOURCE" V OLT ,E’
0.05 0.09 0.18 0.27 0.42 0.57 0.78 1.02 1. 1. 1.29

AXIHU NUHfiER OF UNKNOMHS IN NgTN-FROCSS

380 330 .507 652 63 837 "/79 756 736 711

NUMBER OF UNKNOMNS PER NEMTON STEP

14 14 14 14 20 Z5 16 1/, 15 16
39 39 39 39 46 58 4.3 39 4.0
63 63 64 64. 76 89 74. 72 76 76
98 97 99 I01 116 120 114. 111 115 119

12.7 129 1Z6 13"/ 154 162 16/, 163 172 176
14,4 148 lt4 163 184 195 211 217 215 223
138 141 165 1t34 215 229 244 252 2.6 254
157 161 189 208 248 266 ZTO 211 279 279
180 180 214 231 2.11 302 301 309 30 310
205 202. 231 254. 302 34.0 329 336 339
220 217 251 275 332 379 356 370 370 375
240 240 270 307 358 .18 390 4.09 405 08
274 270 298 35T 398 ,76 429 4.49 44.2 443
310 302 329 400 432 523 468 47 2
333 333 372 453 471 563 59 521 516 521
359 359 411 48,9 501 593 538 559 5.9 551
374 386 450 549 547 628 579 597 5cj5 594
380 390 482 593 569 660 607 631 623 635
365 3;36 507 602 596 690 639 668 660 667
158 180 490 634 621 719 669 701 637 69
172 199 469 652 634 748 694 723 724. 708
143 162 400 639 63, 765 708 746 736 711
113 101 137 621 593 791 724 756 695 709
128 95 73 2114 258 809 730 750 342 4.59
130 95 61 133 95 811 733 559 92 227
126 97 51 126 46 814. 748 235 39 201
121 103 42 124 17 825 759 202 32 lt8
116 105 37 125 15 835 779 151 30 2Z
122 96 33 115 11 837 743 119 25 18
122 9 26 103 7 455 604 27 17
115 82 24. 51 5 272 597 25 11 6
106 59 13 53 165 597 11
130 30 10 28 147 593 10
140 22 7 155 589 9
127 15 6 $ 146 597 4

5.5 18 4 188 604
36 3 219 604
16 2 24.2 60

223 607
192 610
181 601
14 538
119 150
65 9
49 38
4O 38
37 40
35 5
33 ,5
30 41
28 31
29 26
2.7 10
17
15
1.4
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TWO-DIMENSIONAL ANALYSIS OF SEMICONDUCTOR DEVICES
USING GENERAL-PURPOSE INTERACTIVE PDE SOFTWARE *

JAMES L. BLUE AND CHARLES L. WILSON*

Abstract. Analyzing currents and fields in VLSI devices requires solving three coupled nonlinear elliptic
partial differential equations in two dimensions. Historically, these equations have been solved using a
special-purpose program and batch runs on a large fast computer. We use a general-purpose program and
interactive runs on a large minicomputer. We discuss the physical formulation of the semiconductor
equations and give three example solutions: a short-channel MOSFET near punchthrough, a DMOS power
transistor in the ON state, and a beveled p-n junction. These examples demonstrate that solutions to a very
general class of semiconductor-device problems can be obtained using these methods.

Nomenclature
E,, Energy of acceptor-like trap. Qss Total interface charge.
Ed Energy of donor-like trap. q Electronic charge.
Eg Bandgap. R Recombination-generation rate.
g,, Acceptor-state spin degeneracy, s Electron surface recombination velocity.
gd Donor-state spin degeneracy, sp Hole surface recombination velocity.
N Net ionized impurity density. T Kelvin temperature.
Nc Density of states in the conduction band. V Applied voltage.
No Density of states in the valence band. e0 Permittivity of free space.
n Electron density. Dielectric constant.
n o Equilibrium electron density. /,, Electron mobility.
nl Electron density at trap energy. /p Hole mobility.
n Intrinsic cartier concentration. ’n0 Electron lifetime.
n Unit vector normal to boundary. p0 Hole lifetime.
p Hole density. Ms Metal-semiconductor work function.

P0 Equilibrium hole density. n Electron quasi-Fermi level.
pl Hole density at trap energy. p Hole quasi-Fermi level.
Qitc Interface trapped charge. s Surface potential.
Qox Oxide trapped charge. k Electrostatic potential.

I. Introduction. Analyzing currents and fields in VLSI devices requires solving
three coupled nonlinear elliptic partial differential equations in two dimensions. His-
torically, these equations have been solved using a special-purpose program and batch
runs on a large fast computer. We use a general-purpose program and interactive runs
on a large minicomputer.

We have developed a package which is capable of solving a wide variety of
semiconductor-device problems. The package analyzes coupled systems of semiconduc-
tor equations in two dimensions. The package is hierarchical, consisting of a top level,
or driver, which calls a general-purpose driver (B2DE), which calls a general-purpose
elliptic solver. The top level depends on the particular semiconductor-device technology
being modeled. This organization has several advantages. We can change the physical
model of the system easily. We can test the package on problems with known solutions.
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We discuss the physical formulation of the semiconductor equations and give three
example solutions: a short-channel MOSFET near punchthrough, a DMOS power
transistor in the ON state, and a beveled p-n junction. The MOSFET is a typical
present-day short-channel VLSI device. The DMOS example shows how power devices
and other structures with large ratios of parasitic to active volume, such as gate
structures, can be analyzed. The p-n junction problem shows how nonplanar devices
with nonideal contacts can be analyzed. These examples demonstrate that solutions to a
very general class of semiconductor device problems can be obtained using these
methods.

Our use of B2DE has convinced us that we are now able to analyze large enough
VLSI structures to do gate-level modeling.

A. Why use a general-purpose box? Our working environment has affected our
choices of methods for analyzing semiconductor devices (SCD’s). The National Bureau
of Standards does not design, manufacture, or sell SCD’s. We do not need the world’s
fastest computer program for analyzing short-channel MOSFET’s or any other kind of
SCD.

We do need flexibility in analyzing SCD’s. We need to be able to analyze many
kinds of devices, with many different geometries, in many modes of operation,
including nonstandard modes. We need to be able to change the physical model
included in the analysis.

We want to have confidence that our partial differential equations (PDE’s) are
solved sufficiently accurately. With a general-purpose box (GPB), we can solve PDE’s
with known solutions, not just problems arising from SCD’s. Since the same GPB does
all the kinds of devices we are interested in, we have comparatively little new computer
code to write and to test when we start to analyze a new kind of device.

B. Where do you get a suitable GPB? We are firm believers in building on other
people’s work. We have saved much development time by using existing quality
software instead of starting at the beginning. If there had been a suitable GPB in the
public domain, we would not have built our own. We started in 1979 with the first
version of PLTMG, written by R. E. Bank and A. H. Sherman [2]. PLTMG had many
of the features we thought were essential, but lacked others. We have rewritten it in
another language, modified nearly every line of it, and added many features to it. Since
1979, there have been new versions of PLTMG [3]. We have not incorporated Bank’s
recent modifications, but have made some of them independently.

II. Design principles for a GPB. In this section we discuss principles that guided
us in the development of B2DE. Throughout, we have striven to keep B2DE as general
as possible while giving it the capability to analyze SCD’s.

A. How wide a class of PDE’s should the GPB solve? The simplest realistic
formulation of the semiconductor-device equations includes a two-dimensional calcula-
tion of the electrostatic potential and the hole and electron quasi-Fermi levels in the
semiconductor. The basic semiconductor equations are given in Section III. To analyze
the steady-state behavior of SCD’s, the GPB has to solve three coupled nonlinear
elliptic PDE’s. B2DE can solve k PDES in k unknown functions ui. The PDE’s are of
the form

(1) V.(ai(u, tguli)x, Ou/tgy, x, y)Vu,)= f,.(u, tgu/tgx, tgu/tgy, x, y).
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a; and f can be any function of their variables. To maintain generality, the user of
B2DE provides a and f as subprograms; each of the programs must calculate the
function and its first partial derivatives.

At each boundary point, there must be k boundary conditions. B2DE allows two
types of nonlinear boundary condition

(2) gi(u,x,y)=O
or

(3) Oui/On.-]- g,(u,x, y)=0.
The type is allowed to be different for different PDE’s and is allowed to vary along the
boundary.

This framework is general enough for the standard SCD equations and the
standard physics. More generality is needed for more complex physical models. The
framework is so general that it includes many problems that are mathematically or
physically ill-posed. We do not expect B2DE to work well for such problems.

The geometry of the region involved is also important. A single rectangle is not
sufficient, nor is a union of rectangles. A union of triangles is sufficient. Curved
boundaries are infrequently required, but are included in B2DE because they were in
PLTMG.

B. What kind of accuracy is desired? How does this affect the GPB? If a very
accurate solution of a smooth problem is wanted, higher-order methods are probably
indicated. If less accuracy is wanted, or if the typical problem is not smooth,
lower-order methods are indicated. Our solutions are not smoothly varying; they have
much of their variation in a small part of the region, as discussed later.

In analyzing SCD’s, the physical parameters are generally not known accurately.
In addition, some regions of a device may not have much effect on the behavior of the
device, and thus require less accuracy. Similarly, some variables do not need to be
known accurately to predict the behavior of the device.

For our GPB, occasionally we will want high accuracy, and want methods that will
not prevent our obtaining a very accurate solution, but "engineering accuracy," a few
percent, will usually be enough. For testing the GPB, we will need higher accuracy.

We frequently simulate VLSI devices for the purpose of designing and explaining
experiments. We frequently simulate these devices in modes of operation that "produc-
tion"-oriented device modeling does not usually require. In this type of modeling, we
do not know a good solution strategy, and must compute interactively to develop one.

B2DE allows the user to monitor the solution variables and residuals to aid in
finding a solution strategy. The adaptive methods in B2DE, to be described later, allow
the user to control the evolution of the mesh to achieve the accuracy required for the
particular problem.

C. What are the special features of SCD problems? SCD problems are qualita-
tively different from the well-known PDE’s of mathematical physics, and present
different challenges to the numerical analyst and the software designer.

The standard form of the SCD equations includes exponential nonlinearities, and
the arguments of the exponentials can be large. The software designer must protect
against overflow and against destructive underflow. In some cases, accuracy can be
limited by cancellation of large terms, as in (4), where with the usual normalization N
can be as large as 101.
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In order to solve the PDE’s, they first must be reduced to a set of nonlinear
equations. (We use linear finite elements on triangles; the nonlinear equations are the
usual Galerkin equations.) In solving these nonlinear equations, by some variant of
Newton’s method, the approximate solution is not close to the answer until the end of
the solution process; standard numerical analysis proofs are mostly irrelevant.

The three PDE’s have typical terms that vary greatly in magnitude, both from each
other and in different parts of the device. Each PDE must be scaled by the user, and the
scaling should be different for each equation.

In some regions of devices, either the electron or the hole density is negligible. This
causes the Jacobian matrix of the nonlinear equations to be nearly singular, and a
calculated Newton correction may be inaccurate, especially on a computer with short
word length. We have often found it necessary to regularize the Jacobian matrix to
avoid singularity. We do not have an automated method to recognize near-singularity.

Present-day devices have solutions characterized by steep fronts, as in Section III.
The locations of the fronts depend on the particular device because of the doping
profile, and on the boundary conditions, the applied voltages. A uniform mesh
throughout the device is inadequate; even a tensor-product mesh is wasteful. The mesh
must be refined locally to resolve the steep fronts as well as to cope with mathematical
singularities in the solution. For these reasons, high-order methods are usually inap-
propriate.

The whole character of the solution can change drastically with boundary condi-
tions. Providing a reasonable initial guess for the general SCD is difficult; providing
one for a particular class of device in a restricted range of operation may not be
difficult.

There are always three coupled equations, but the degree of coupling and the
importance of each equation vary with device type, with region in a given device, and
with the applied boundary condition. The variation makes it difficult to specify a
universal iterative method for solving the coupled nonlinear PDE’s. In the general case,
we cannot count on knowing an iteration algorithm which will reliably solve the
nonlinear equations without human intervention.

In the general case, we cannot count on knowing a correct mesh or even an
adequate one. If the mesh has too little resolution in critical regions, there may not be a
solution to the set of nonlinear equations.

D. What software features do you want in the GPB? The box should be in
portable Fortran, not optimized for any particular computer. B2DE is in the PFORT
subset of Fortran 66; adherence to this subset has been checked by the PFORT verifier
program [13]. Machine-dependent parameters, such as the largest and smallest
floating-point numbers, are isolated. System-dependent features, such as the lowest-level
graphics calls, are also isolated.

Although the GPB should be in portable Fortran, we prefer to write in a
higher-level language, both because Fortran is an unpleasant language and because we
are more productive programmers in a higher-level language. We use Ratfor [12], a
language with modem control structures and a few conveniences; a translator converts
the Ratfor to Fortran.

It should be possible to run the GPB interactively for program development and to
run it in batch mode for production runs.

In order to help understand both the solution process and the nature of the
solution, graphical output is essential. Interactive graphics on a video terminal is
necessary; diversion of the graphical output to files for postprocessors is also necessary.
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Many types of graphics are useful.
The user of the GPB must be able to save and to restart solutions. The user can

test various solution strategies and compare the results. Since the box can never be
completely general, it should have built-in places where a user can insert a subroutine
to replace a null subroutine for special purposes.

The program must be tolerant. No calculation should ever overflow. No destruc-
tive underflow should occur. The program must never abort because of faulty inputs
from the user.

E. What is B2DE like? B2DE has a hierarchical structure. On the bottom are a
number of programs from well-established software libraries, including sparse matrix
software [6], [16] and the kernel of the PORT library [9]. On the middle layer is a large
assemblage of general-purpose finite-element programs and graphics programs. Much
of this layer is descended from PLTMG.

The top layer, the layer with which a user interacts, may be one of several existing
top layers. One of them is a general-purpose interactive driver. It is used for "one-shot"
problems and for developing specialized drivers. The user provides a few subroutines,
as part of the top layer, to define the PDE’s and the boundary conditions.

Other top layers are specialized drivers for particular classes of SCD’s. These
drivers simplify the inputs to B2DE and provide the necessary subroutines.

The general-purpose interactive driver is typical of all the top layers in having a
menu-driven structure. At each step, the user is presented with a menu of all the actions
that are possible at this time. The possible menus have a tree structure. For example, at
the highest level of the tree, the user has the following options:

print statistics about the current solution,
plot the current solution,
iterate on solving the nonlinear finite-element equations,
refine a mesh, producing a new mesh,
compress the finest mesh into the next-coarser mesh,
compare the current solution with a saved solution,
save the current solution,
change parameters, and
quit.

If, for example, the plot option is selected, the user has the choice of plotting the
following:

triangles,
contours,
surface plots,
profile plots, and
flow-line plots.

Then, if surface plots are selected, the user may select

surface views of the triangles,
surface views of level lines (contours), or
surface views of grids on the surface.

Each of these plots then requires further information from the user.
B2DE uses linear finite elements on triangles, and in standard fashion [17] converts

the PDE’s to a set of nonlinear equations. The nonlinear equations are solved by a
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damped Newton’s method; the Jacobian matrix of the nonlinear equations is similar to
a finite-element matrix from a set of linear PDE’s. The heart of B2DE is software to
solve the linear finite-element equations and is the part of B2DE which has changed
least from PLTMG.

In solving the nonlinear finite-element equations, Newton iterations may be
carried out until a given degree of convergence is achieved. The Newton iterations
require solving linear equations. These may be solved directly, using sparse Gaussian
elimination [16], by standard iterative methods of several possible types, or by multi-
level iterative methods of several possible types. Depending on the progress of the
solution, the user can decide to do more iterations, to change the type of iterations, to
change from working on all three equations at once to working on two or on one, or
refine the mesh and then iterate. At every stage, the user can (and must) make choices
about the solution process.

Since the user does not know a reasonable mesh, B2DE generates a reasonable
mesh adaptively. Starting with the user-specified mesh, an approximate solution to the
nonlinear finite-element equations is found. The error in the solution on this mesh is
estimated, and a refined mesh is generated by subdividing the triangles with the largest
estimated error. The degree of refinement is governed by the refinement threshhold; all
triangles with at least this fraction of the worst estimated error are subdivided.
Alternatively, this fraction of triangles may be refined. This process can be repeated.
For SCD’s, the final mesh is highly nonuniform.

Asymptotically, in the limit as all triangle dimensions become small, linear finite
elements on triangles gives second-order convergence to the solution. That is, if each
triangle is divided into four congruent triangles, the error in the solution is divided by
four. In practice, for SCD’s, the solution is almost always as accurate as desired before
asymptotic behavior holds everywhere in the device.

Both in developing iteration strategies and in interpreting the physical meaning of
solutions, the availability of graphics is essential. Otherwise it is difficult for the user to
make any sense out of what is happening. If the graphical output must be specified
before the computer run is started, the making-sense process is drastically slowed.

At every step, the user is also able to find out what is going on in the solution
process by looking at the current approximate solution, the Newton iterates, and the
residuals; by looking at many kinds of graphics; and by looking at timing results. There
are many choices to be made. B2DE is not a black box, safe for use by amateurs, but a
box to be run by an expert. For a limited class of problems, an expert can construct a
new top-level driver suitable for use by amateurs.

F. What kind of computer is suitable? The majority of the computer time is spent
in constructing Jacobian matrices for solving the nonlinear finite-element equations.
Much of this work is not floating-point calculations, but, broadly speaking, bookkeep-
ing. It is not easy to arrange much of the code to take advantage of the special
capabilities of vector or parallel machines.

The data structures needed to implement arbitrary meshes of triangles are fairly
wasteful of memory. For k PDE’s and m vertices, approximately m(13+6k +19k2)
words are necessary. Typical total-memory requirements for an accurate solution of
three coupled equations ranges from 300 000 to 1 800 000 floating-point words.
Keeping many levels of triangulation and using multilevel iteration requires less
memory than using only the finest level and using direct solution of the linear
equations. (More data space is used, but less space is needed for factoring the level 1
matrix.) Data references are sufficiently local that the program runs well under a
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properly configured virtual-memory operating system.
Interactive operation of the GPB, including the graphics, is needed to take full

advantage of the box’s capabilities.
In summary, B2DE will run well on a computer with a modem operating system,

either with large memory or with efficient virtual memory. It will not run well on
old-fashioned operating systems, even those supposedly designed for scientific use.

III. Physical formulation of SCD problems. The physical formulation of the device
simulations discussed here requires solution of the basic semiconductor-device equa-
tions using the appropriate cartier distribution functions, Boltzmann or Fermi-
Dirac, with appropriate boundary conditions. In addition, the interior structure of each
device requires the specification of a two-dimensional doping profile.

The model includes a two-dimensional calculation of the electrostatic potential in
the semiconductor and in the oxide (if one is present) and a two-dimensional calcula-
tion of the hole and electron quasi-Fermi levels in the semiconductor. With an oxide
present, these equations are more general than B2DE can solve directly, since B2DE
assumes that all PDE’s are defined on the same region. We use a fast Poisson solver [18]
in planar oxides.

A. The semiconductor equations. The model is based on the standard semiconduc-
tor equations

(4)

()
(6)

q---(p-n+N),v-(v)
o

V’(Iz,,nV,)= R,

v-(pv) i.

The symbols have their usual meanings, as defined in the nomenclature list, and are
derived from the basic equations given in standard texts such as [19]. For Boltzmann
statistics, the electron density n and the hole density p are

(7) n n,exp ( q( q,, )/kT ),
(8) p niexp(q(q)p q,,)/kT).
For Fermi-Dirac statistics, n and p are

(9) n N’/ q( q, ,, Eg,/2)/kT- 7 In

( 1(o N/ q(,,-, e/)/r+ 7
where

1 fo
o eJde(11) j(l) r(j + 1) 1 +exp (e-

In (5) and (6), R stands for a general recombination-generation term; in the examples
in this paper, we use Shockley-Read-Hall recombination

(12) R= ( Pn n2
%o( n + nl)+ "rpO(P + Pl)
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Auger recombination could also be used; avalanche generation could also be included.
Both are easy to insert into B2DE.

Doping and mobilities are specified by the user as subroutines.
The validity of (4) is limited by the validity of characterizing the polarizability by a

simple dielectric constant. This is not a significant limitation in most applications.
Using a tensor instead of a constant would require a fairly simple change in B2DE.

The restriction imposed by the formulation of (5) and (6) is more basic. Each of
these equations depends on the existence of an isotropic mobility and on the correct-
ness of a distribution function relating cartier densities to electrostatic and quasi-Fermi
potentials. In most applications, a mobility can be defined which meets the above
requirements [20]. Anisotropic mobilities could be used with the altered form of B2DE
mentioned in the previous paragraph.

Tensor polarizability and anisotropic mobilities are necessary for superlattice
devices.

In each of the triangular elements the cartier densities used in (5) and (6) are
approximated by one of the distribution functions. The factor multiplying the gradient
is an exponential function of the solution variables. In the finite-element solution in
B2DE, integrals over triangles are approximated by a 4-point quadrature rule, using the
triangle vertices and the midpoint. The finite-element solution maintains the continuity
of the currents only approximately, since the integrals are not done exactly. In
high-current regions of the device, the mesh needs to be refined to improve current
continuity. The accuracy of the current will be discussed in a later section.

The recombination term given in (11) is the usual Shockley-Read-Hall term. For
the MOS transistors considered here, where recombination takes place in the lightly
doped substrate, this term is usually sufficient. The accuracy of this model is dependent
on the models used for %0 and ’p0 as functions of position and doping.

The validity of the distribution functions is more suspect. Boltzmann statistics are
only an approximation to Fermi-Dirac statistics. When the latter are used, the
distribution functions for holes and electrons given in (9) and (10) assumes parabolic
densities of states in the valence and conduction bands. This may not always be
sufficient.

When a solution has been found, the difference between Boltzmann and Fermi-
Dirac statistics is significant only when the carrier densities become large, approaching
the densities of states. Including Fermi-Dirac statistics improves the stability of the
solution process by bounding the exponential terms found in Boltzmann statistics.

This simplified model neglects cartier interactions and other effects which would
effect cartier statistics in a strongly inverted device. In addition all heavy-doping effects
which would affect the density of states in the band have been excluded.

B2DE is adequate to handle most of this more complicated physics. It is harder to
decide what physics to use than to fit it into the model.

B. Boundary conditions. Most previous models of semiconductor devices have
used idealized metallic contacts and idealized oxide-semiconductor interfaces. In the
models developed here more realistic boundary conditions are used, including both
ideal ohmic contacts and contacts with Schottky barriers. For Boltzmann statistics,
contacts with an applied potential V are characterized by

(13) g, V+ln(N/n,)+ms,

(14) q. V + (1)MS

(15) Cp-- V+ Cl)Ms.
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ts is zero for a perfect ohmic material. These functions cause the right-hand side of
(4) to be zero at the metal-semiconductor interface.

In the case of Fermi statistics on n-type material

1
(16) q, V+ Oll)2 ( N/Nc ) + Eg/2 + - In

(7) q,. v + q,us,
(18) rkp V + rkMS
On p-type material (16) becomes

(19) V+ ,W-{x) ( N/N,)- Eg/2 + In o
These functions also cause the right-hand side of (4) to be zero at the metal-semicon-
ductor interface.

Any of these sets of boundary conditions is also equivalent to the case of an
infinite surface recombination velocity in that the value of the excess carrier density
goes to zero. The model of the Schottky contact shown in (13)-(19) is a simple
metal-semiconductor work function difference, Ms- Inclusion of a boundary of this
type requires, or will cause, additional mesh refinement in the region of the Schottky
contact.

The oxide boundary conditions used are

(20)
0qsi rx 0qx Oss
On Xsi On e0Xsi

(21) On O,

(22)
Op
On O.

The interface charge is given by

(23) Oss Qitc + Qox
where

(24) Qitc(S)---- fEc Q(Ed)dEd f,eeo 1 + gdexp((dps- Ed)/kT ) eo 1

Q(Ea)dEa
+ g21exp((Ea-rks)/kT)

The evaluation of (24) requires a knowledge of the energy distribution of traps at
the interface. This data must be obtained experimentally. The integration of (24) uses
the value of the surface potential s, which is the value of q evaluated at the interface
of the semiconductor.

In the present model the value of the field in the oxide is calculated outside the
Newton-iteration loop in B2DE. The calculation for planar oxides is done using a fast
Poisson solver [18]. The change in potential perpendicular to the surface is large
compared to the change parallel to the surface is MOS transistors; the oxide is "thin."
This makes it necessary to have a relatively dense mesh in the oxide parallel to the
interface, but allows a relatively coarse mesh perpendicular to the interface. In many
applications it is possible to approximate the field in a "thin" oxide by dividing the
potential difference across the oxide by the oxide thickness. This approximation is
useful because the interface portion of the Jacobian matrix can be obtained exactly.



TWO-DIMENSIONAL ANALYSIS USING PDE SOFTWARE 471

The case of a boundary which is controlled by surface recombination is given by

(26) 0 0q, s,(no)0n 0n ] 1---n
where p and n are given by either (7) and (8) or by (9) and (10), and where P0 and n 0

are given by these equations with + 0, the equilibrium value, and , =p 0. The
equilibrium value of +0 is given by (13), (16), or (19), as appropriate. In the unbiased
equilibrium case, since p =@, 0, (25) and (26) reduce to a bounda condition on the
potential alone

(27) O s, sp
0n (1-exp (q(+- +)/kT)) (1-exp (q(+ +o)kT))p

for Boltzmann statistics. (The corresponding boundary condition for Fer-Dirac
statistics is left as an exercise for the reader.) Ts condition can be satisfied for
arbitrarily large values of surface recombination velocity only if + +0 and 0/0n 0.
As discussed previously, a surface with large surface recombination is in some sense
equivalent to an ohc metal contact. The bounda condition given in (25) and (26)
with xed nonlinear right-hand sides is not usually available in conventional PDE
software. B2DE will need be generalized to provide ts capability.

Two types of symmet lines are used in the simulations presented here. These
lines of symmet represent boundaries at wch 0+/0n 0,/0n Op/On 0. No
currents flow into or across these boundaries and the electric field has no component
peendicular to these boundaries. Actual fines of syet are required to model
devices wch have syetfic doping and symmetric biases. Typical examples of
these structures are DMOS power transistors, bipolar transistors with symmetric
base-etter structure, and parasitics in NMOS and CMOS structures. These truly
symmetric stctures cause few calculational problems.

False symmet lines are often introduced to bound the device being simulated.
These false symmet lines have bounda conditions identical to real syetry fines,
but are used as boundaries only to lit the computational region of a large device,
saving mesh points and reducing calculation cost. The intersection of p-n junctions
with these boundaries can cause accuracy and convergence problems. If the false lines
of symmet are too close to the active re,on of the device, accuracy problems are
caused; field distortion propagates into the electrically active region of the device. This
also redus convergence rates. The mesh must be refined in such regions.

C. Doping profiles. The doping profiles used in these calculations enter into the
equations only throu N(x, y), and possibly some parameters in R, such as ,0 and

p0- The functions used are not attached to the mesh in any way. Ts allows the doping
to be altered during the calculation.

The most commonly used two-dimensional doping profiles result from the redistri-
bution of impurities by diffusion [11], [21], [7]. The simplest form of two-dimensional
profile is the profile [11] combing a Gaussian profile peendicular to the surface with
an error function complement under the mask edge. Ts profile is a reasonable
representation of the redistribution in ion-implanted impurities at low dose and gh
anneafing temperatures. More abrupt two-dimensional profiles result at dose and
at lower annealing temperatures. These profiles have been studied in two dimensions
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[21] using the concentration-dependent diffusion model of Fair [8]. Profiles of this type
can be modeled by generating two-dimensional profiles of the constant-coefficient type
with concentration-dependent diffusion lengths.

Low annealing temperatures generate impurity profiles which are not characteristic
of diffusion processes. Either these profiles show little or no impurity redistribution
[14], or they are the result of impurity redistribution processes in which the ion
implantation damage has a significant effect [1]. Profiles of this type are well approxi-
mated by a Gaussian under the mask window and a Gaussian rotated about the
median-range point under the mask. A Gaussian profile approximation results in an
error of the type shown in Fig. 1 near the surface, but is generally an efficient method
of approximating these profiles.
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FIG. 1. Comparison of modeled and measured dopingprofiles.

IV. Interactive solution strategies. Each type of problem solved requires that a
specific solution strategy be developed; finding an appropriate strategy is usually done
with the interactive driver. Once the specific strategy has been determined, subsequent
solutions can be obtained using batch calculations and later viewed interactively.

This procedure has allowed us to solve, to any desired level of accuracy, all of the
problems we have attempted. We have solved them by starting from a rather simple
initial guess with no need for "sneaking up" on the solution through gradually
changing device parameters or biases.

The examples presented here include a short-channel MOSFET operated near
punchthrough, a DMOS power transistor in the high current (oN) state, and an
unbiased submicrometer p-n junction which is intersected by a beveled surface with
high surface-recombination velocity. The most important input parameters of each of
these devices are given in Tables I, II, and III, respectively. For all examples we have
used Shockley-Read-Hall recombination, constant cartier mobilities, Fermi-Dirac
statistics, Qss 0, and qts 0.
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TABLE
Simulation parameters MOSFET

2.222/m
1.25/m

0.0
1.0V,1.0V,-0.100V

0.0515pm
1.0 1015to4.0 .1015cra-S

1.0X 102cm
0.485#m
0.[J87pm

TABLE II
Simulation parameters DMOS transistor

28.0#m
0.40pro

0.0
5.0V,f.OV,O.OOV

0.0515#m
1.OX lOtTtoS.0 X 104cm-3

1.0 102cm
5.0X 1014cm

1.D#m
2.0pm
3.2pro
4.0#m

TABLE III
Simulation parameters --p-njunction

sp//, 1.OX 10 V/era
/V’,.I, 1.0 X 102cm
Nb.tk 1.0 X 1015cm
Djun 0.248pm
Bevel Angle 2.86

The mesh used in these calculations is generated in two steps. First a primitive
mesh of the type shown in Fig. 2 is generated. The initial mesh is generated by
specifying boundary segments which represent the geometry of the device. The mini-
mum number of boundary segments is determined by the shape of the region of interest
and by the boundary conditions. At each transition between boundary condition (2)
and (3), a vertex is required.

After the primitive mesh has been generated, user-specified prerefinements are
used to place mesh points where the user thinks they are needed based on physical
understanding of the device. In the case shown in Figs. 2 and 3, the prerefinements
were used to increase the mesh density in the inversion layer. Additional mesh points
were also placed at the gate edge in the source and drain, where there is a mathematical
singularity in the potential.

We have found that when p-n junctions intersect Dirichlet edges, additional
prerefinement is required. This is shown in the DMOS power transistor whose sche-
matic is shown in Fig. 4(a). The shaded region is modeled; the level 1 triangulation is in
Fig. 4(b). A view of the DMOS transistor potential solution is shown in Fig. 4(c). This
device is almost as complex as a single gate, and suggests that gate-level modeling will
be possible with B2DE.
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Using a mesh of the type shown in Fig. 3, an initial attempt at the problem
solution is attempted. The success of this attempt is partially determined by the
adequacy of the mesh. If the initial level 1 mesh is not adequate, the nonlinear
iterations may not converge, or may even diverge; additional refinement of the mesh
then is required at level 1. If a small area of the device is causing most of the solution
error, the mesh refinement will occur in a small percentage of the triangles, or even in a
single triangle.

In such cases, compression back to level 1 is essential; the initial level 1 mesh is
replaced by the new mesh. Such compressions are usually caused by effects near the
edge of boundary regions or by the intersection of p-n junctions with surfaces. This
type of mesh inefficiency slows convergence; the iterations only suffice to generate a
mesh which is adequate. The residuals on the new mesh are still large, and discretiza-
tion error is still large.

Si02 VG ’ /OXIDE VO
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FzG. 2. (a) Schematic ofMOS transistor. (b) Primitive mesh for MOS transistor.

FzG. 3. Level I mesh for MOS transistor.
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The user may not be able to predict where the mesh should be refined. As an
example, an initial mesh for a beveled p,n junction is shown in Fig. 5. The beveled
surface is assumed to have an infinite surface-recombination velocity. One might expect
that the mesh needs to be refined near the arrow, the intersection of the junction with
the surface. A refined mesh is shown in Fig. 6; the surface recombination distorts the
electric field and the charge densities, and refinement is not needed near the arrow.

The difficulty of obtaining the level 1 solution is strongly dependent on the
accuracy of the initial guess. The most primitive initial guess is to make the solution
variables satisfy (13), (14), and (15), with Ms--0 at each point in the device. This is
the local space-charge neutral condition. When Fermi statistics are used (16), (17), and
(18) are used instead. Initial guesses of this type were used for the DMOS transistor
and for the p-n junction. This type of initial guess is a type of worst-case guess; it is
rarely very good, but can be used when nothing better is known. We have always been
able to make B2DE converge with this guess.

The MOS2 driver, for MOS transistors, uses a more elaborate initial guess for the
potential. In heavily doped material, local space-charge neutrality is assumed; this
applies in the source and drain. The two-dimensional fields around each junction are
rotated one-dimensional abrupt p-n junctions. An idealized one-dimensional inversion
layer is assumed in the channel. In any region below the channel where junction and
inversion-layer fields are both present, the larger of the two possible potentials is used.
An initial guess of this type is shown in Fig. 7(a), and the final solution is shown in Fig.
7(b).

After an accurate solution of the nonlinear finite-element equations for a particular
level, which is characterized by small L_ and Loo norms of the residuals, and the L2
norm of the Newton step less than kT/q (1 in normalized units), the discretization error
in the solution can be reduced to any desired level of accuracy by refining the mesh
adaptively, reducing the discretization error. For computational efficiency, several
meshes are retained and the linear equations solved using multilevel iteration [2], [3].

The strategy for obtaining the level I solution is usually significantly different from
the strategy used at higher levels, because the initial guess usually has low accuracy. In
devices where one of the carriers is only perturbing the potential, it is fastest to start the
iteration process by solving the potential alone, then solving the potential and the
dominant cartier, and finally solving all three carriers together. This procedure should

OXIDE\ /SILICON GATE

SOURCE "ETALx\----’,..,.. 1./--/SOURCE

BODY1; ...... ":’’\ A CHANNEL REGION 7:;" ’:’r’ /
_,.. .. :..,.,-.:..,.. -,-

;////////]

HIGH RESISTIVgY DRAIN REGION n-

DRN TT RION In+l
AREA OF
ANALYNS



476 J. L. BLUE AND C. L. WILSON

/VVVVVAA/V V V V V V V V V V V V V V V V V Vl

FIG. 4. (b) Level 1 mesh for DMOS transistor
and position of p-n junction.
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FIc;. 4. (c) Final potential solution for DMOS transistor.
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(a)
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FIG. 5. (a) Schematic of beveled p-n junction. (b) Level 1 mesh for beveled p-n junction. The junction is
horizontal and intersects the surface at the arrow.

FIG. 6. Level 2 mesh for beveled p-njunction.
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Flt. 7. (a) lnitial guess for MOS transistorproblem. (b) Finalpotentialfor MOS transistorproblem.
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be avoided when a good initial guess is available, since it adds to the total number of
level 1 iterations. A typical level 1 potential solution is shown in Fig. 8.

Expanding the mesh from level 1 to level 2 may cause some difficulties. The initial
mesh expansion may introduce too few new mesh points. When this occurs, it is
necessary to compress level 2 into level 1 and treat the resulting mesh as level 1.
Sometimes it is preferable to solve on the level 2 mesh, then to refine to level 3, and
then compress level 3 into level 2 until the number of vertices on level 2 is at least twice
the number on level 1.

The first Newton step taken on level 2 is critical. Since the solution is an
exponential function of the change in potential and quasi-Fermi levels, the L2 norm of
the residual after taking this first step can be very large. Small reductions in the size of
the Newton step bring exponential reductions in the L2 norms. At level 2 and higher
levels, the error in the potential usually dominates the iteration. This seems to be
caused by the more rapid variation of the right-hand side of this equation with solution
variables. A typical level 2 solution is shown in Fig. 9.

Mesh refinements beyond level 2 are usually routine. All equations may be used
and the pattern of refinement is such that compressions and solution-norm problems
are unusual. Convergence is rapid, usually five iterations or less. The quasi-Fermi levels
converge more rapidly than the potential. A typical level 3 solution is shown in Fig. 10.

FIG. 8. Level 1 solution for MOS transistor problem. The heavy lines are contours of q at 5kT/q intervals.
The upper light lines are contours of ln n /n ), rangingfrom 5kT/q upward, in steps of lkT/q. The lower light
lines are contours of In p/n i), ranging from 5kT/q upward, in steps of lkT/q.
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FIG. 9. (a) Level 2 solution for MOS transistor problem. Contour lines are as in Fig. 8. (b) Level 2 mesh for
MOS transistor problem.
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(a)

(b)

FIG. 10. (a) Level 3 solution for MOS transistorproblem. Contour lines are as in Fig. 8. (b) Level 2 mesh for
MOS transistor problem.
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V. Accuracy requirements for calculation of currents and fields. In the previous
section we discussed methods for obtaining accurate values of the potential and
quasi-Fermi levels. Quasi-Fermi levels are not measurable quantities, and potentials can
only be measured at the surface of the device.

The physically measurable quantities in semiconductor devices are related to the
two- and three-dimensional vector fields in the device. The quantities of interest are
currents and electric fields. These quantities involve gradients of the solution variables.
If solutions are to represent physical quantities accurately, they must provide accurate
values of the gradients. This is unfortunate, since B2DE can find the PDE variables to
second-order accuracy, but the gradients only to first-order accuracy.

Calculation of currents has been widely used to evaluate the accuracy of device
models. Currents calculated at poorly chosen points in the device may not so much
reflect the solution as the location and method of calculation. The interpretation of
current measurements depends in part on the accuracy of the physical parameters used
in the device simulation compared. Uncertainties in these input parameters can make
these comparisons difficult. As long as the model is applied to a narrow range of
parameter values, empirically determined input parameters should be adequate. Dis-
agreements arise when the model is applied outside the range where the empirical
parameters have been verified.

Terminal currents are line integrals of the gradients of quasi-Fermi levels. Since
this integration contains exponential functions of the potential and carrier densities, the
choice of integration method and the location of the line are critical.

We have found that it is easy to be fooled into thinking that a solution on a mesh
is sufficiently good to give an accurate current value. A smooth solution on a mesh
which is apparently fine enough may not be adequate. To be sure of the solution, a
solution on a more-refined mesh must be obtained; for safety, the mesh should be
refined everywhere, since the adaptive mesh refinement is only approximate.

The hole and electron currents must be integrated by a combination of numerical
and analytical methods in order to calculate them accurately, since they depend
exponentially on the solution variables. We use a geometric mesh to perform this
integration in the inversion region of a MOS transistor. The integrand is evaluated at
half the total device depth, a quarter of the depth, and so on, so that the bulk of the
quadrature points are near the inverted surface. Between any two mesh points the
gradient of the quasi-Fermi level is assumed to be constant and the carder density is
assumed to vary exponentially. Using this procedure, the current can be calculated so
that the principal source of error is the error in the gradient of the quasi-Fermi levels.

Electric fields provide another critical measure of model accuracy. Many physically
important processes in devices depend on the value of the electric field in a small region
of the device. Avalanche, cartier generation by band-to-band tunneling, and
punchthrough all are effects which are localized in small high-field regions of the device.
Avalanche and tunneling are localized because of their exponential dependence on
field, and punchthrough is localized by two-dimensional electrostatics. The magnitude
of the field in the inversion region is also important for models of field-dependent
mobility [5], [15]. The other area where electric fields are important is at the oxide-sili-
con interface. Radiation effects in the oxide are determined by the size and polarity of
the oxide field [23]. The oxide field is coupled to the field in the inversion layer by (20).
The combination of these field effects is critical in scanning electron-microscope
measurements of the oxide field [10].

The electric field is also the critical boundary condition in the operation of
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field-effect devices, since it determines the current in the channel. The electric field
boundary condition couples to the bulk of the semiconductor after being screened by
the total channel charge. This coupling through the channel charge is critical in the
formation of the channel inversion layer in both one and two dimensions [4], [22]. If the
interface condition (20) is inaccurately satisfied, the calculated channel current will be
wrong.

The accuracy of the potential solution in the oxide is also critical in solving (20). In
devices with a thin oxide, it is more efficient to approximate the field as the local
potential difference divided by ox. In devices with a thick oxide, it is important to solve
Laplace’s equation in the oxide accurately, so that the discretization error in the
calculation is below the level that would change the charge in the channel.

In the level 1 solution process, errors in the initial guess at Dirichlet edges can be
important. These errors often result from the intersection of p-n junctions with false
symmetry lines, lines which are used to reduce the size of the mesh at the edges of the
active device. More refined meshes in these regions must be used at level 1 to reduce
these errors. At mathematical singularities, such as the edge of the gate or metal on a
device surface, errors from these singularities can significantly effect the calculation of
the electric field. Again the problem can be reduced by proper level 1 mesh refinement.

In the solution of SCD’s, regional accuracy is necessary for calculation of vector
fields. In regions where electrons dominate, accuracy in the electron solution is needed;
in regions where holes dominate, accuracy in the hole solution is needed.

We have also learned that visual estimates and nice plots are not reasonable
criteria for solution accuracy. The visual estimates of solution accuracy lead one to
attempt uniform accuracy everywhere. Because of the exponential behavior, accuracy in
n is important mainly where k n is positive, and similarly for p. Uniform accuracy
is not usually desired.

This is particularly true in regions which have two strongly coupled variables
interacting. In these regions, color graphics and careful choice of the plotting range of
the solution variables is essential for visual analysis of solution errors. Two other
constraints are always present in using interactive adaptive mesh-generation methods.
All of the triangles in any high-level mesh will be similar to the triangles in the
primitive mesh, affecting the shape of the other triangles used and the possible location
of the allowed vertices. Even at level 1, the vertices must sample the basic equations
sufficiently densely to show the effects of boundary conditions and internal parameters,
such as doping.

VI. Summary. We have developed a capability for analyzing semiconductor de-
vices in two dimensions, using a general-purpose PDE box, B2DE. We have been able
to solve a wide variety of semiconductor devices, even starting from a poor initial guess.
We have shown that these methods work for ideal and nonideal contacts and oxide
interfaces, and for either Boltzmann or Fermi-Dirac statistics. Our analysis of a
DMOS power transistor suggests that we will be able to analyze devices as complex as a
single gate.
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RELAXATION-BASED ELECTRICAL SIMULATION*
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Abstract. Circuit simulation programs have proven to be most important computer-aided design tools
for the analysis of the electrical performance of integrated circuits. One of the most common analyses
performed by circuit simulators and the most expensive in terms of computer time is nonlinear time-domain
transient analysis. Conventional circuit simulators were designed initially for the cost-effective analysis of
circuits containing a few hundred transistors or less. Because of the need to verify the performance of larger
circuits, many users have successfully simulated circuits containing thousands of transistors despite the cost.

Recently, a new class of algorithms has been applied to the electrical IC simulation problem. New
simulators using these methods provide accurate waveform information with up to two orders of magnitude
speed improvement for large circuits. These programs use relaxation methods for the solution of the set of
ordinary differential equations, which describe the circuit under analysis, rather than the direct sparse-matrix
methods on which standard circuit simulators are based.

In this paper, the techniques used in relaxation-based electrical simulation are presented in a rigorous
and unified framework, and the numerical properties of the various methods are explored. Both the
advantages and the limitations of these techniques for the analysis of large IC’s are described.

I. Introduction. Circuit simulation programs, such as SPICE2 [1] and ASTAP [2],
have proven to be most important computer-aided design tools for the analysis of the
electrical performance of integrated circuits (IC’s). These programs can perform a
variety of analyses, including dc, ac, and time-domain transient analysis of circuits
containing a wide range of nonlinear active circuit devices such as MOSFET’s and
bipolar junction transistors [3].

One of the most common analyses performed by circuit simulators and the most
expensive in terms of computer time is nonlinear time-domain transient analysis. By
performing this analysis, precise electrical waveform information can be obtained if the
device models and parasitics of the circuit are characterized accurately. However,
conventional circuit simulators were designed initially for the cost-effective analysis of
circuits containing a few hundred transistors or less. Because of the need to verify the
performance of larger circuits, many users have successfully simulated circuits contain-
ing thousands of transistors despite the cost. For example, a 700 MOSFET circuit,
analyzed for 4/s of simulated time with an average 2-ns time step, takes approximately
4 CPU hours on a VAXll/780 VMS computer with floating-point accelerator hard-
ware.

Gate-level logic simulators (e.g., [4], [5]) and switch-level simulators [6]-[8] can
verify circuit function and provide first-order timing information more than three
orders of magnitude faster than a detailed circuit simulator. However, to verify circuit
performance for critical paths, memory design, and analog circuit blocks, it is often
essential to perform accurate electrical simulation. In some companies the simulation of
circuits containing many thousands of devices is performed routinely and at great
expense. In recent years, considerable effort has been focussed on techniques for
improving the speed of time-domain electrical analysis while maintaining acceptable
waveform accuracy.
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A number of approaches have been used to improve the performance of conven-
tional circuit simulators for the analysis of large circuits. The time required to evaluate
complex device model equations has been reduced using table-lookup models [9]-[13].
Techniques based on special-purpose microcode have been investigated for reducing
the time required to solve sparse linear systems arising from the linearization of the
circuit equations [14]. Node-tearing techniques have also been used to exploit circuit
regularity by bypassing the solution of subcircuits whose state is not changing [15], [16]
and to exploit the vector-processing capabilities of high-performance computers such as
the CRAY-1 [17]. In all cases, the overall speed improvement of the simulation has
been at most an order of magnitude, for practical circuits.

Recently, a new class of algorithms has been applied to the electrical IC simulation
problem. New simulators using these methods provide as accurate, or more accurate,
waveforms than standard circuit simulators such as SPICE2 or ASTAP with up to two
orders of magnitude speed improvement for large circuits. These simulators have been
used for the analysis of both digital and analog MOS IC’s. They use relaxation methods
for the solution of the set of ordinary differential equations, (ODE’s) which describe the
circuit under analysis, rather than the direct sparse-matrix methods on which standard
circuit simulators are based.

A broad survey of decomposition techniques for the simulation of large-scale
integrated circuits can be found in [18]. In this paper, the techniques used in
relaxation-based electrical simulation are presented in a rigorous and unified frame-
work and the numerical properties of the various methods are explored. Both the
advantages and the limitations of these techniques for the analysis of large IC’s are
described. In Section II, some of the fundamental problems associated with conven-
tional circuit simulation algorithms as circuit size increases are exposed and the
mathematical basis for the relaxation approach is introduced. In Section III, the special
relaxation methods called timing simulation algorithms are described and their numeri-
cal properties are investigated. In Section IV, iterated timing analysis, which applies
relaxation techniques at the nonlinear equation level [19], is described briefly and its
convergence properties are proven. The waveform relaxation method [20], [21], which
applies relaxation techniques at the differential equation level, is presented in Section
V, and various techniques which can be used to improve its performance for electrical
simulation are described. Concluding remarks and areas requiting further research are
presented in Section VI.

II. Circuit equation formulation and standard relaxation techniques.
A. Equation formulation. Before the techniques used in relaxation-based simula-

tion are presented, the particular electrical simulation problem to be solved must be
defined. Although relaxation-based methods can be used with a variety of technologies
(e.g., [23]), they are particularly suited to the analysis of large MOS digital IC’s, as will
become clear later. Thus to help clarify the presentation, the following simplifying
assumptions are made:. All resistive elements, including active devices, are characterized by constitutive

equations where voltages are the controlling variables and currents are the
controlled variables.
All energy storage elements are two-terminal, possibly nonlinear, voltage-con-
trolled capacitors.
All independent voltage sources have one terminal connected to a ground or can
be transformed into independent current sources with the use of the Norton
transformation.
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Under these assumptions, the circuit equations can be formulated in terms of a
nodal analysis that yields N equations in N unknown node voltages [24], where there
are N + 1 nodes in the circuit and node N + 1 is the reference node, or ground.

An important assumption required by relaxation-based electrical simulators is that
a two-terminal capacitor be connected from each node of the circuit to the reference
node. This assumption is satisfied by circuits where lumped parasitic capacitances are
present between circuit interconnect and ground or on the terminals of active circuit
elements.

Under these assumptions, the nodal equations can be written in the form

(1) C(v(t), u(t))b(t) f(v(t), u(t)), 0 < < T,

v
where o(t) " is the vector of node voltages at time t; b(t) " is the vector of time
derivatives of o(t); u(t) " is the input vector at time t, C(-): " "" represents
the nodal capacitance matrix, f: " " ", and

f(v(t), u(t)) fl(v(t), u(t)), fz(v(t), u(t))," ",fN(v(t), u(t))] r

where f(v(t), u(t)) is the sum of the currents charging the capacitors connected to
node i. In the following sections (1) will be referred to in a simplified form where the
time dependencies are expressed implicitly, i.e.,

(2) C(v,u)b= -f(v,u).
B. Standard circuit simulation. A simplified flow diagram for the solution of these

equations by a conventional circuit simulator is shown in Fig. 1. Once the circuit
description has been read by the program and the data structures required for
simulation have been assembled, the main analysis loop (Steps (2)-(13)) is entered.

At each new analysis time point, t+ 1, the information from previous time points is
used to predict the solution at t+l. Stiffly stable integration formulas, such as
Backward Euler (BE), the Trapezoidal Rule (TR), or Gear’s Variable-Order Method

read circuit description
and initialize data structures

update values of independent
2 tn+

predict values of unknown
variables

apply integration formulae
linear capacitors inductors

apply integration formulae
nonlinear capacitors and inductors

/apply Newton-Raphson method
nonlinear circuit elements

7
assemble and LU factorize

equations

solve linear circuit equations

has Newton-Raphson converged?
yes

Local Truncation Error
10 accuracy of solution

$
11 solution it is acceptable

12 select time.tep and

13 is tn,,> tstop?
$

14 print output and stop

FIG. 1. Circuit simulatorflow diagram for transient analysis.
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(GE), with variable time steps, are used to discretize (1) at Steps (4) and (5) [3]. This
process yields a set of nonlinear, algebraic difference equations of the form

(3) g(x) =0
where x Rv is the vector of node voltages at time n+ 1-

These equations are solved using a damped Newton-Raphson algorithm to yield a
set of sparse linear equations of the form

(4) Ax=b

where A Rvv is a matrix related to the Jacobian of g and b R v [3]. Typically, less
than 2 percent of the entries of A are nonzero for N > 500. These equations are then
solved using direct methods, such as sparse LU decomposition or Gaussian Elimina-
tion, Steps (7) and (8).

Steps (5)-(9) are repeated until the Newton-Raphson process converges or the
upper bound on the number of iterations is reached. The program then decides whether
to accept the solution, based on its estimate of local truncation error (LTE) and the
number of Newton-Raphson iterations required in Steps (5)-(9). A new time step is
computed, and Steps (2)-(13) are repeated until the simulation is complete [3].

This procedure has proven to be reliable and accurate. For large circuits, the
process can take a considerable amount of computer time, as illustrated in Section I.
The majority of the time spent in Steps (2)-(13) can be lumped into two categories: the
time required to solve the system of sparse linear equations, SOLVE (Steps (7) and (8)),
and the time required to form the entries of A and b in (4), FORM (Steps (5) and (6)).

Fig. 2 shows the amount of CPU time required to perform a transient analysis of a
set of typical circuits of increasing size. For this example, the number of circuit nodes N
is used as a measure of circuit size. The time required for equation preprocessing is not
included here; only time involved in the actual time-domain transient portion of the
simulation is shown. A simple RC circuit was chosen for this example to emphasize the
increasing cost of matrix solution time. The example was constructed by calling an

CPU
TIME
(s)

lO

10

TOTAL TIME E

/ //:.:>
/,;,"

,/i."

10 10 lO

NUMBER OF CIRCUIT EQUATIONS

I0

FIG. 2. Transient analysis time for circuits of increasing size.
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increasing number of cells, in an hierarchical manner, each with the same matrix
structure and an average number of fanouts between 2.5 and 3. This approach
preserved the observed properties of most real circuits while providing a uniform
technique for increasing circuit size.

As can be seen in Fig. 2 for small circuits (N < 20), the majority of the solution
time is spent performing FORM. However, when the size of the circuit grows, an
increasing percentage of the time is spent in the SOLVE phase. While the actual
percentages may vary depending on the circuit under analysis, the complexity of the
nonlinear device models used by the program, and the computer on which the
simulator is running, this trend is true for all standard circuit simulators running on
conventional computers. For MOS circuits analyzed on a VAXll-780 UNIX computer,
the crossover point is at around 500 nodes. The time spent in the equation solution
phase has been measured to grow as O(Na), where 1.1 </3 < 1.5. In particular, for large
circuits/3 has been found to depend on the difference between the time required to
perform arithmetic operations and the memory bandwidth of the computer. On the
other hand, the time required for FOR grows linearly with the number of circuit
elements and, therefore, with the number of circuit equations for typical circuits. The
time spent in the load phase can be reduced by simplifying the device model equations,
using table look-up models [9]-[13], or providing special-purpose instructions to update
A and b [14].

For most circuits the fraction of nodes which are changing their voltage value at a
given point in time decreases as the circuit size increases. For circuits containing over
500 MOSFET’s, fewer than 20 percent of the node voltages change significantly over a
simulation time step. Only the circuit equations representing these active nodes must be
solved at any time. Circuit simulators exploit this time sparsity or latency by using
device-level [1] or block-level [16], [25], [17] bypass schemes. In a device-level bypass
scheme, if the terminal voltages and branch currents of a circuit element did not change
significantly in the previous Newton-Raphson iteration, its contributions to A and b in
(4) are not reevaluated, and the values computed during the previous iteration are used.
In block-level bypass, both the matrix element evaluation and the node solution steps
are bypassed for each block of inactive connected circuit elements. While the aforemen-
tioned techniques do reduce the total execution time for conventional circuit simula-
tors, the savings are often not sufficient for the cost-effective electrical simulation of
LSI circuits.

C. Linear relaxation methods. Relaxation methods can be used for the solution of
(1) in a number of ways. In all cases, their principal advantages stem from the fact that
they do not require the direct solution of a large system of linear equations and from
the fact that they permit the simulator to exploit latency efficiently.

Relaxation methods can be applied at different stages in the solution of (1), as
illustrated in Fig. 3. The two most common methods used in electrical simulation are
the Gauss-Jacobi method and the Gauss-Seidel method [26], [27].

For the solution of the linear equations, relaxation methods can replace direct
methods for the solution of (4). Let A be split into L + D + U, where L R is strictly
lower triangular, D R is diagonal, and U is strictly upper triangular. Then the
two methods mentioned earlier have the following form when applied to the solution of
(4):

Gauss- Jacobi:

(5a) Dxk+l= -(L + U)xk + b
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or

(5b)

(6a)
or

(6b)

X

Gauss- Seidel:

k+l D-((L + U)xk- b) - Mjxk + D-b;

(L + D)xk+l-" -Uxk -k- b

xk+= -(L + D)-(Uxk b) - M6sXk’+(L + D)-lb

where x is the value of x at the k th iteration.

Relaxation-Based Circuit Standard Circuit
Simulation Simulation

,
Integration Formulae
(e.g. Backward Euler)

g,(x, ’,x, -’)=o [_ g,(x,,x,)=o

g,(x, ",x, )=o ’] g,(x,,x,)=o

Nonlinear Gauss-Seidel Neton-Raphson

a,x, ’+a=x =b atxt+ax=b

Linear Gauss-Seidel Gaussian Elimination

LU Decomposition

FIG. 3. Parallel between standard circuit simulation techniques and relaxation-based techniques.

Since relaxation methods are iterative methods, it is important to ask under what
conditions they are guaranteed to converge to the solution of (4).

Note that the iterations are not well defined if D is singular. That is, if there is a
zero on the main diagonal of A. It is well known that a necessary and sufficient
condition for the iterations defined by (5b) and (6b) to converge to the solution of (4),
independent of the initial guess x0, is that the eigenvalues of MGj and MGs be inside the
unit circle in the complex plane [26]. However, this condition is not practical from a
computational point of view and other conditions, in general sufficient conditions, are
used to check the convergence of these methods. In particular, it can be shown that if A
is strictly diagonally dominant, then both the Gauss-Jacobi and the Gauss-Seidel
iteration converge to the solution of (4). Other sufficient conditions can be found in
[261, [281.

Another important convergence property of iterative methods is rate of conver-
gence. It can be shown that if the Gauss-Jacobi and the Gauss-Seidel iteration
converge, they converge at least linearly. That is, after a sufficiently large number of
iterations, the error at each iteration decreases according to

ilxk+ 1_ 11 < ellx k 11
where is the solution of (4).
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The computational cost of both of these methods is O(N), compared with
O(NL1-1"5) for direct, sparse-matrix techniques. Thus relaxation methods are advanta-
geous from a computational point of view with respect to sparse-matrix techniques only
if the number of iterations needed to obtain convergence is of the order of Na. In
addition, sparse-matrix techniques are based on Gaussian elimination or LU decom-
position and, if exact arithmetic is used, they obtain the exact solution of (4) in one
step. Relaxation techniques, as mentioned previously, are not guaranteed to converge.
Reliability is the basic reason why sparse-matrix techniques have been used more
frequently than relaxation techniques in conventional circuit simulators. If the
Gauss-Seidel method is used, reordering of the equations has an effect on the number
of iterations needed to obtain a solution of (4). For example, if A is upper triangular, N
iterations are needed to obtain the exact solution of (4). However, if A is reordered into
lower triangular form, the solution of (4) is obtained in a single iteration. If the
Gauss-Jacobi iteration is used, reordering of the equations has no effect on the speed
of the algorithm.

The Gauss-Seidel method can be shown to converge faster than the Gauss-Jacobi
method on a class of problems [26]. For example, if A is lower triangular, Gauss-Seidel
converges to the exact solution of (4) in one iteration while Gauss-Jacobi converges in
N iterations. However, the fact that at each iteration each xk+, 1,--. ,N, does not
depend on any x+ 1, j 1,..-N; j 4: in the Gauss-Jacobi method means that the
computation of all xik+li--1,’’ ",N can proceed in parallel. This method is, therefore,
well suited to modern multiprocessor computers.

D. Nonlinear relaxation methods. Relaxation methods can also be used at the
nonlinear-equation solution level to augment the Newton-Raphson method, and hence
replace the linear-equation solution based on sparse-matrix techniques. Let x k denote
the value of x at the k th iteration. The Gauss-Jacobi and Gauss-Seidel algorithms
when applied to (3) have the following form:

Nonlinear Gauss-Jacobi algorithm:
(7)

repeat {
forail ( in N) (

solve gj(Xkl, ",X;+I, ",XkN)"-0 for
)

until (llx+1_ xkll < e)

that is, until convergence is obtained. The Iorall (i in J) construct specifies that the
computations for all values of in the set J may proceed concurrently, i.e., in parallel
and in any order.

Nonlinear Gauss-Seide! algorithm:
(8)

repeat (
foreach (j in N) (

solve gj(x k+1... X;+1... X kN) 0 for xj
k+"

)
}
until (l[x k+- xk[[ < e)

Note that examples can be found where Gauss-Jacobi converges faster than Gauss-Seidel.
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The toreach (i in J) construct specifies that the computations for each value of in the
ordered set J must proceed sequentially and in the order specified by the set. For this
method the actual order in which the node equations are solved may be determined
either statically or dynamically, as described later in Subsection III-B.

The nonlinear Gauss-Jacobi and Gauss-Seidel iterations are well defined only if
each equation described in (7) and (8) has a unique solution in some domain under
consideration. In the linear case, the iterations were well defined if D was nonsingular.
In the nonlinear case we have a similar condition. In addition, the conditions under
which these methods converge are also analogous to the ones given for the linear case.

Let g’(x) denote the Jacobian of g computed at x. Let g be continuously
differentiable in an open neighborhood SO of for which g(:)= 0. Let g’(:) be split as
L(5c)+ D(c)+U(c) where L(), D(:), and U() are, respectively, the strictly lower
triangular part, the diagonal part and the strictly upper triangular part of g’(). Let
Mj(:) and Ms(YC) be defined as follows:

(9) MGj(Yc ) D()-I(L(:)+ U()
and

(10) Mas(& ) (D(.)+ L(fc))-IU(fc).
Assume that D() is nonsingular and that all the eigenvalues of Mj() and Ms(SC)
are inside the unit circle. Then there exists an open ball S c SO such that the nonlinear
Gauss-Jacobi and the Gauss-Seidel iterations are well defined and for any x0 S, the
sequence generated by the iterations converges to .

This result assumes that (7) and (8) can be solved exactly. Since these equations
are nonlinear, there is no hope of computing the solutions exactly in finite time.
Therefore an iterative method must be used. In general, the Newton-Raphson method
is used to solve these equations. Note that for each relaxation iteration, N decoupled
equations, each in one unknown, must be solved. Thus the implementation of the
Newton-Raphson method is straightforward. These "composite" methods are called
the Gauss-Jacobi-Newton and Gauss-Seidel-Newton methods to specify that the
Newton iteration is performed inside the nonlinear Gauss-Jacobi and Gauss-Seidel
iterations, respectively [27].

It is important to determine when to stop the iteration of the "inner"
Newton-Raphson loop to achieve the same convergence as in the ideal case when the
solutions of (7) and (8) are computed exactly. It turns out rather surprisingly that one
iteration only of the Newton method on (7a) and (8a) is sufficient to preserve the
convergence properties of the nonlinear relaxation methods [27]. In particular, the rate of
convergence of the nonlinear Gauss-Seidel method is the same as the rate of conver-
gence of the Gauss-Seidel-Newton method.2

Note that the convergence result presented above is local in the sense that the
iterations are guaranteed to converge only if the initial guess is sufficiently close to a
solution. In this respect, the convergence properties of relaxation methods are similar to
the ones of the Newton-Raphson method. However, the eigenvalue condition of
relaxation methods is much stronger than the other conditions of Newton-Raphson
methods. Moreover, the rate of convergence of relaxation methods is only linear while
it is quadratic for Newton-Raphson methods. This explains why Newton-Raphson
methods are preferred in standard circuit simulation. However, each iteration of a

2Note that rate of convergence is an asymptotic measure of the speed of the algorithm, i.e., of the
number of iterations needed to achieve a given accuracy. Performing additional iterations of the inner
Newton-Raphson loop may make the outer relaxation loop converge in fewer iterations, in some cases.
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relaxation method involves a set of decoupled equations while Newton-Raphson
methods require the solution of a set of simultaneous equations. In addition, relaxation
methods are ideally suited to exploit the latency of the circuit under analysis as
described in the following sections.

A comparison can be made of the use of relaxation methods at the linear and
nonlinear equation level. If the relaxation methods are applied at the linear equation
level and the iteration of the inner relaxation loop is carried to convergence, then the
convergence of the Newton methods is not affected. However, if the inner loop is not
carried to convergence, but a fixed number of iterations is allowed, then the conver-
gence of the outer Newton loop is affected. In fact, if only one iteration of the inner
relaxation loop is taken, then the convergence of the "Newton-Gauss" methods is only
linear. If more iterations are taken, then the rate of convergence asymptotically
improves to be quadratic [27]. The use of relaxation at the linear equation level involves
the computation of the Jacobian of g, which is quite expensive as mentioned earlier.
Nonlinear relaxation methods coupled with an inner Newton-Raphson loop only need
the computation of the partial derivative of gi with respect to xi, resulting in a
considerable saving of computer time per iteration.

As in the linear case, the Gauss-Seidel method tends to converge faster than
Gauss-Jacobi. Reordering of the equations affects the speed of the Gauss-Seidel
method crucially. In this task, the dependency matrix of (3) plays an important role. The
dependency matrix is defined to be a zero-one matrix P [p;.] such that Pij 1 if gi
depends on xj, p. 0 otherwise. Note that P also represents the zero-nonzero structure
of the Jacobian of g.

If P is lower triangular, then only one iteration of the outer Gauss-Seidel
relaxation loop is needed, provided that the inner Newton-Raphson loop is run to
convergence. If P is not lower triangular, but the dependency of the gi component of g
on x., j < i, is "weak," then the Gauss-Seidel method converges rather quickly. Then a
key issue in applying relaxation techniques to the solution of circuit equations is the
reordering of the equations so that P is almost lower triangular. This task can be
performed both statically and dynamically, as described in the next section. Since MOS
devices are almost unidirectional from gate to drain and gate to source due to the
electrical decoupling between the gate and the source and drain of the device, and if all
capacitors used in the simulation have one node tied to a ground and the circuit does
not contain any MOS transmission gates and no feedback connections, then the
equations can be reordered statically to yield a lower triangular P. This property
provides an intuitive explanation as to why relaxation methods are successful for the
simulation of MOS digital circuits.

E. Conclusions. To conclude this preliminary section, note that in Fig. 3 there is a
"hole" in the relaxation counterpart of the flow diagram of standard circuit simulation
at the differential equation level. Until recently, relaxation techniques had been used
only at the linear and nonlinear equation levels. The waveform relaxation method,
presented in Section V, fills that gap.

III. Timing simulation.
A. Introduction. The first successful application of relaxation methods to electri-

cal-circuit analysis was in timing simulation [9]-[12]. In timing simulation, only one
relaxation iteration is performed per time step while one or more Newton-Raphson
iterations may be performed to solve each nodal equation. Since the relaxation loop is
not taken to convergence, a small time step must be used to bound local errors and the
saturating properties of digital MOS circuits are exploited to bound error propagation.



494 A. R. NEWTON AND A. L. SANGIOVANNI-VINCENTELLI

Timing simulators have proved successful when applied to constrained IC design
methods, such as standard cell [31] or gate array, but have not been as successful in the
custom-design environment. Since there is no way to guarantee accuracy for an
arbitrary connection of MOSFET’s unless at least two relaxation iterations are per-
formed per time step, timing simulators have produced incorrect results in some
situations. A circuit designer will use a program that gives the correct simulation result
and occasionally gives no result (e.g., no convergence at a time point). A circuit
designer soon loses confidence in a program that occasionally gives an incorrect
answer! Many timing simulators that were developed in-house in industry are no longer
in use although where they do remain in use, they continue to be very successful. When
used correctly, timing simulators can provide over two orders of magnitude speed
improvement over conventional circuit simulators for comparable waveform accuracy.

As described in detail later, timing simulation has problems analyzing circuits
containing tight feedback loops, pass transistors or floating elements. In particular,
floating capacitors are not handled satisfactorily. Early timing simulators avoided the
problem of analyzing circuits with floating capacitors by not allowing the user to
include them in the circuit description. Hence, it is assumed here that the nodal
capacitance matrix is diagonal, that it is nonsingular for the entire range of node
voltages of interest (this implies nonzero grounded capacitances), and that the circuit
equations are written as

(11) b=-C(v,u)-lf(v,u) F(v,u).
Algorithms used for timing analysis often discretize the derivative operator by Back-
ward Euler [9], [10], [30] or the Trapezoidal Rule [29]. For the sake of simplicity, in the
following description the Backward Euler formula will be used:

bk+l--(Vk+l--Vk)/h,
where the time step h k + 1- k and vk / and vk are the computed values of the node
voltages at time t, + and t, respectively. The solution of the resulting nonlinear system
of equations

(12) Uk+ 13k d- hF(vk+l,u(tk+l) ) =0
is then approximated by one sweep of a relaxation technique.

Program MOTIS [9] used a modified Gauss-Jacobi technique which yields the
following set of decoupled equations:

( n-1 .+1, N )) n=l.-. N.(13) V+ Vnk-- hF, vX,," ",vk Vk+l, Uk ",Vk, Un(tk+
The solution of the decoupled nonlinear equations of (6) is then approximated by

taking a single step of a regula falsi iteration [32].
The MOTIS-C [10] and SPLICE1 [29] programs use a modified Gauss-Seidel

technique. In SPLICE this technique yields

hF( u(tk )) n =1 2,’’’ N(14) V+I Vk 5k+l,n’ +1

where

(15) Vk+l, V+I," ,Vk+ 1, ," ,v,
The solution of (14) is then approximated by using one or more steps of the
Newton-Raphson algorithm. The program can cut the time step locally at a node and

3A floating element is a two-terminal capacitor or resistor whose terminals are not ground or power
supply.
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use a number of small time steps to achieve a satisfactory solution before the next
equation in the relaxation solution is to be processed.

B. Network ordering. Unless some form of connection graph is used to establish a
precedence order for signal flow, the new node voltages will be computed in an
arbitrary order. As pointed out in Section II, in a Gauss-Jacobi-based simulator, where
only node voltages at tg are used to evaluate the node voltage at t+ 1, the order of
processing elements will not affect the results of the analysis. However, substantial
timing errors may occur. For example, consider the inverter chain of Fig. 4. If the input
to inverter I changes at time t, that change cannot appear at node (1) before time
g + 1- For a chain of N inverters, the change will not appear at output Iv before N time
steps have elapsed. If the time step is very small with respect to the response time of
any one inverter, this error may not be significant.

FIG. 4. Inverter chain example.

In a Gauss-Seidel-based simulator, where node voltages already computed at t+
are made available for the evaluation of other node voltages at t+ 1, the order of
processing elements can affect the simulator performance substantially. In the previous
example, if the inverters were processed in the order 1,2,3,--.,N then V+l can be

V2 from v/determined from v/ 1, / 1, and so on. The result will be zero accumulated
timing error. Should the nodes happen to be processed in the reverse order, N, N-
1,.-., 1, then a timing error of N time steps will occur, the same error as in the
Gauss-Jacobi-Newton iteration.

If it were possible to order the processing of nodes in the Gauss-Seidel-Newton
iteration so as to follow the flow of the signal through the circuit, the timing error
would be kept small. A signal flow graph would provide this information. An example
of a circuit fragment and associated signal flow graph, illustrating the fanins and
fanouts of the nodes, is shown in Fig. 5. One way to generate this graph is to consider
the dependency matrix introduced in Section II. This zero-one matrix can be consid-
ered as the adjacency matrix of a directed graph G G(X, E), where X is the set of
vertices and E is the set of directed edges of the graph. An edge connects nodes x to
node xj if pij 1. By the definition of dependency matrix, given a circuit and its node
equations written as in (11), this graph indicates that if an edge connects x; to xj, then
the voltage of node i, vg, can affect the value of the voltage of node j, vj via the device
equation. Thus the set of vertices that are connected by an edge going in x identifies all
the nodes in the circuit that affect the value of the voltage of node i. These are called
fanin nodes of node i. Similarly, the set of nodes that are connected to node x by an
edge going out of x identifies all the nodes in the circuit whose voltage is affected by
the voltage of node i. These are called fanout nodes of node i. Note that a node can be
both a fanin and a fanout node of node i.

Fanin and fanout elements can also be defined. The fanin elements of node are
defined as those which play some part in determining the voltage at node i, i.e., those
elements that cause some entries of row in the dependency matrix to be one. For
example, any MOS transistor, modeled by the simple Shichman-Hodges [33] equations
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shown in Fig. 6, whose drain or source is connected to a node would be classified as a
fanin dement at that node since its drain or source current may affect the node voltage.

A fanout element of node is one whose operating conditions are directly
influenced by the voltage at node i, i.e., those elements that cause some entries of
column in the dependency matrix to be one. For MOS transistors, connection to any
of the three independent ports (drain, gate, or source) would cause that MOS transistor
to be included in the fanout-element set at the node. It is therefore possible for an
element to appear as both a fanin and a fanout at the node.

SPLICE1 builds the signal flow graph by constructing two tables for each node as
the circuit is read. First, all circuit elements are classified as fanin and/or fanout
elements of the nodes to which they are connected. The two tables constructed for each
node contain the names of the fanin and fanout elements at the node. These tables are

(a)

(b)

(A) (S)

(F)
(D)

()

FIG. 5. (a) Circuit fragment. (b) Associated signalflow graph.
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Vge Vg- V
Vds MAX(Vds, Vgse)
]:Us K(Vgse-Vdse/2)Vdse I+ XVds)

FIG. 6. (a) n-channel MOS transistor. (b) Simple Shichman- Hodges n-channel MOS model equations.
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generated as the elements are read into memory. If this graph is acyclic, then it can be
leoelized [12, p. 427], where a level number corresponding to the longest path (most
branches traversed) from any independent source to a node is assigned to each node. If
the graph does contain cycles, special steps must be taken to break these feedback
loops. Then if the nodes are processed in the order of level numbers, it is clear that an
optimal static ordering for Gauss-Seidel processing will be achieved. An ordering can
also be achieved by finding the strongly connected components of the graph [34]. The
levelized graph provides a static ordering of the network.

Whenever the voltage at a node changes, it is possible to schedule all of its fanouts
to be processed. In this way, the effect of a change at the input to a circuit may be
traced as it propagates to other circuit nodes via the fanout tables, and thus via the
circuit elements which are connected to them. Since the only nodes processed are those
which are affected directly by the change, this technique is selective and hence its name:
selective trace. If a selective-trace algorithm is used with the fanin and fanout tables, the
order in which the node voltages are updated becomes a function of the signals flowing
in the network, and is therefore a dynamic ordering. This approach is often used in
modern logic simulators and is also the ordering technique used in the SPLICE
program.

Even with selective trace some timing errors can occur. For example, wherever
feedback paths exist, one time step of error may be introduced. Consider the circuit
fragment and its associated signal flow graph shown in Fig. 5. Assume/31 and/32 are
such that both M and M2 are conducting. If a large input appears at node (1) at time

tk/ 1, it will be traced through nodes (1), (2), (3), and (4), respectively. Now, however,
the change in voltage at node (4) caused node (1) to be marked to be processed again at
this time. Since only one sweep of Gauss-Seidel is being used, the solution of node (1)
a second time would be illegal. Rather, the node (1) is scheduled to be processed one
time step in the future, and thus it is possible that one time step of timing error has
been introduced.

C. Exploiting latency. As mentioned earlier, large digital circuits are often rela-
tively inactive. A number of schemes can be used to avoid the unnecessary computation
involved in the reevaluation of the voltage at nodes which are inactive or latent.

A scheme used in many electrical simulators is the "bypass" scheme, described in
Section II for conventional circuit simulators. This scheme has also been employed in a
number of timing simulators. However, when the majority of the nodes in the circuit
are latent, the task of simply checking each node to determine if it can be bypassed can
dominate the total run time.

The use of the selective-trace technique for dynamic ordering can provide a major
time saving here. By constructing a list of all nodes which are active at a time point and
excluding those which are not, selective trace allows circuit latency to be exploited
without the need to check each node for activity. The elimination of this checking
process, used in both the bypass approach and the static levelizing scheme described
previously, can save a significant amount of computer time for large circuits at the cost
of some extra storage for the fanin and fanout tables at each node.

In an efficient implementation of the selective-trace technique, the fanin and
fanout tables do not contain the "names" of fanin and fanout elements, respectively,
but rather a pointer to the actual location in memory where the data for each element is
stored.
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D. Numerical properties of timing algorithms. A major drawback with the use of
timing analysis is that tightly coupled feedback loops, or bidirectional circuit elements,
can cause severe inaccuracies and even instability during the analysis. For example, if
the Gauss-Seidel "one-sweep" timing-analysis method is applied to the circuit of Fig. 7
limiting the time-step to 0.1 s, the waveforms of Fig. 8(a) are obtained. However, if the
time step is set to 0.8 s, then the computed solution blows up as shown in Fig. 8(b).
This demonstrates that timing algorithms do not inherit the numerical properties of the
discretization formulate used to approximate the time derivative. In fact, Backward
Euler is well known to be A stable, i.e., the computed solution of the circuit differential
equations should not "blow up" independent of the choice of time step as long as the
simulated circuit is stable.

The reason why this idiosyncrasy is observed is that timing algorithms do not solve
(5) since only one sweep of the relaxation iteration is taken. Therefore the stability and
accuracy properties of the integration method used to discretize the derivative operator
no longer hold. As a matter of fact, the combination of the discretization formula, the
various relaxation steps, and the Newton-Raphson method form a set of new integra-
tion algorithms. These integration methods use an implicit formula to discretize the
differential equations, but they do not solve the nonlinear equation obtained. Thus they
are somewhat in between explicit and implicit methods.

In the following description, the "time-advancement" algorithms which use the
Gauss-Jacobi and the Gauss-Seidel relaxation step will be referred to as Gauss-Jacobi
and Gauss-Seidel integration algorithms, respectively. This perspective allows the
understanding of the numerical behavior of timing algorithms and the development of
better techniques for timing simulation.

An analysis of numerical properties of the Gauss-Jacobi and Gauss-Seidel
integration algorithms when applied to MOS circuits has been carried out in [35], [36].
Only the most important results are outlined here. First consider the case where no
floating capacitors are present in the circuit to be analyzed.

The numerical properties of an integration method, such as stability, are studied
on test problems [37], [38], which are simple enough to allow a theoretical analysis but
still sufficiently general that some insight can be obtained about how the method will
behave in general. For the widely used linear multistep methods, the test problem
consists of a linear time-invariant asymptotically stable autonomous differential equa-
tion. Unfortunately this simple test problem cannot be used to evaluate relaxation-based
time-advancement techniques. In fact, each variable of the system of differential
equations is treated differently according to the ordering in which equations are
processed. Hence a more complex test problem is needed. The test problem chosen here
is a linear time-invariant asymptotically stable system of autonomous differential
equations, i.e.,

(16) . Ax, x(0) X

(1) !!C5 (2),
Gin1 CT

...i_

v G1 2 G2

(;1 =G2=1 mho;C =C2=1F;Gml =15mho

FIG. 7. Schematic diagram of the example circuit.
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(a)

o IO 15
TIME (S)

(b)

IO 15
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FIG. 8. (a) Accurate waveform of voltage v computed with a 0.1-s. time-step. (b) Waveform of voltage
computed with 0.8-s time-step.

where A Rnxn and the set of eigenvalues (spectrum) of A, o(A), is in the open
left-half complex plane, i.e., o(A) Co-.

In circuit theoretic terms, linear circuits whose natural frequencies are in the open
left-half plane and which satisfy the assumptions described in Section II are considered
as test circuits. Let A L + D + U, where L is strictly lower triangular, D is diagonal,
and U is strictly upper triangular. The time-advancement methods presented in Section
III applied to the test system of (16) yield the following recursive relations:

Gauss- Jacobi integration algorithm:

(17) [I- hD]xk+ [I+ h(L + U)]x,,
(18) Xk+ mGj( h )xk
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where I is the identity matrix and

(19) MGg(h ) [I- hD]-[I + h(L + U)I.

Gauss-Seidel integration algorithm:

[I- h(D + L)]Xk+l-- [I + hU]xk,
Xk+= MGs(h)xk

(20)
(21)
where

(22) MGs(h ) [I- h(D + L)]-1[i q_ hU].
The matrices MGg(h ) and MGs(h ) are called the companion matrices of the

methods. If the generic companion matrix of a method is denoted M(h), then

(23) xk [M(h)]kX0
The numerical properties of the integration algorithms described by (23) are now

described following the outline of one-step integration methods applied to ordinary
differential equations [37].

The first numerical property of the integration methods to investigate is accuracy.
This property relates the error introduced by the discretization process and the time
step.

DEFINITION III-D-1. Let x(tk) be the exact value of the solution of the test
problem at time tk. Let xk be the computed solution at time tk assuming xk_ x(tk_l),
i.e., that no error has been made in computing the value of x at the previous time point.
If h k k_ 1, the local truncation error is defined to be

(24) e--IIx(t)--xkll.
If e= O(hr+l), r is said to be the order of the integration method [37].

It has been observed experimentally that if the time step is decreased, the accuracy
of the solution computed by timing algorithms improves in almost the same way as
Backward Euler. In fact, the Gauss-Jacobi and the Gauss-Seidel integration algo-
rithms have the same accuracy as the Backward Euler integration method.

THEOREM III-D-2. Gauss-Jacobi and Gauss-Seidel integration algorithms are first
order integration algorithms.

In circuit analysis, another important criterion for evaluating the accuracy of an
integration method, can be defined as waveform accuracy. In general, the computed
solution of a system of differential equations is the superposition of a principal solution
and associated parasitic solutions. Parasitic solutions are generated by the numerical
approximations of the integration methods. In particular, an n th order integration
algorithm yields n- 1 parasitic solutions when applied to the test problem. For the
algorithms under consideration in this paper, the displacement techniques introduce
additional spurious components called numerical solution components.

If the original system to be analyzed does not contain an oscillatory component,
the presence of such a component in the computed solution can be misleading in the
evaluation of the performances of the system. As was shown in the previous subsection,
the Gauss-Seidel integration algorithm introduces spurious oscillations in the com-
puted solution of the equations describing a circuit where the exact solution does not
have any oscillations. It is necessary to introduce methods that allow the evaluation of
the "waveform accuracy" of the integration methods. To this end, a subclass of the test
problem is now introduced, characterized by o(A) Ro-, i.e., the set of test problems
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which does not have an oscillatory component in the solution, and bounds on the
oscillatory components of the computed solutions must be established.

Theorem III-D-2 provides a bound on the oscillatory components of all the
methods. In particular it is clear that, by choosing an appropriately small step size h,
the numerical solution oscillatory components can be made negligible with respect to
the principal solution.

Another fundamental property of integration methods is stability. Stability can
also be defined in terms of the test problem.

DEFINITION III-D-3 (stability). An integration algorithm is stable if :!8 > 0, :IN > 0
such that Vxo R,]k > 0 and

(25) Ilxkll < N, Yk >/, Vh [0,8]
where xk is the sequence generated by the algorithm applied to the test problem
according to (23).

It is obvious that a numerical method that is not stable is of no practical use. It
happens that both relaxation-based integration algorithms are stable as stated in the
following theorem which is proven in [35].

THEOREM III-D-4. Gauss-Jacobi and Gauss-Seidel integration algorithms are
stable.

The accuracy and the stability of the integration algorithms explain the success of
timing simulators, but they also point out what the problems are with their use. In
particular, note that of Definition III-D-3 can be quite small, i.e., that the time step
may have to be reduced not for accuracy reasons, but to make sure that the computed
solution does not blow up. Moreover, it is difficult to identify oscillations in the
computed solutions as spurious.

To cope at least in part with these problems, another displacement technique for
the solution of (1) has been proposed for a simple circuit in [42]. This algorithm is a
symmetric-displacement method reminiscent of the alternating-direction implicit
method [32] and is based on a class of methods proposed by Kahan [39]. The basic idea
here is to "symmetrize" the Gauss-Seidel scheme with a method that takes two
half-steps of size each: one half-step is taken in the usual "forward" (i.e., lower
triangular) direction, the second half-step is taken in the backward (i.e., upper triangu-
lar) direction.

This method is introduced with the help of the linear system described by (16). The
first half-step corresponds to the Gauss-Seidel method. Let A L + D + U, then

h 1 h 1
(26) (I+-( +L))x,+ =(I- (-D+U))xkD 1/2 ""Note that there is a difference between (20) and (26) since D has been split into two
parts here. This splitting of D is necessary to "symmetrize" the method. The backward
half-step is then

h 1 h 1
(27) (I + -(-D + U))Xk+l (I-- -(-D + Z))Xk+l/2.
Consider the simple example of Fig. 9. The first half-step yields

" C1 .x+ 1/2 1- -- C1 x -]- -- "1Xk’

4
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The backward step involves the solution of

1 -[- -’ C2 Xk+ - -’22Xk+1/2 -[" 1-

(1+ h GI+G3) h G3 2 +(1--"- C1 Xlk+l-""lXk+l

h G2 + G 1 x 2

4 C2 ]
h GI+G3)4 C x+ 1/2"

FIG. 9. Simple circuit to illustrate the modified symmetric Gauss-Seidel method.

If these formulas are generalized for the nonlinear case, and with

vi+l U1_1/2] if 21is(28) [v},’..,v,, 1-1/2,’", odd,

(29) v"i
i- .,v] r

if 21 is even01-1/2 "01-1/2 Ol

the forward step yields

i+
h

(30) Ok+l/2-- Ok
[ [ "4Fi\k+l/a,i,U\tk+l/2]]

h-Jr’-.(Ok+l/2, i_l,U(lk+l/2))=O, =1,2," --,N

and the backward step yields

i_bh(31) Ok+ Ok
--;’( ( 4.i\k+l,i,U,tk+ll !

h
-[-"Fi(gk+l,i+l,U(tk+l))--’O i=N,N-1,...,1.

The solution of the decoupled equations is then approximated by taking one step of the
Newton-Raphson algorithm.

This method can be proven to be more accurate and more stable than the previous
one. The additional work required to perform the intermediate step is compensated by
the additional accuracy as specified by the following theorem.

THEOREM III-D-5. The modified symmetric Gauss-Seidel algorithm is a second-order
integration algorithm.

In addition, the "waveform accuracy" of this method is better than that of the
other integration algorithms. If the class of the test problems is restricted to the
subclass characterized by a symmetric A matrix, then a strong result for the modified
symmetric Gauss-Seidel integration method can be obtained. In circuit theoretic terms,
this analysis applies to linear circuits whose node equations yield a symmetric nodal
admittance matrix when only the resistive part of the circuit is considered. Moreover it
is required that this matrix remain symmetric when premultiplied by C-1, the diagonal
matrix of the grounded capacitors. A sufficient condition for this to occur is that the
circuit consists of two terminal linear resistors and capacitors and that the grounded
capacitors be of equal value. The case where the capacitors are not of equal value can
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also be included in this class provided that a scaling of the rows of the matrix is
performed.

THEOREM III-D-6. If A is a real, symmetric matrix, the spectrum of the companion
matrix of the modified symmetric Gauss-Seidel integration method is real, i.e., no
oscillatory parasitic components are present in the computed solution.

This theorem guarantees that the time step does not have to be limited to eliminate
spurious oscillations at least for reciprocal circuits. Numerical results obtained with an
experimental timing simulator show that spurious oscillations do not appear in the
solution of nonlinear nonreciprocal circuits as well [36], [40].

For computational efficiency, it is desirable that the step size be limited only by
accuracy considerations as in the case of the implicit backward differentiation formulas
[37]. In the case of classical multistep methods, the concept of A-stability [38] and
stiff-stability [37] have been introduced to test the "unconditional" stability of multi-
step methods. For the "time-advancement" techniques presented in this paper, it makes
sense to define a similar concept. Unfortunately, general results of "unconditional"
stability are not available for the test problem defined previously, but only for a
subclass; once more the subclass characterized by a symmetric A matrix.

DEFINITION III-D-7 ( stability). An integration method is stable if qN > 0 such
that Vxo Rn, qk

(32) lixkil<N, Vk>/, Vh[0, o)
where ( xk } is the sequence generated by the method applied to the test problem of (16)
with A symmetric.

THEOREM III-D-8. The modified symmetric Gauss-Seidel method is . stable.
Note that no A stability result for the Gauss-Jacobi and the Gauss-Seidel

integration methods has been proven. In our practical experiments, we have seen that
when applied to real circuit problems, the modified symmetric Gauss-Seidel method is
indeed "more stable" than the other two methods.

E. Floating capacitors. As mentioned in the introduction to this section, a circuit
element that has limited the application of timing analysis is the floating capacitor [41],
[421.

The floating capacitor is often an important element in the design of integrated
circuits. In Fig. 10(a) the value of the bootstrap capacitor Cb is generally large
compared with the values of the associated parasitic grounded capacitors C and C2.

The value of the intrinsic gate-drain feedthrough capacitance Cgd in Fig. 10(b) is often
small compared with other circuit parasitics at the gate and drain nodes; however, the
effect of Cgd on circuit performance can be significant due to the large voltage gain of
the stage.

When floating capacitors are present in the circuit to be analyzed, the timing
simulation algorithms presented in the previous sections take a different form. For the
sake of simplicity, consider a linear time-invariant circuit described by

(33) CO= -Go, v(0) V

where C is the node capacitance matrix and G is the node conductance matrix. If C is
inverted, the methods described previously apply. However, inverting C is expensive
and most of the advantages of timing simulation algorithms would be lost. Thus if the
Backward Euler formula is used to discretize the circuit equations at time k + 1, h+ is
given by

(34) C(Ok+ Vk)= hGv,+l
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M2
Cl

c _!_

FIG. 10. (a) Bootstrap inoerter circuit and (b) effect of Coo feed-through.

or, rearranging (34), ok / is given by

(35) (C -t- hG)ok+ CI3k

Let C be split as Ca + Ct + Cu and G as Gd + G + Gu, where Ca and Gd are diagonal
matrices, C and G are strictly lower triangular matrices, and C and G are strictly
upper triangular matrices. Then, the time-advancement Gauss-Jacobi algorithm for
circuits described by (33) becomes

(36) (Cd + hGd)Vk+ (C C C hG hGu)vk (Cd h(G + G))vk

and the Gauss-Seidel time-advancement algorithm is

(37) (Cd+Cl+h(Gd+Gt))Vk+x=(C-Cu-hGu)Vk=(Ct-hGu)Vk
and finally the modified symmetric Gauss-Seidel algorithm is

(38a) -Cd + Ct + 5Gd + Gt Vk+i/2 -Cd + Ct- -Gd + G v,

1 h 1 1 h 1
(38b) (-Cd+Cu+ (-Gdd-Gu))Vk+l (CdWCu -(Gd-t-G1)).
When these algorithms are applied to circuits where C is not diagonal, serious stability
and accuracy problems may arise. In the example of Fig. 7, the Gauss-Seidel integra-
tion algorithm with a time step equal to 0.6 s computes the solution shown in Fig. 11,
with oscillations that are not present in the accurate solution of the circuit equations
shown in Fig. 8(a). In addition, these methods are not even consistent. That is, when
the time step h is reduced to 0, the sequence of voltages computed according to (36) or
to (37) does not converge to the solution of (33). In fact, since (36) is the same as the
equation obtained by applying the Gauss-Jacobi algorithm to a circuit where only
grounded capacitors are present, the effect of the floating capacitors is completely
neglected (note that in (36), C and Cu do not appear). The Gauss-Seidel algorithm
neglects Cu only, and hence is more accurate than the Gauss-Jacobi algorithm.

The modified symmetric Gauss-Seidel integration algorithm presented in the
previous subsection has been proven to be accurate, stable, and even A stable, but only
for the particular classes of circuits characterized by G and C matrices with appropriate
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FIG. 11. Waveform of node voltage v computed with 0.6-s time-step.

mathematical properties [36]. However, the modified symmetric Gauss-Seidel algo-
rithm is not consistent in /he general case either. On the other hand, since C, is
neglected in the first half-step while C is neglected in the second half-step, the effect of
the floating capacitors on the solution of (33) is modeled more precisely than in the
other methods, and better accuracy is obtained as a consequence [36].

Early timing simulators avoided the problem of analyzing floating capacitors by
not allowing the user to include them in the circuit description. The effect of a floating
capacitor may then be approximated by altering the values of the grounded capacitors
at appropriate nodes in the circuit. If the operation of a circuit depends on a floating
capacitor, a functional macromodel may be used (e.g., [9]-[11]) where the effect of the
floating element is hidden from the relaxation iteration by special processing of the
circuit fragment in which it is embedded, perhaps involving local matrix solution [29].

Another approach called the Implicit-Implicit-Explicit (IIE) method has been
proposed [41] for circuits with floating capacitors. This method can be generalized and
explained using (33). Let (33) be rearranged as

(39) (Ca + Ct)b’ + C,b" Gv, v(O) V

where bt= b" b. The Backward Euler method is used to approximate b and Forward
Euler is used to approximate 0. Then (39) becomes

(40) (Cd + Ct)(ok+ Vk)+Cu(vk Vk_l) hGvk+ 1.

Applying the Gauss-Seidel integration scheme to (40) and rearranging terms, the IIE
equations for the linear circuit described by (33) become

(41) (C+C+h(Ga+G,))V+l=-C(v-V_l)-hGuo.
Note that the effects of both the lower triangular part and the upper triangular part of
the capacitance matrix are now taken into account. However, to date the numerical
properties of this scheme have only been published for a simple two-node linear test
circuit [41], [42]. The method has been difficult to characterize rigorously since it
involves information from two previous time points (tk and tk_l). Recently the
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stability, consistency, and order of accuracy of this approach have been determined for
the general case [43] and the method looks very promising. The liE method is used in
the SPLICE1 program for the analysis of floating capacitors [12].

F. Conclusions. Timing simulation algorithms are fast and rather accurate for the
electrical simulation of MOS circuits with no tight feedback loops. However, several
stability and accuracy problems hamper the use of timing simulation as a standard
simulation tool. In particular, major drawbacks of timing simulation algorithms are

1) The selection of an appropriate step size is difficult. If a fixed step size is used,
heuristics must be introduced to estimate the time constants of the circuit [10]. If a
variable step size is used, the local truncation error must be estimated. In fact, the other
technique used to control step size in standard circuit simulators, the so-called iteration
count method [1], cannot be applied here since the relaxation techniques are not carried
to convergence. Unfortunately, the local truncation error cannot be estimated accu-
rately since the error in the voltage computed at time k by the timing simulation
algorithms is the sum of the truncation error due to the integration method and of the
error due to the inaccurate solution of the discretized nonlinear equations. These two
errors can be of the same order and sometimes the latter component can even be larger
than the truncation error.

2) The step size may be limited by stability considerations since timing simulation
algorithms are A stable only in particular cases. This may force the use of small step
sizes even though large step size may be possible from accuracy point of view.

3) With the exception of the liE method, timing simulation algorithms are not
even consistent when applied to the analysis of circuits containing floating capacitors.
This means that their accuracy cannot be improved over a certain limit by further
step-size reductions.

All of these problems stem from the fact that the relaxation methods are not
carried to convergence. The fear that carrying the relaxation iteration to convergence
would reduce the speed advantages of timing simulation prevented the adoption of the
obvious remedy to this situation for a number of years. In the following sections,
techniques and simulators based on convergent relaxation methods are introduced and
shown to be highly competitive with standard circuit simulators for accuracy and with
timing simulators for speed.

IV. Iterated timing analysis.
A. Introduction. Iterated Timing Analysis (ITA) [19] is a new form of electrical

analysis which can be derived from timing analysis. This form of relaxation-based
electrical analysis has shown promising results over a wide class of circuits, from large
digital circuits to complex analog designs. The technique is accurate, fast for large
digital circuits, and amenable to implementation on advanced computer architectures,
such as vector and array processors [44]-[47] as well as data-flow machines [48], [49].

The starting point for a description of ITA is the circuit equation formulation of
(2). The differential equations are converted to a set of nonlinear, algebraic difference
equations (3) using a stiffly stable integration formula, and an iterative relaxation
method (Gauss-Jacobi or Gauss-Seidel) is then used to solve them. However, unlike
timing analysis where a single relaxation iteration is used per time point, in the ITA
approach the relaxation process is continued to conoergence at a time point.

Only one Newton-Raphson iteration is used to approximate the solution of each
nodal equation per relaxation iteration and event-driven selective trace techniques may
still be used to exploit latency, as for timing simulation. Thus the mathematical
framework of ITA is the nonlinear Gauss-Seidel (Gauss-Jacobi)-Newton method
presented in Section II.
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B. Numerical properties o| ITA. Since in ITA the nonlinear circuit equations are
solved by an iterative method until satisfactory convergence is achieved, the numerical
properties of the integration methods used to discretize the circuit equations are
retained. Thus the stability and the accuracy problems typical of the timing simulation
algorithms presented in Section III are not an issue. However, the basic question is
whether the relaxation iteration will converge at each time point when solving the
discretized circuit equations.

The conditions under which the relaxation iteration is guaranteed to converge were
presented in Section II. Note that these conditions require the diagonal dominance of
the Jacobian of the discretized nonlinear equations. Returning once again to (2), the
circuit equations may be formulated as

(42) C(o,u)b+f(v,u)=O, v(0) V

where C: "r R,, is a symmetric diagonally dominant matrix-value function in
which Cy(v, u); 4: j is the total floating capacitance between nodes and j, C(v, u)
is the sum of the capacitances of all capacitors connected to node i, and f: t ,
r __, R, is a continuous function, each component of which represents the net current
charging the capacitor at a node due to other conductive elements. If the capacitance
matrix C(v, u) is assumed to be symmetric and positive definite (and hence strictly
diagonally dominant), as is the case if all the capacitors in the circuit are two-terminal
elements and are positive for all values of v, it is intuitive to see that the Jacobian
matrix of the discretized nonlinear circuit equations is diagonally dominant provided
that the time step is small enough. In fact, the time step is acting as a scaling parameter
that increases the role of the capacitance matrix in the Jacobian matrix when it is
decreased. More formally, the convergence properties of ITA can be proven rather
easily for circuit equations of the form of (42) where C(v, u) is a matrix of real
numbers, i.e., the capacitors present in the circuit are all linear. Then the discretized
equations become

(43) C(ok+ Ok)--hk+lf(Ok+l, Uk+l)=O
where h k + is the time step selected at time tk. The following strong Theorem has been
proven in [50].

THEOREM IV-B-1. There exists a time step strictly positioe such that for all
h , + f the nonlinear Gauss-Jacobi and the nonlinear Gauss-Seidel iteration applied to
(43) converge to the solution of the discretized circuit equations independent of the initial
guess.

C. Implementation of ITA. In Theorem IV-B-l, the value of/ can be quite small if
the Jacobian of f is not diagonally dominant at the time point of interest and if the C
matrix has large off-diagonal elements, i.e., when large floating capacitors and/or tight
feedback loops are present in the circuit. Hence, such an iterative method would not
appear well suited to the analysis of circuits with strong bilateral coupling. However, an
ITA capability has been implemented in the SPLICE1 program [19], [51], and while
strong bilateral coupling does increase simulation time, the correct solution is obtained
even for analog circuits. With the event-driven selective trace scheduling as imple-
mented in SPLICE1, less than a factor of two increase in CPU time has been observed
compared with SPLICE1 timing simulation, for large digital circuits. For small tightly
coupled MOS analog circuits, the ITA program may take even longer than SPICE2, as
illustrated in the next section. However, for large integrated circuits such tight coupling
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is local to a small block and the advantages obtained from circuit latency, as well as the
ability to exploit parallel processing effectively, far outweigh the disadvantages.

The following algorithm illustrates the principal steps involved in ITA analysis for
use on a conventional computer. Only the Gauss-Seidel form is shown here, but the
Gauss-Jacobi form can be obtained as outlined in Section II. At each time at which
one or more nodes are scheduled to be processed, two event lists, EA(tn) and EB(tn),
are used to separate the nodes to be processed in successive iterations, k and k + 1, of
the Gauss-Seidel-Newton process.

Gauss Seidel iteration:
put all nodes that are connected to independent sources in event list EA(0):

t. 0;
while (t < TSTOP){

k-O;
while (event list E(t) is not empty)(

foreach (i in Ea( t. )) (
obtain v/+1 from gi(vl+,’" ",v/+ ,’" .,v)= 0 using a single Newton-Raphson

step;

if (Iv/+ 1_ v/l < e; i.e. convergence is achieved){
use LTE to determine the next time, for processing node i;
add node to event list Ea(ts);

)
else(
add node to event list EB(t);
add the fanout nodes of node to event listE,(tn) if they are not already on

}

E(t,) EB(t,); EB(t,) - empty;
kk+l;

tn tn+ 1;
)
where t, is the present time for processing and tn+ is the next time in the time queue at
which an event was scheduled. In this way, the "time step" is handled independently
for each node.

This simplified algorithm does not illustrate how such issues as time-step reduction
and local truncation-error estimation are handled. These and other important details of
the algorithm are described elsewhere [53].

D. Circuit examples. Iterated Timing Analysis is an integral part of the SPLICE1.6
mixed-mode simulator [19], [51] and a number of example runs performed by this
program are included below. SPLICE1.6 uses a Successive Over Relaxation (SOR)-
Newton method [29], which defaults to Gauss-Seidel-Newton for solving the nonlinear
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difference equations of (3). The program uses event-driven selective trace analysis to
exploit latency [52]. A fundamental limitation of the present implementation of ITA,
which reduces its overall effectiveness, is its simple time-step control mechanism.
Another ITA program, SPLICE2 [53], is under development which overcomes this and
other limitations of SPLICE1.

For large digital circuits, SPLICE1.6 is still 10-50 times faster than SPICE2 for
the same output waveforms. The actual speedup factor depends on the nature of the
digital circuit (highly pipelined, random logic, etc.) and the type of MOS technology in
use (2-phase static, 4-phase dynamic, etc.). In each case, the circuit latency and strength
of the bilateral coupling between circuit blocks determines the actual speedup. Table I
contains results for the analysis of a large, random logic circuit. The corresponding
output waveforms are shown in Fig. 12(a). Fig. 12(b) shows a comparison with SPICE2
for a small glitch in the waveform. Note that the program is significantly faster than
SPICE2 for substantially the same waveform information. The precise tradeoff between
accuracy and speed can be adjusted by varying the convergence criteria of both
programs.

TABLE
Comparons of conventional circuit simulation, iterated timing analysis, and timing simulation for two

example circuits

Circuit:
MOSIKrs:
Nodes:

SPICE2G
SPLICEI.6
SPLICEI.3

Encoder/decoder
1,326
553

ime Memory

115,840
1,740
789

68.9
64.4

Operational Amplifier
15
14

Time Memory
(s) (Kbyte)

59.8 29.0
114.3 9.3

.magnified pulse

o.o rLE(S) 4.0

(a)

4.0

V 2.0

{".SPLICEI.3

SPLICE1.6

,///SPICE2G

o.o

1.80 1.61 1.6,2 t.ea 1.64

(b)

FIG. 12. (a) Selected waoeforms from the encode/decode circuit obtained by SPLICE1.6. (b) Expanded view of
a small pulse in the encode/decode circuit waveforms.
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A major drawback of standard timing simulators is their inability to handle
floating elements accurately, in particular, floating capacitors. As shown in the previous
section, this is most apparent when the value of the floating capacitor is large with
respect to the grounded capacitors at each of its terminals. Strong feedback and high
gain also present a difficult problem for a relaxation-based ITA program. Fig. 13(a)
shows the schematic diagram of an MOS operational amplifier used as part of a
phase-locked loop circuit [54]. The circuit was analyzed by both SPLICE1.6 and
SPICE2 in a unity-gain configuration. Such circuits have always proved the most
difficult even for conventional circuit simulators. Note the large capacitive feedback
provided by the floating compensation capacitor. All transistors included parasitic
capacitors Cg and Cgd. The output waveforms for both SPLICE1.6 and SPICE2, for
the same step input, are shown in Fig. 13(b). The only differences in the waveforms are
at the beginning of the analysis and are due to slightly different initial conditions

(a)

--o Vout

MI7

(b)

FIG. 13. (a) Schematic diagram of operational amplifier circuit. (b) Response of operational amplifier to pulse
input.
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assumed by each program. In this case, however, the prototype SPLICE1.6 program
ran two times longer than SPICE2, as shown in Table I. While it is to be expected that
such a worst-case circuit would reduce the performance of the program due to the
strong capacitive feedback and high forward gain of the circuit, it is anticipated that
this time difference will be reduced as the SPLICE1 program is developed further.

E. Conclusions. As previously illustrated, Iterated Timing Analysis has a great
deal of potential for improving the performance of electrical simulation. Not only can
this technique outperform standard circuit-simulation programs for the analysis of
large circuits on standard computers, but it offers the possibility of a further substantial
speedup when implemented on special-purpose hardware.

V. Waveform relaxation techniques.
A. Introduction. Both timing algorithms and iterated timing analysis are based on

the application of relaxation techniques to the solution of circuit equations at the
nonlinear algebraic equation level. As pointed out in Section II, there is a part missing
in Fig. 3: a relaxation method at the differential equation level. While relaxation
techniques in the linear and nonlinear algebraic case deal with vectors in ", relaxation
techniques at the differential equation level must deal with elements in function spaces,
i.e., waoeforms. Recently, a family of relaxation techniques applied to the differential
equation level, called Waoeform Relaxation (WR), has been proposed in [20], [21]. WR
methods have been implemented in an experimental circuit simulator called RELAX
[21] that has proven to be effective for the accurate analysis of some MOS digital
circuits with more than an order of magnitude speed improvement over standard circuit
simulators.

In this Section, the basic ideas of WR methods are reviewed and some of WR
applications and extensions are presented. To begin, a simple example is used to
illustrate the method, and then the general "Gauss-Seidel" algorithm in the WR family
for MOS digital circuits is described. A more detailed and complete description of these
techniques is available in [20], [21].

B. The waveform-relaxation Gauss-Seidel algorithm. Consider the first-order
two-dimensional differential equation in: x(t) Ii 2 on [0, T].

(44a) c fl (x, x2 t), Xl (0) x0,

(44b) c2 f2 (x, x2 t), x2 (0) x20.

The basic idea of the "Gauss-Seidel" waveform-relaxation algorithm is to fix the
waveform x2: [0, T]--, R and solve (44a) as a one-dimensional differential equation in

xl(-). The solution thus obtained for x can be substituted into (44b) which will then
reduce to another first-order differential equation in one variable, x2. Equation (44a) is
then resolved using the new solution for XE(t), and the procedure is repeated.

In this fashion, an iterative algorithm has been constructed. It replaces the
problem of solving a differential equation in two variables by one of solving a sequence
of differential equations in one variable. As described earlier, the waveform relaxation
algorithm can be seen as an analogue of the Gauss-Seidel technique for solving
nonlinear algebraic equations. Here, however, the unknowns are waveforms (elements
of a function space), rather than real variables. In this sense, the algorithm is a
technique for time-domain decoupling of differential equations.

WR algorithms applied to circuits can be formulated in a number of ways. A
"Gauss-Seidel" WR algorithm for MOS circuits will be considered in the following
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analysis. Recall that, according to (2), the circuit equations are formulated as

(45) C(v,u)b+f(v,u)=O, v(0) V

where C: R Rr ___) Rn, is a symmetric diagonally dominant matrix-value function in
which Cij(v, u); j is the total floating capacitance between nodes andj, Cii(v, u)
is the sum of the capacitances of all capacitors connected to node i, and f: R R

__..)Rn is a continuous function, each component of which represents the net current
charging the capacitor at each node due to the pass transistors, the other conductive
elements, and the controlled current sources.

Algorithm V-B-1 (WR Gauss-Seidel algorithm for solving (45)):
Comment: The superscript k denotes the iteration count, the subscript denotes

the component index of a vector, and e is a small positive number.

k0;
guess waveform v(t); [0, T] such that o(0)= V

(for example, set o(t) V, [0, T]);

repeat {
kk+l

foreach (i in N) (
solve

E Cij(Ukl, ",oki, o/k+--I1,’" ",UkN-1, U)/)jk
j=l

-4- L Cij(1)ki, "’’, oki, l)k-1"’’/+1 ,/)kN-l’u))jk-1
j=i+l

--f/(/)lk, "’’,Uki, ok-1"’’/+1, ,UkN-I, U)---0

for (c(t); [0, T]), with the initial condition
v,.

until (max1<i <maxtiO, TllV*i(t)-v/-(t)l < e)
that is, until the iteration converges.

Note that (45) has only one unknown variable v. The variables v_.,...,v-1 are
known from the previous iteration and the variables Vl, .,v_ have already been
computed. Note also that the Gauss-Jacobi version of the WR algorithm presented
earlier can be obtained simply by replacing the foreach statement with the forali
statement and adjusting the iteration indices in the same way as can be done in the
Gauss-Jacobi version of ITA. In the Gauss-Jacobi case, the computation can be
performed in parallel, and hence it is more suitable for implementation on special-pur-
pose hardware.

As an example of how Algorithm V-B-1 can be applied, consider the MOS circuit
shown in Fig. 14. For the sake of simplicity it is assumed that all capacitors are linear.
Hence the dynamical behavior of the circuit can be described as follows:

(Cld’c2 d" C3)i31--il(Ol)+i2(Ol,Ul)+i3(Ol, U2,U2)--Clill--C312--O,
(46) ( C4 d- C5 -- C6 ) i32 C6 ( i33 )-- i3 ( u1, U2, U2 )-- C4i12 O,

(C6 C7)b3 C6b2 i4(t33)-F i5 (/33, t32) 0.
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+5 +5
u2

c, v_,
[.

FIG. 14. Circuit example for Gauss-Seidel waveform relaxation algorithm.

Applying the WR procedure to (46) the k th iteration corresponds to solving the
following equations:

(C + C2 + C3)/)1k --/l(Vlk)+ i2(1k, Ul)+ i3(Vkl, U2, v2k-1) C1 C3//2 O,

(47) (c4 + c, + c6)/)2k c6/)#-1- i3( v, u2, v)- c4//2 0,

(C6 + C7)/.)3k C6/) --i4(0)+ is(v, v) O.

The circuit interpretation of (47) is shown in Fig. 15.
If the original circuit in Fig. 14 consists of 3 subcircuits s1, s2, and s3, then the

decomposed subcircuits #1, #2, and #3 together with additional components to ap-
proximate the loading effects due to the rest of the circuit. Hence, the WR procedure
for analyzing the circuit in Fig. 14 can be described in circuit terms as follows:

k-0;
make an initial guess of o2(t), o(t); [0, T];
repeat (
k kp;

analyze s for its output waveform Vl(.) by
approximating the loading effect due to $2;

analyze s2 for its output waveform v2(-) by
using Vl(.) as its input and approximating
the loading effect due to s3.;

analyze s for its output waveform v3(.) by
using v(.) as its input;

)
until (the difference between {(v(t), v(t), v(t); t[0, T]} and {Olk-l(t),
v-(t), v3-(t); t_ [0, T]} is sufficiently small)

From the previous procedure and example it can be seen that each component of
the decomposition is a dynamical subcircuit which is processed for the entire time
interval [0, T] in a fixed order. When each subcircuit is being processed, the iterations
(coupling or loads) from the rest of the circuit are approximated by using the
information obtained from the most recent iteration. The iteration is carried out until
satisfactory convergence of all waveforms is detected. It can be shown that for the MOS
circuit in Fig. 14 the sequence of waveforms generated by the WR procedure will always
converge to the correct waveform independent of the initial guess provided that c, c5, and
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C7

FIG. 15. Circuit interpretation of Gauss-Seidel waoeform relaxation applied to the circuit of Fig. 14.

7 are not zero. In [20], [50], a strong convergence result was proved that can be applied
to Algorithm V-B-1 as follows.

THEOREM V-B-1. Assume that:
1) the charge-voltage characteristic of each capacitor, the current-voltage character-

istic of each conductor, and the drain-current characteristic of each MOS device are
Lipschitz continuous with respect to their controlling variables;

2) Cmi" > 0 and Cma < O where Cmin [ is the minimum value of all grounded
capacitors at any permissible value of node voltage, and Cma R is the maximum value
of all floating capacitors at any permissible value of node voltages; and

3) the current through any controlled conductor ( e. g., the drain current of an MOS
device) is uniformly bounded throughout the relaxation process.

Then, for any given set of initial conditions and any given piecewise continuous input
u(.), Algorithm V-B-1 generates a converging sequence of iterated solutions whose limit

satisfies the circuit equations and the given initial conditions.

C. Waveform relaxation in RELAX. The WR "Gauss-Seidel" algorithm was
implemented in an experimental circuit simulator, RELAX. Actually, RELAX imple-
mented a modified version of the WR algorithm described previously. These modifica-
tions were introduced to improve the speed of convergence of the algorithm and exploit
the structure of the class of circuits to be analyzed, i.e., MOS digital circuits. These
modifications are as follows.

1) Rather than having strictly one unknown per each component of the decom-
position as stated in Algorithm V-B-l, RELAX allows each decomposed subcircuit to
have more than one unknown. This corresponds to a block relaxation method that can
be proven to have similar convergence properties. In fact, the analysis of the circuit is
decomposed into the analysis of subcircuits each of which corresponds to a physical
subcircuit that is built into the program and called by the user as a unit, such as a NOR
or a NAND.

2) Each decomposed subcircuit is processed by using standard circuit-analysis
techniques. The Backward Euler integration method with variable time steps is
used to discretize the differential equations associated with the subcircuit, and the
Newton-Raphson method is used to solve the nonlinear algebraic equations resulting
from the discretization. Since the number of unknowns associated with a subcircuit is
usually small, the linear equation solver used by the Newton-Raphson method is
implemented by using standard full-matrix techniques rather than using sparse-matrix
techniques. Note that in RELAX each subcircuit is analyzed independently from 0
to T, using its own time-step sequence, controlled by the integration method,
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whereas in a standard circuit simulator the entire circuit is analyzed from 0 to T
using only one common time-step sequence. In RELAX, the time-step sequence of one
subcircuit is usually different from the others, but contains, in general, a smaller
number of time steps than that used in a standard circuit simulator for analyzing the
same circuit.

3) The order according to which each subcircuit is processed is determined in
RELAX prior to starting the iteration by a subroutine called "scheduler." Although,
according to Theorem V-B-l, scheduling is not necessary to guarantee convergence of
the iteration, it does have an impact on the speed of convergence as is the case for the
relaxation methods at the linear- and nonlinear-equation levels. Assume now that
the circuit consists of unidirectional subcircuits with no feedback path. Exactly as for
the other relaxation methods introduced before, if the subcircuits are processed
according to the flow of signals in the circuit, the algorithm used in RELAX will
converge in just two iterations (actually the second iteration is needed only to verify
that convergence has been obtained). For MOS digital circuits which contain almost
unidirectional subcircuits, it is intuitive that convergence of the WR procedure will be
achieved more rapidly if the subcircuits are processed according to the flow of signals in
the circuit. The scheduler traces the flow of signals through the circuit and generates a
static order for the processing of subcircuits. To be able to trace the flow of signals, the
scheduler requires the user to specify the flow of signals through each subcircuit by
partitioning the terminal of the subcircuit into input and output terminals. This is
needed since in RELAX the basic unit is a subcircuit. In general, a designer can easily
specify what the flow of the signals is intended to be even in a subcircuit which is not
unidirectional such as a transmission gate or a subcircuit containing floating capacitors
between its input and output terminals. The analysis algorithm in RELAX will indeed
take into account the bidirectional effects correctly.

4) The first iteration in RELAX is carried out by assuming that there is no loading
effect due to fanouts. The "standard" WR procedure actually begin at the second
iteration in RELAX. Hence, strictly speaking, the first iteration in RELAX is used to
generate a good initial guess for the actual WR procedure.

D. Speed-up techniques. In addition to the previous modifications, RELAX incor-
porates two bypass techniques to speed up the process of analyzing a subcircuit. The
key idea is once more to bypass the analysis of a subcircuit for certain time intervals
without losing accuracy by exploiting the information obtained from previous time
ooints and/or from previous iterations.

The two techniques used in RELAX are presented here by showing their applica-
tion for the analysis of the subcircuit sx of the circuit shown in Fig. 16, which is a
schematic diagram of the circuit in Fig. 14. The output voltages of s and s2 at the kth
iteration are denoted by ok and o2k, respectively.

The first technique is based on the latency of s and is similar to the technique
described in Section III. According to (47), sl is analyzed in the first iteration with no
loading effect from s2. After it has been analyzed for a few time points, its output
voltage v is found to be almost constant with time, i.e., o(0.01)--0 (see Fig. 16(b)).
Since the input of s1, i.e. u is also constant during the interval [0.01, 1.9], the subcircuit
s is said to be "latent" in the first iteration during the interval [0.01, 1.9], and its
analysis during this interval is bypassed. From Fig. 16(b), s is latent again in the
interval [2.15, 3]. Note that, according to (47), the check for latency of s after the first
iteration will include u2 and o2 as well as u since they can affect the value of Ol. For
most digital circuits, the latency intervals of a subcircuit usually cover a large portion of
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FIG. 16. (a) Schematic diagram of the circuit of Fig. 14. (b), (c), and (d): The waveforms of the two node
voltages at the first, second and third waveform relaxation iteration, respectively. (e). The difference of the

waveforms between the first and second iteration.

the entire simulation time interval [0, T] and hence the implementation of this tech-
nique can provide a considerable saving of computing time as shown in Table II.

The second technique is based on the partial convergence of a waveform during the
previous two iterations. This technique is introduced by using the example of Fig. 16.
After the first two iterations, we observe that the values of v] and v during the interval
[1.7, 3.0] do not differ significantly (see Fig. 16(b), (c)), i.e., the sequence of waveforms
of v seem to converge in this interval after two iterations. In the third iteration, shown
in Fig. 16(d), s is analyzed from 0 to 1.8 and v (1.8) is found to be almost the
same as Vl (1.8). Moreover, during the interval [1.8, 3], the value of v which affects the
value of v3x also does not differ significantly from the values of v (which affects
the value of v). Hence the value of v3 during the interval [1.8, 3] should remain the
same as v2 and the analysis of sl during this interval in the third iteration will be
bypassed. This technique can provide a considerable saving of computing time as
shown in Table II since the intervals of convergence can cover a large portion of the
entire simulation time interval [0, T], especially in the last few iterations. Note that the
subcircuit need not be latent during the intervals of convergence although overlapping
of these intervals with the latency intervals is possible.
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TABLE II
Comparison of CPU times used by RELAX for analyzing the circuit of Fig. 0 with and without the

latency and the partial waveform convergence techniques
(Case 1: Without the latency and the partial waveform convergence techniques.
Case 2: With only the latency technique.
Case 3: With only the partial waveform convergence technique.
Case 4: With both the latency and the partial waveform convergence techniques.)

iteration #

2

4

Total

case

0.3

0.14

CPU time seconds

0.55 0.360

0.7O4 0.814

0.705 O.242

0.88 0.704 0.151

0.832 0.695 0.097

3.668 3.063 1.664.

case 4

0.258

0.695

0.238

0.016

1.31

E. Some extensions of waveform-relaxation techniques: RELAX2. RELAX is writ-
ten in FORTRAN77. It can handle MOS digital circuits containing NOR gates,
NAND gates, transmission gates, multiplexers (or banks of transmission gates whose
outputs are connected together), super buffers, and cross-coupled NOR gates (or RS
flip-flops). It uses the Shichman-Hodges model [33] for the MOS device. All the
computations were performed in double precision and the results were also stored in
double precision. Although the RELAX code is rather small, approximately 4000
FORTRAN lines, it requires a large amount of storage for the waveforms, especially
when large circuits are analyzed. For an MOS circuit containing 1000 nodes with 100
analysis time points per node, the waveform storage requires approximately 3 1000
1000 floating point numbers (corresponding to 2.4 Mbytes if each number is stored in
64 bits).

A new version of RELAX, RELAX2 [55], written in C, has extended and made
waveform-relaxation algorithms more practical. The first important extension consists
of allowing arbitrary subcircuits to be defined by the user, as was provided in the
original SPLICE1 program. These subcircuits are analyzed by a subroutine patterned
after SPICE, while the original RELAX used "hard-wired" subcircuit analyzers made
possible by the fixed structure of the subcircuits allowed by the program. Thus
RELAX2 is slower than RELAX, but still maintains a definite advantage over standard
circuit simulators, approximately one order of magnitude speed improvement.

The second extension consists of allowing the decomposition of the time interval
of interest for the time-domain simulation into subintervals, called windows [56].

Digital circuits can be broken up into two very broad classes: circuits with logic
feedback loops (finite-state machines, asynchronous circuits, digital oscillators) and
circuits without logic feedback loops (most combinational logic, programmable logic
arrays). Experience simulating MOS digital circuits using RELAX2 shows that most
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MOS digital circuits without logic feedback loops converge in less than ten iterations.
However, circuits with logic feedback loops may take many more iterations to con-
verge, and the number of iterations required is proportional to the length of the
simulation interval.

This suggests that the interval of simulation should be broken into "windows",
[0, T1], [T1, T2],-..,[T,_ 1, T,], so that the relaxation will converge rapidly in each
window. Waveform relaxation is applied to the first window, [0, T1] and the values of
the node voltages at T are then used as initial conditions for the analysis of the second
window. This procedure is repeated until all windows have been analyzed.

Consider the analysis of the cross-coupled NAND gate circuit shown in Fig. 17
with the "window" approach provided by RELAX2; convergence is quite rapid (see
Table III). There is a trade-off, however. As the window size gets smaller some of the
advantages of waveform relaxation are lost. One cannot take advantage of a digital
circuit’s natural latency over the entire waveform, but only within that window. The
scheduling overhead increases when the windows become smaller, as each subcircuit
must be scheduled once for each window, and if the windows are made very small, time
steps chosen to calculate the waveforms will be limited by the window size rather than
by the local truncation error and unnecessary calculations will be performed.

Breaking the interval simulation into windows also has the advantage of reducing
the memory requirements of WR, since these are proportional to the number of time
points used by the numerical integration algorithm used to solve the subcircuit
equations.

Other extensions to WR included in RELAX2 involve the approximate solution of
the subcircuit equations [56], [57]. When using iterative decomposition methods for
solving systems of nonlinear equations, it may be possible to reduce the calculations
required by not solving the decomposed nonlinear equations exactly at each iteration.

11
0 2 I0
ns ns ns

-]1 _J
O I0
ns ns ns

IL
OUT

FIG. 17. A two cross-coupled NAND-gate circuit.



RELAXATION-BASED ELECTRICAL SIMULATION 519

TABLE III
Windowing experiments for the cross-coupled NAND gates performed on a VAX11/780 Running

Berkeley UNIX4.1c

mdows
SPICE

4
8
16

# Tirnepoints Max # Iterations

50 >100
50 10
48
59 4
69 4

21.75

13.59
4.48
5.38
5.91

In some cases the convergence of the algorithm is not affected by the inaccurate
solutions. An example is the Gauss-Seidel-Newton method [27] described in Section
II. In the WR case, simpler approximate methods for calculating the node waveforms
are used for the first few iterations; more complex and more exact methods are used for
the last few iterations.

One way of simplifying the calculation of the node-voltage waveforms is to use a
simple model for the MOS devices and then to switch to the more detailed model as the
waveforms approach convergence. The simple device model used in RELAX2 is a
resistor in series with a switch, where the size of the resistance is scaled with the device
size. Using such a model in the calculation of waveforms is not straightforward,
because the equations describing the model can not be solved easily using the
Newton-Raphson method. The Newton-Raphson method will often oscillate about
the point where the simple model’s switch changes state. One solution to this problem is
not to carry out the Newton-Raphson method to convergence, but to do only one
iteration. The result is that the calculation of the waveforms using the simple model is
quite fast, but only approximate, even if the simple model is assumed to be correct. The
results obtained using the simple model and then changing to the more detailed model
have been disappointing so far, as demonstrated in the examples of Table IV. In
circuits without logic feedback, the simple model did not provide a better guess for the
waveforms than one iteration using more complex models. It is possible that the
addition of another term to the simple model, to make it more smooth, may help. Then
the Newton-Raphson algorithm can be used and achieve the accuracy required to
produce a useful first guess for the iterations using the more detailed models.

Another approach to simplifying the calculations performed in the first few
iterations of the WR algorithm is to allow the numerical integration algorithm, which is
used to solve for the node waveforms of the decomposed subcircuits, to use a larger
local truncation error. Here, unlike changing the device models, it is possible to increase
the accuracy of the calculation of the node waveforms at each iteration by tightening
the local truncation error limit. In the case of RELAX, since most circuits converge in
about 5 iterations, a local truncation error was chosen that is about 3 times larger than

TABLE IV
Experiments with variable accuracy model and variable local truncation error (LTE)

Method

SPICE

Simple model
Simple model only
LTE

CIRCUITS
Shift Cell Two Phase Cik Merno’y Cell
Iter Time # lter Time ,# ]ter Time

12.52 43.13 13.63
4 2.10 4 5.47 4 2.98
4 3.20 4 8.75 4 4.45
4 0.49 4 0.69 4 0.88
5 1.24 3 3.81 4 2.71
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the local truncation error that would be chosen to calculate the waveforms for the final
answer. Then after each iteration the local truncation error is multiplied by 0.7. The
results from this approach are shown in the last row of Table IV.

A key question to be asked is whether the convergence of WR algorithms is
affected by these approximation techniques. Note that Theorem V-B-1 assumes that the
solutions of the differential equations are computed exactly. However, the convergence
of the WR algorithm to the exact solution of the original differential equations has been
proven provided the accuracy of the integration is increased while the WR iterations
are converging [56]. The framework necessary to prove this result is the one of
nonstationary WR algorithms.

Algorithm V-B-1 is a stationary algorithm in the sense that the iteration process is
performed with the same set of equations. Nonstationary WR algorithms are char-
acterized by the fact that the equations describing the system at each iteration can
change from one iteration to the other. Note that the approximations computed by the
integration methods can be viewed as the exact solutions of perturbed differential
equations. Thus the iteration equations of the WR algorithms can be seen as changing
from iteration to iteration. The convergence theorem proven in [50], [56], assumes that
the accuracy of the integration methods is controllable and that in the limit, the exact
solution of a differential equation is achieved. Fortunately, this property is obviously
satisfied when using simpler models in the first iterations to switch to more complex
and accurate models at the last iterations. In addition, it is known that consistent
integration methods can be made as accurate as desired by controlling parameters such
as the local truncation error. Thus the speed-up techniques presented here are theoreti-
cally sound.

F. Conclusions. Waveform-relaxation methods have been proven to be effective
decomposition methods for the analysis of large-scale MOS circuits. In particular, the
methods have guaranteed convergence properties. Since WR algorithms are quite new,
more research is needed to characterize completely the trade-offs involved in the choice
of a particular method in the class (e.g., Gauss-Jacobi versus Gauss-Seidel). In
addition, an accurate comparison between iterated timing analysis and waveform
relaxation must be carded out.

It is clear that WR methods are quite suitable for implementation on a parallel or
pipeline architecture since they allow different subcircuits to be analyzed concurrently
on different processors.

In addition, WR algorithms have recently been extended to piecewise linear circuit
analysis [57] and to other fields such as electrophoresis process simulation [58].

VI. Summary and directions for future work.

A. Introduction. Relaxation-based simulation techniques have been used for the
analysis of electronic circuits in many ways. Timing simulators were the first
relaxation-based electrical simulators to gain widespread use and are still being used
successfully in many companies today. Unfortunately, since only a single sweep of a
relaxation method is used to approximate the solution of the set of nonlinear algebraic
equations obtained at a time point, these simulators suffer from severe accuracy
problems when used to analyze circuits containing tight feedback loops or floating
circuit elements. In Section III we presented an analysis of the numerical techniques
used in timing simulation, and described a number of algorithms which can be used to
improve the accuracy of timing simulators. In particular, methods suited to the analysis
of floating capacitors have been described.
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While timing simulators will continue to be used for the analysis of circuits where
constrained circuit design methods, such as cell-based approaches, limit the likelihood
of simulation errors, they cannot be used for the analysis of complex digital and analog
circuits where feedback effects are significant. A new relaxation-based approach, called
iterated timing analysis, can be used for the analysis of these circuits. We have
described the basic algorithms used for ITA and their associated numerical properties
in Section IV. This approach provides accurate simulation results while still achieving a
substantial speed improvement over conventional circuit-analysis techniques. As shown
in Section IV, ITA has also beenused successfully for the analysis of tightly coupled
analog circuits containing a number of floating capacitors.

Both of the aforementioned techniques apply relaxation methods to the solution of
a set of nonlinear algebraic equations. In contrast to these techniques, the waveform-
relaxation method uses a relaxation approach at the differential equation level. In
Section V we have shown that waveform relaxation has guaranteed convergence
properties for a wide class of electrical circuits, and has performed over one order of
magnitude faster than standard circuit simulators on a number of test circuits while
maintaining the same, or even better, accuracy. A number of improvements and
extensions to the basic waveform-relaxation method were also presented.

On conventional computers, the speed advantage of relaxation-based analysis over
matrix-based techniques can vary from a slight slow-down, for small tightly coupled
analog circuits, to a maximum of about two orders of magnitude speedup, for large
semi-static digital circuits.

B. Special-purpose hardware. The use of special-purpose computer instructions
for sparse-matrix solution [14] and the use of vector computers, such as the CRAY-1
[17], can improve the speed of conventional circuit simulators by about an order of
magnitude over their nonoptimized versions on the same machine. In the latter case,
the speedup is limited by the gather/scatter problem [46] associated with arranging the
data so that effective parallel computation can be performed. Unfortunately, the
irregular structure of a circuit sparse matrix is the limiting factor here.

If relaxation techniques are used to replace these direct methods, the solution of
each node equation is effectively decoupled from the others. While such decoupled-anal-
ysis techniques would be suitable for use on a vector computer, it seems that other
architectures, in particular data-flow computers and related dependency-driven ap-
proaches [48], [49], [59]-[62], will allow the decoupling to be exploited more effectively.
A straight-forward approach to the implementation of an electrical relaxation simulator
on such a computer would be to allocate a separate processor for the solution of each
decoupled-node equation. For an ITA algorithm, the calculation performed by each
processor would be a single Newton-Raphson step on a nonlinear algebraic equation
in one unknown. In the case of WR, each calculation would involve the computation of
a partial waveform, or set of waveforms, on the processor. While the performance of a
practical multiprocessor depends on many factors, a simplified analysis is presented
here to illustrate the potential savings of such a machine.

For a circuit containing N nodes with M nodes actively changing at any time,
M < N, the total time spent solving the independent node equations on a serial
computer is approximately

(48) Ts(M )

where ts is the time required to solve the single-node equation in either scheme.
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Consider a multiprocessor using a single- or multiple-stage shuffle network [61], [62]
with an dement cycle time of t and a latency proportional to klog(P), where P is the
number of ports in the shuffle network and k is a constant. For now assume P > M;
then the total analysis time on such a network is approximately

(49) Tp(P) or. + tcklog(e ).
Equation (49) is in fact a worst-case figure because it assumes all communication is on
the critical path of the computation and that there is no pipelining of requests. The
speed-up factor for the parallel computation is then

(50) rp t, + tck ( e
If k is from 1 to 3 [63]; if M= P; if tc= s, the speed-up becomes approximately
M/log M. However, if the equation solution time is larger than the network cycle time,
or if a better than random placement of the circuit nodes on the network can be
performed, then the speed-up factor will be closer to M. Note that it will generally be
true in practice that M > P. In that case, more than one node will be allocated to each
processor. Techniques for the implementation of "virtual processors" can be used to
solve this problem [64], and scheduling algorithms can be used to allocate the nodes to
processors in such a way that network loading is uniform.

It is clear that relaxation-based algorithms for electrical simulation are well suited
to the use of special-purpose hardware. Future work in this area includes the investiga-
tion of the best match of hardware and algorithms, and the investigation of optimal
techniques for simulation time advancement in a parallel computational environment.
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MATRIX METHODS FOR QUEUING PROBLEMS*
LINDA KAUFMANf

Abstract. Queuing networks are often analyzed to determine their behavior under different traffic
situations. The analysis may indicate the effect of increasing servers on the waiting times of customers. It
may also indicate whether the network can become so overloaded that no customer can be served. Most of
the quantities of interest (the blocking probabilities and waiting times for various traffic streams) can be
expressed in terms of the steady-state probabilities that are the solution of the local balance or Kolmogorov
equations. For most models currently used, these probabilities can be expressed analytically as a product
of quantities that can be easily ascertained. However, when the current state of the system dictates future
action, such an analytic expression is not always available and the balance equations must be solved expli-
citly. Even for systems with relatively small numbers of queues (say 4) and a small number of waiting
spaces and servers per queue (say 20), the number of linear equations can be huge, i.e. much more than
10,000, and hence these equations are rarely solved. However, most of the equations are sparse, highly
structured, and possess enough algebraic structure that it is possible to solve some modest systems. In this
paper we will discuss various methods to solve for the steady state probabilities which form a normalized
null-vector of a singular matrix. These methods have been traditionally used to solve nonsingular linear
systems that arise during the solution of partial differential equations. We show that when applying certain
well known iterative techniques the ordering of equations is important, but that the traffic flow usually dic-
tates an appropriate ordering. Our experience in applying various techniques to a queue overflow problem
and to a tandem queue problem is described.

Key words. M-matrices, singular matrices, queuing, Gauss-Seidel

1. Introduction. Queuing networks are often analyzed to determine their
behavior under different traffic situations. The analysis often indicates the effect of
increasing servers on the waiting times of customers and on the blocking of custo-
mers. It may indicate whether the network can become so overloaded that no custo-
mer can be served. Most of the quantities of interest (the blocking probabilities and
waiting times for various traffic streams) can be expressed in terms of the steady-
state probabilities that are the solution of the local balance or Kolmogorov equations.
For most models currently used, these probabilities can be expressed analytically as a
product of quantities that can be easily ascertained. However, when the traffic rout-
ing is dependent not only on the global parameters of the system but also on the local
traffic situation, such an analytic expression is not always available and the balance
equations must be solved explicitly. Even for systems with relatively small numbers
of queues (say 4) and a small number of waiting spaces and servers per queue (say
20), the number of equations can be huge, i.e. much more than 10,000, and hence
these equations are rarely solved. However, most of the equations are sparse, highly
structured, and possess enough algebraic structure that it is possible to solve some
modest systems. In this paper we will discuss various methods which have been used
to solve these problems.

Section 2 will discuss the setting up of the balance equations and properties pos-
sessed by the resulting system of equations. The steady-state probabilities form a
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Bell Laboratories, Murray Hill, New Jersey 07974.

525



526 L. KAUFMAN

normalized null-vector of a matrix with positive diagonal elements and nonpositive
off-diagonal elements. Section 3 will discuss determining this null-vector using direct
methods. Often the matrix possesses some algebraic structure which may be used to
determine a matrix decomposition swiftly and using less space than traditional Gaus-
sian elimination. Section 4 will discuss various methods based on matrix splitting for
finding the probability distribution. These methods have traditionally been used to
solve nonsingular linear systems with M-matrices that have arisen during the solution
of partial differential equations. When the singular matrix is 2-cyclic, Gauss-Seidel
and its variants will converge. When the matrix does not have this property, which
may occur in a tandem queue situation, Gauss-Seidel will converge for all traffic
situations only if the rows and columns are ordered appropriately. A correct order-
ing can easily be determined by considering the traffic flow. Although the singular
system can be easily modified to a nonsingular system for which convergence is
assured, we suggest that this approach not be taken. The splitting methods, which
have been traditionally applied to nonsingular problems, will normally converge
much, much faster when applied directly to the singular system which has been
appropriately ordered.

At the end of the paper we consider two examples. The first involves overflow-
ing queues which generates a singular system with a symmetric zero structure. In
this case taking advantage of the algebraic structure of the problem is worthwhile and
we approach the problem in a manner similar to that taken by Buzbee, Golub, and
Nielson [4] for solving Poisson’s equation. The second problem, which stems from a
model of a packet switch network, generates a problem in which the ordering of the
equations is important. We show how the traffic flow dictates an appropriate order-
ing.

2. The equations. A Markovian analysis of a queuing network based on solving
the Kolmogorov equations (see Neuts[12]) for the steady state probability distribution
involves finding the null-vector of a large, sparse, structured matrix. In this section
we will detail the construction of this matrix, consider the effect of various network
protocols on this matrix and discuss certain properties of the matrix which might help
us determine its null-vector. We will be mainly concerned with problems having
interacting queues because these problems lead to systems whose solutions cannot be
found using simple analytic techniques and are usually solved explicitly via the bal-
ance equations.

In general let us assume that the system to be analyzed has k queues, with
n l,n2 nk spaces in each queue. Solving the balance equations yields the steady
state probability distributions Pi ik giving the probability that there are occupied
spaces in queue 1, i2 occupied spaces in queue 2 and k occupied spaces in queue
k. Note that 0 <- ij <- nj for 1 <- j -< k, so that there are n Iljk_-i (nj+l) states
and hence n equations, 1 per state.

The probabilities are rarely of interest in themselves. They may be used how-
ever to compute such quantities as the loss (or blocking) probabilities, the probability
of overflow from one queue to another, the average waiting times per queue etc.

The balance equations describe the rate at which state (i,i2,...,ik) is left and the
rate and states from which that state is entered. For example consider the network
with 2 queues, 5 servers per queue, and 9 spaces in each queue. Suppose customers
enter the first queue at rate k and leave with rate p and enter the second with rate
k2 and leave with rate 12. Let us also assume that a customer entering the first



MATRIX METHODS FOR QUEUING PROBLEMS 527

queue can be serviced by the second queue if all spaces in the first queue are filled.
This last assumption insures that most analytical solution techniques will fail. If

ij {O1 if 4: j,
if/ =j,

then the balance equations describing the system can be written as

(2.1)

(kl(1-Si98jg)+k2(1-j9)+lXl min(i,5)+l2 min(j,5))Pij
hl (1--gio)Pi-l,j+ [1--gj0) (hlgi9+ h2)Pi,j-1 + 1 [1--i9)min(i + 1,5)Pi+l,j

+ 2 (1--gj9)min(j+ 1,5)pi,j+ for i,j=0,1,2,...,9.

The coefficient of Pi,j in (2.1) indicates when (the terms with ) and the rate at
which state (i,j) is left. In particular, it indicates that unless both queues are filled,
customers enter the network, changing the state of the system, at rate hi. The right
hand side of (2.1) indicates from which states, when (the terms with ), and the rate
at which state (i,j) is entered. For example, the coefficient of Pi,j-1 says that ordi-
narily one gains a customer in the second queue at rate h2 but if the first queue is
filled, additional customers arrive at rate hi. The expressions of the form 1- on
the right hand side insure that inadmissible states are not accessed.

Let p be the vector (P00,P01 ,Po9,Plo,Pll ,P99) T. Then (2.1) can be written as

Dp Cp

where D is a 100x 100 diagonal matrix and C is a matrix with 0 on the diagonal.
A D-C, then the pij’s form the null-vector of the matrix A, i.e.

(2.2a) Ap 0.

If

Since equation (2.2a) determines p up to a scalar multiple, we add the normalizing
condition that

(2.2b) Pl 1.
/=1

The matrix A has a number of interesting properties which we will explore using
the example in (2.1).

First of all, the matrix A is singular and since each diagonal element is the nega-
tive of the sum of the off-diagonal elements in its column, each column sum is 0.
The matrix A, like all those we will consider in this paper, is irreducible, that is,
there is no symmetric permutation of the rows and columns of A which will change it
into the form

where B and D are square matrices. The fact that A is irreducible is equivalent to
the assumption that the underlying Markov chain is ergodic. (See Berman and Plem-
mons[2], chapter 8.) It also means that there is a unique positive stationary probabil-
ity distribution vector associated with the problem.
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Secondly, A has positive diagonal elements, nonpositive off-diagonal elements,
and the diagonal elements are not less than the sum of the magnitudes of the off-
diagonal elements in their columns. Matrices having these properties have been
called L matrices by Young[17]. The term Z-matrix has also been used to denote
matrices with nonpositive off-diagonal elements. A Z-matrix has been called an M-
matrix if, as in our case, all principal minors of A are nonnegative or equivalently,
the real parts of all eigenvalues of A are nonnegative. (See Berman and Plem-
mons[2].) We will use the term singular M-matrices. Probably because M-matrices
often appear when solving elliptic partial differential equations, many theorems exist
governing the handling of such matrices (see [15]).

In the third place, the matrix is large and sparse. Our example of 2 queues led
to a 100 100 matrix with at most 5 nonzero elements per row. If we had considered
a network of three queues with 9 spaces in the third queue, our matrix would have
1000 rows and at most 7 nonzeroes per row. It is not difficult to contemplate sys-
tems with 1,000,000 equations. In general adding queues tends to do more damage
than adding to the number of spaces per queue. The matrices are highly structured
and many of the reordering techniques developed to handle sparse matrices of mod-
est size (< 10,000 rows) can often be applied successfully to these problems.

Fourthly, often the matrix exhibits some block structure. The matrix A for the
equations in (2.1) can be written as

(2.3) A

B C

D2 B2 C2

B9 C9

Do Bo

where C -1 min(i,5)l is a 10x 10 diagonal matrix for 1,2 ,9, D -hll
is a 10 10 diagonal matrix for 2,3 ,10 and B is a 10 10 tridiagonal matrix
for 1,2 10. In fact, for 1,2 9 we see that B B+min(i-l,5)llI,
where B is the matrix

O" --}.l,2

--X20"+2
--2

O’q- 52
--X2 O’+52--h2

where tr X2q-X 1. For B10 the subdiagonal elements are -X-X2.

Sometimes the blocks themselves can be further partitioned into blocks For
example, if the example in (2.1) had three queues with 9 spaces in each where both
the first and second queues can overflow into the third queue, the figure in (2.3)
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would be appropriate, but the D’s and C’s would be 100x 100 diagonal matrices and
the B’s would be a 100x 100 matrix having exactly the same block structure as A in
(2.3).

Even if the network had tandem queues, the matrix A would have block struc-
ture. For 2 queues in tandem the equations would have the form

(2.4) ap ,j bpi- ,j "dr" cP + ,j- -I" dp ,j +

for some a,b,c,d’s. The matrix A would have the same block structure as (2.3), but,
assuming the th diagonal block corresponds to holding fixed and varying j, the B’s
would be bidiagonal, the D’s would again be diagonal, and the C’s would have only
one diagonal but it would be a subdiagonal.

Exposing the block structures of the system is a useful notational tool, but it
may also have some computational advantages. Often iterative algorithms which
treat a submatrix as an individual unit converge faster than those which treat each
element in the submatrix as a unit. Usually the faster convergence rate is coupled
with more work per iteration, but in the case when the matrix is banded with very
small bandwidths, the extra work is negligible.

Submatrices of the matrix A often show additional algebraic structure associated
with the separability of the original system, which can be exploited as shown in sec-
tion 3.2. We will call a matrix A separable if it can be written as the sum of the ten-
sor product of matrices

q
(2.5) a _Bj@ Cj

j=l

where the B’s have more than 1 row and there exist matrices Q and Z such that for
every j, QBjZ is a diagonal matrix. Usually q denotes the number of queues in the
system. Often all of the B’s, except one, are identity matrices, Z is Q-, and Q con-
tains the eigenvectors of the one B which is not an identity matrix. If the system
corresponds to more than two queues, the C matrices may also be separable matrices.
A separable submatrix corresponds to those states in which the action in any one
queue is independent of the state of the other queues. For example, in (2.1) traffic
enters queue 1 at the same rate regardless of the state of queue 2, but the incoming
rate into queue 2 is increased when queue 1 is full. Thus the first 90 rows and
columns of A in (2.3), which correspond to the states in which the first queue is not
full, form a separable submatrix, but the whole matrix itself is not separable. In gen-
eral, separable submatrices correspond to the interior of the state space plus a few,
but not all, faces of the boundary. In computational terms one can reduce a separ-
able matrix (or submatrix) to a diagonal matrix by solving small eigenvalue prob-
lems. For 3 overflowing queues with 9 spaces in each, for many protocols about 800
of the 1000 resulting equations can be reduced to a diagonal representation by solv-
ing 3 eigenvalue problems each 10 10.

Finally, (2.2) contains n+l equations for determining n unknowns. Assuming
that n is small, Paige, Styan, and Wachter[13] present about 8 ways, including some
least squares approaches, to solve (2.2). Their methods make no attempt to use the
underlying structure of the A matrix. In (2.6) several more obvious methods are
proposed, some of which use the fact that A may be partitioned as
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where B is a nonsingular (n-1)X(n-1) M-matrix.

(2.6a) (1) Solve (2.2a) and scale p so (2.2b) is satisfied

(2) Let (Pl ,Pn-1)r

(2.6b) Solve B -d

Setp=

Scale p so (2.5b) is satisfied

(3) Solve the system

where er is the vector (1, l, l) and en is the last column of the identity matrix.
The coefficient matrices in (2.6b) and (2.6c) may be ill-conditioned and several

examples have been found in which they have appeared singular up to the precision
of the computer, although they have independent rows theoretically. For these ill-
conditioned problems, small changes in the matrix might produce large changes in
the solution although the exact perturbation is of course also dependent on the right
hand side. (See Skeel[14].) In (2.6b) the first (n-1) columns of A have been arbi-
trarily chosen as a basis for A. Perhaps, a better conditioned system might arise if a
different column were deleted, although results by Harrod and Plemmons[8] indicate
that it usually does not matter which column is eliminated. In section 4 we discuss
various iterative methods for determining p. We have found that applying some of
these iterative schemes to (2.6a) requires much fewer iterations than applying the
same scheme to (2.6b). Again the results may vary if a different basis were chosen
for A. In approach (2.6c) one loses some of the nice properties of the system. When
using a direct approach like Gaussian elimination, a naive user faced with banded
matrix solvers and general solvers in his local subroutine library, may choose to
ignore the fact that B is banded and use an expensive general solver because the
coefficient matrix in (2.6c) does not have exactly a banded structure. Also the
matrix is not an M-matrix, which eliminates the underpinning of the iterative
methods in section 4. Thus it seems most natural to approach the problem using
method (2.6a). In our future discussions We will mainly be concerned with (2.6a)
but we will allude to the other approaches as well.

3. Direct methods. In this section we discuss direct methods for solving

(3.1) Ap=O,
n

.pi 1
i=l

where A is a sparse, nonsymmetric, irreducible, square matrix arising during a
queuing analysis. The matrix A is often banded and usually has a regular, discerni-
ble zero structure. It may also possess some algebraic structure which one may wish
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to take advantage of. In most analyses the problem will be solved many times with
coefficient matrices having the same zero structure but with slightly different values
for the nonzero elements.

Direct methods are used when n is not large, say n < 600. Even when the pro-
posed problem is much larger, one might be able to study the salient features of the
network by considering a system which can be solved directly rather than iteratively.
For example, an analysis of a system with 4 or 5 buffer spaces in 4 queues will prob-
ably tell a designer as much about whether a given protocol will produce negligible
throughput in a heavy traffic situation as a similar analysis with 20 buffer spaces per
queue. In many instances the data that is entered into A is so imprecise that only
trends and the qualitative behavior of a system can be gleaned from any analysis.
An accurate numerical forecast might be meaningless and hence there might not be
any good scientific reason to solve a large problem. On the other hand, if a designer
is sure of his data and wishes to determine the minimum number of buffer spaces
required by various queues to maintain a given throughput level, one might have to
solve large problems and the techniques in the next section might be more amenable.

3.1 General direct methods. Funderlic and Mankin[7] have shown that for these
problems A may be written as

(3.2) A L U1
where L is a nonsingular lower triangular matrix and U1 is the upper triangular
matrix

where U is an upper triangular nonsingular matrix. If one tried to obtain the LU fac-
torization using Gaussian elimination with partial pivoting, one would discover that
no pivoting would be performed and the resulting decomposition would look like
(3.2). Thus one can used the following algorithm for solving (3.1)

(A) Setpn 1

(B) Solve U=-d where r=(p Pn_l)T

(C) Let c Pi
i=1

(D) For i= 1,..,n
Set p, pi/c.

Notice that the L matrix is not needed explicitly after U has been formed and if
one performed Gaussian elimination as is usually done, there would be no reason to
store L. In a typical situation with a sparse matrix package(see [5],[6]), about half
the space could be saved. Bandsolvers usually overwrite a band matrix A with L and
U and require extra space for the overflow diagonals of U which might occur because
of pivoting for stability. As Funderlic and Mankin have shown, this extra space is
unnecessary and requires typically 50% more storage. If the bandsolver does not
accept A initially as a whole matrix, but receives it one row or column at a time, as
in most sparse matrix packages, L need not be saved, thus reducing the storage costs
by about 50%.
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Whether a bandsolver is preferable to a sparse matrix solver usually depends on
the nature of the problem, the available resources and the architecture of the
machine. The first phase of most sparse matrix solvers is the determination of an
ordering of the rows and columns of A to minimize the number of nonzeros in L and
U. For these problems the row ordering should be exactly that of the column order-
ing, which would correspond to reordering the states in the system. To obtain this
ordering one might apply an ordering routine designed for problems with symmetric
zero structure to the zero structure of the matrix A + Ar. When the network has
queues in tandem, the zero structure of A is often nonsymmetric. For problems in
which space is crucial, the sparse matrix solver will usually produce a decomposition
having 90% fewer nonzeroes than that produced by the bandsolver. However, for
each nonzero element in the sparse decomposition one needs a numerical indication
and some mechanism to indicate which element it is. Thus the saving in space might
be only 45%. Because queuing problems are often multidimensional( 8-dimensional
problems are not uncommon), the extra space released by the sparse matrix solver
might only mean that the buffer size in each queue might be increased by 1, before
the available resources are exhausted. Theoretically, one would expect about a 90%
decrease in the execution time of the numerical phase of a sparse solver over a

bandsolver. However, sparse matrix solvers always involve more complicated index-
ing procedures which cut the percentage. Moreover, if time is really crucial, one
might use a vector machine like the Cray-1. The bandsolver provided by the Cray-1
calls assembly language subroutines for inner and outer products and is very good on
large bandwidth problems. Even when the numerical phase of a fast sparse matrix
solver has been modified to call hand coded assembly language subroutines for sparse
inner and outer products, the bandsolver supplied by Cray is usually faster.

3.2 Decompositions with algebraically structured matrices. Often linear sys-
tems arising from queuing problems have sufficient algebraic structure that it pays to
exploit this structure rather than use a general sparse matrix solver. Usually in these
problems, A can be partitioned as

(3.4, A (EC / [E 1 ] [C0 D IC- F_EC_ID
LU

where C is very large, nonsingular, and easy to factor, and N=F-EC-D is a dense
matrix that is small enough that solving a linear system with N as a coefficient matrix
is relatively simple.

For example, consider the problem with two queues, 1 server per queue in
which a job destined for the first queue can be handled by the second queue if no
space in the first queue is available. Assume the mean service rate for each queue is
I, the mean arrival rate for the first queue is hi, the mean arrival rate for the
second queue is h2, the first queue has n spaces and the second queue has n2 spaces.
Let Pij indicate that there are spaces filled in the first queue and j in the second
queue. The balance conditions lead to the following system of equations"

(3.5) (hl(1-iin Sj,. + X2(1-ajn0 + .(2-io- jo))Pij

+ +
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If the natural lexicographical ordering is used, then A may be written as

(3.6) A

0

-6-7 o n
where J is the (n2+l)(n2+l) diagonal matrix -IXI, H is an (n2+l)(n2+ 1) diag-
onal matrix -hl, F is a tridiagonal matrix and C is a separable matrix of the form

c (R)o + v(R)

where G is the (n2+ 1)(n2+ 1) tridiagonal matrix

-h2 IX+hE --IX

-h2 IX+X2

--X2

and V is the n n tridiagonal matrix

hi
IX+h!
--h

IX+X!
-h

We will show that C is simple to work with because it is separable. Our ideas
are similar to those found in [4] for solving large linear systems arising when solving
elliptic partial differential equations.

First of all, because of the sign structure of the off-diagonal elements of G, one
can find a real matrix Q such that QGQ- K, a real diagonal matrix with diagonal
elements k ,kn2/ 1"

Thus

(3.7) (I@ Q)C(Q-I@ I)=I K + V@ I.

It should also be noted that forming Q- is easy. Since G is diagonally similar
to a symmetric matrix, the matrix Q may be written as

(3.8) a 0S
where S is a diagonal matrix and is an orthogonal matrix. Thus

Q-1 s-lOT.
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To solve a system

(3.9) Cx=y,

it is simplest to consider x as an (n2+ nl) array X and y as an array Y of the same
size. To solve (3.9) one might proceed as follows

(A) Set Z=OSY
Set M=Zr

(B) For 1,2 ,n2+ 1
Solve (V+ kil)Wi=llli

Let W--(W Wn2+ 1)

(C) Set X S- O.rwr.
Steps (A) and (C) of the above algorithm each require (n2+ 1)2nl operations and

step (B) about 5(n.+l)nl operations. The matrix-matrix multiplications can of
course be vectorized, and all the systems in step (B) are independent so at the
expense of storing all of them, one could do them all simultaneously.

If nl+ n2+ m, only m2 locations are needed to store Q, another m2 to
store

N=F (0 :H) C-1

and 2m to store the intermediate quantities while working with C. Even if
rn 200, which would give us a problem with 40,000 variables, the problem could
be solved in about 160,000 locations. A sparse matrix package, which reordered for
sparsity, would need at least 2(m2 log m) or at least 640,000 locations. A bandsolver
would need at least 2m3 locations or 8 million locations to store the original matrix.

The operation count is also smaller for the separable approach. Forming Q and
solving a system with N each requires O(m3) operations. Forming N is the expensive
step because one must solve rn systems with C as the coefficient matrix, requiring
O(m4) operations. However, each Y in (3.9) has only nonzero element in the
whole matrix, so that the operation count for step (A) is negligible and since only the
last column of each X matrix is needed, step (C) can be cut to O(m2) operations.
Thus the whole separable algorithm really requires O(m3) operations. In contrast, a
bandsolver would require O(m5) operations.

We chose a simple problem to show how to use the algebraic structure of the
problem. Even examples with much different geometries have separable portions.
For example, consider the 2-queue overflow problem with n servers in the first
queue and W waiting spaces and n2 servers in the second queue and w2 waiting
spaces for that queue. Assume that a customer waiting for service in the first queue
must be handled by the second queue if a second queue server is available. If we let
Pi,j denote the probability that customers are being served or waiting in the first
group and j in the second group, then

Pij 0 for > nl+l and j_< n2.
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If we let kl n+w and k2 n2/w2, we may think of the probabilities as values
associated with the L shaped domain

0,0 n2 k2

T n!,
k

If we denote by region $, the values associated with Pij for O-i<nl, O--j<n2, by
region T the values associated with Pij for O--i--kl, n2+ l--j--k2, by region C the
points on line Pn,, O--j<n2 and by region D the points PinE, Oi--kl, then the matrix

A will have the following zero structure:

SOXX

A= T 0
0 C
X X

where the large matrices S and T will each be separable. Indeed for many protocols
with 2 queues, this basic idea of using small eigendecompositions to help solve a
linear system is viable. When the queues are in tandem, however, the approach does
not carry over easily.

Unfortunately, the idea usually cannot be extended to 3 queues of size nl, n2,
and n3 spaces in each if these quantities are even of moderate size. Almost every
protocol entails finally solving a general matrix of size say nEn3 by nEn3. Thus only if
these numbers were say less than 20 each, could one fit the problem in the core of a
midsize machine.

Our presentations of the solution method involved a small eigenvalue-
eigenvector calculation. Bank [1] has presented another method for dealing with
separable matrices which would be more efficient, especially if one is solving systems
with multiple right hand sides of random zero structure. Such a situation might arise
if one chose to solve the problem using an iterative technique, as given in the next
section, in which the D matrix of (3.4) was put on the right hand side of the equa-
tion and the rest of the A matrix was left on the left hand side. In the problem
presented, the algebraic structure of the E and D matrices of (3.4) was so special
that it was cost effective to use the eigenvalue-eigenvector decomposition.

4. Iterative methods. In this section we will discuss methods for finding the
null-vector of the matrix A defined in section 2 that are based on splitting that matrix
A into two matrices M and N such that

(4.1) A M-N

where M is a nonsingular M-matrix and nij >- O. Such a splitting is called a regular
splitting and can always be found. For example in the Jacobi method M is D, the
diagonal of A, and in the Gauss-Seidel method M is D/L where L is the strictly
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lower triangular portion of A and N is -U, where U is the strictly upper triangular
portion of A.

Our methods will all have the form

(4.2)

guess p)>0
Until convergence

Solve Mpk) Npk- 1)

Normalize pk)so that IIp  )ll- 1.

In section 4.1 we give theoretical convergence theorems. In section 4.2 some
computational evidence of the performance of various splitting methods is given for 2
different types of examples. In particular we consider whether (2.6a), solving a
singular problem, is preferable to (2.6b), solving a nonsingular problem, and whether
the ordering of the equations is important given a particular matrix and iteration
scheme. For one of our examples we show the effect of using the algebraic structure
of the matrix to form a block iterative method. We also indicate our experience with
various accelerating techniques such as SOR and Chebychev acceleration. In section
4.3 we give some implementation advice and draw some conclusions about the feasi-
bility of solving large problems.

4.1 Convergence results. In this section we will discuss convergence properties
of algorithms of the form (4.2) to find the null-vector of A M-N.

In this section we will use the following notation"

T M-1N,

p(T) modulus of largest eigenvalue of T,

o’(T) max{IX [h is an eigenvalue of T and h :/: 1}.

The matrix T is central to the convergence theory since (4.2) may be rewritten
as

(4.3) pk) Tp<k- 1).

Our analysis below based on the eigenvalues of T is similar to that in [2], section 7.6.
LEMMA4.1. p Tp iffAp O.
Proof. If p Tp, then p M-Np which implies (M-N)p 0, or Ap 0.
If Ap 0, then (M-N)p 0 implying Mp Np or p M-1Np. Thus the

fixed point of our algorithm, the eigenvector corresponding to the eigenvalue of T,
is the null-vector of A.

Since the null-vector of A is assumed to be unique, the eigenvalue of T at 1
corresponds to only linear independent eigenvector. Moreover, this eigenvalue is
the largest one of T as Lemma 4.2 indicates.

LEMMA 4.2. p(T) 1.
Proof. Since =laij 0 for j 1,2 n, i.e. A is stochastic

era 0
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where e is the vector of all l’s. This implies

eT M e’N
or

implying

MTe NTe

e M-rNre.
This means that the maximum row sum of M-rNr is or IIM- N II . But

IIM-T_NrII -_ p(M-TNr) o(NM-) o(M-iN) o(T)

Thus

p(M-N)
But we know is an eigenvalue of T. Therefore

1 p(M-N).
To determine when algorithm (4.2) converges let us first consider the case when

T has a full set of linearly independent eigenvectors. Let x represent the eigenvector
corresponding to the eigenvalue hi of T. We may write p(0) as a linear combination
of these eigenvectors, i.e.

p(O) aiXi
i=l

and if h 1, then a0 since all indices of p(0) and x are positive. Therefore after
k steps of (4.2)

p(k) ot.ihX
i=l

where 13 is some normalizing constant. If for j> 1,1hj[< 1, we see that

lim p(k)-xl/llXl]l-p

which means that not only is convergence is assured but also that the normalization
step in (4.2) is superfluous until the end.

If there are other eigenvalues on the unit circle besides the one at 1, algorithm
(4.2) will not converge. In particular if h2 1, and all the other eigenvalues are
within the unit circle, eventually every other iterate would repeat itself and neither
would be the solution. This in fact can happen. According to Theorem 4.3 of
Varga[15], when A is 2-cyclic, that is, the directed graph associated with A is
strongly connected and the greatest common divisor of the lengths of all closed paths
is 2, as in the case of a tridiagonal matrix, the Jacobi method produces a T matrix,
Tj, with the only eigenvalues on the unit circle at -1 and 1. The same theorem
however indicates that for this class of problems, for the Gauss-Seidel, the eigen-
values of the T matrix Ts are those of Tj raised to the second power. Thus the 2
eigenvalues of T on the unit circle are both represented by an eigenvalue at 1 for
Ts. Thus if lh p(Ts), then h 1, and the Gauss-Seidel method converges.
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When T does not have a full set of linearly independent eigenvectors, the results
of the analysis is unchanged. Without loss of generality let us assume T has n-1
linearly independent eigenvectors, hm corresponds to a Jordan block of rank 2, and
that Xn is a principal vector of grade 2 of that block. Thus

TXm hmXm
and

Txn hmXn -+- Xm.

After k steps of algorithm (4.2) we would have
n-1

p(k) [3(
_

Oikki xi -- ktRnkkm- W Otm}kkm)X + OnkkmXn )
i= l,i=/=m !

If m= 1, p() will grow in the direction of the null-vector of A and in no other direc-
tion. Thus we have to normalize the iterate at each step to detect convergence, but
basically we are not hurt if the eigenvalue at 1 is not simple. If km is on the unit cir-
cle but not at 1, the algorithm, as in the case of a full set of eigenvectors, will not
converge. If km is within the unit circle, growth will initially take place in the direc-
tion of its eigenvector but eventually the portion of the iterate in that direction will
decrease. If there is more than one Jordan block greater than 1 in rank or some of
higher rank than 2, the conclusions are the same.

As we have shown, eigenvalues of T on the unit circle, that are not at 1, are
responsible for nonconvergence and for 2-cyclic matrices, the Gauss-Seidel algorithm
converges. When the matrix A is not 2-cyclic, the convergence of the Gauss-Seidel
algorithm for singular matrices is dependent on the ordering of the rows and columns
of the matrix. A matrix is considered p-cyclic if the block directed graph associated
with the matrix Tj is strongly connected and the greatest common divisor of the
lengths of all closed paths is p. A p-cyclic matrix is considered consistently ordered
if the eigenvalues of the matrix

(4.4) Kn "qD-1L-t-’q(-P+I)D-1U

are independent of -q. Since the eigenvalues of Ts of a p-cyclic consistently ordered
matrix are those of Tj raised to the pth power and the pth roots of unity are eigen-
values of Tj, Gauss-Seidel converges for p-cyclic consistently ordered matrices. (See
Varga[15].) For example, for the 3 x 3 matrix

-1

-1

condition (4.4) is satisfied, the T matrix for Gauss-Seidel has eigenvalues at (0,0,1),
and convergence is assured. However if the states had been reordered so that the A
matrix was

-1
-1 1
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then condition (4.4) is not satisfied, the eigenvalues of the T matrix of Gauss-Seidel
are (0,1, -1), and every other iterate repeats. In general if the underlying graph is
p-cyclic, a matrix is consistently ordered if it has the form

X

X X

X X

X

In networks in which different traffic flows have different destinations and some
traffic resides in fewer buffers than other traffic, the cycles in the graph suggested by
the balance equations are not all of the same length. In this case, the ordering of the
equations is still important because with a given traffic mix, the matrix may effec-
tively be p-cyclic. For example, consider the matrix suggested by the network
analyzed in [9]

(4.5)

1 -b -1
1 b+c

--C

--1

The eigenvalues of T for point Gauss-Seidel are (0,0,0,1), which means convergence
is immediate. If the states were renumbered so that the matrix looked like

(4.6)

-1

c+b -i-1 -b

the eigenvalues of T for the point Gauss-Seidel method would be 0,1, and the 2 roots
of (b+c)h2+ch+c. If b were 0, the eigenvalues would be 0 and the cube roots of
unity. Thus as the ratio of b to c decreases, the number of iterations required rises
dramatically. If the matrix A had been further rearranged to

1 -c

(4.7) -b -1
-1 c+b

1-1

the eigenvalues of T for point Gauss-Seidel would be (O,O,-c/(b+c),l). If b were
zero, every other iterate of point Gauss-Seidel would be repeated.

Even in situations when convergence is guaranteed, the ordering is important as
Table 4.4 in section 4.2 indicates. If under certain parameter settings, the second
largest eigenvalue lies on the unit circle, then a slight change in these parameters
might yield a convergent algorithm. However, the second largest eigenvalue might
be so close to the unit circle that convergence is excruciatingly slow.
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The problem of having 2 or more eigenvalues of T on the unit circle can be
avoided without reordering by using a step length algorithm. Consider the algorithm

(4.8) Pk+l (od+ T)p,
ct+l

for some fixed o and let T (od+T)/(o+ 1). The matrix T has an eigenvalue at 1
whose corresponding eigenvector is a null-vector of A; the rest of the eigenvalues of
7" are within the unit circle and the method wi_ll always converge. In fact for every
eigenvalue of T, there exists an eigenvalue of T which lies on the line connecting the
eigenvalue of T to 1. This means that if all the eigenvalues corresponding to r(T)
have negative real parts, then for small values of or, (4.8) would be faster than (4.2).
On the other hand if r(T) corresponded to a positive real eigenvalue, (4.2) would be
faster than (48) for all values of c. A similar suggestion is made in [2], p. 234.

If A were a nonsingular M-matrix, rather than a singular M-matrix, the
theorems of section 3.6 of Varga [15] would assure us that giving two regular split-
tings A M1-N and A M2-N2 then the method based on N1 would require no
fewer iterations than chose based on N2 if N1 -> N2. This fact is certainly reassuring
because supposedly the method based on N2 would require more work per iteration.
The proofs in Varga all depend on 9(T). In our case A is singular and according to
Neumann and Plerrmons[ll], the rate of convergence is -In(or(T)). It would be nice
if the same result would follow for singular matrices but as the following example
indicates, this is not the case.

-1/2-1/2 _01/2]LetA
[-/2 0 -/2J"1/2 1/2

0 0 and N2
0 0LetNl= 0 0 12 0 0

0 0 0 0

so that NI>-N2 One would expect that since M2 has more nonzero elements than M1,
that cr(MIN2)<--o’(M-{IN). However, r(Mi-N1) 0 and cr(M-N2) 1/9.

Another example showing the same phenomenon was devised by Hans Schneider and
given in [3].

Considering the fact that the convergence theory has all been worked out for
nonsingular M-matrices, it would seem natural to suggest to fix one element in the
probability vector, delete one row and column from A and solve a linear system with
a nonsingular coefficient matrix for the remaining elements of the probability vector
as in (2.6b). This scheme is a viable alternative to working with the singular matrix
only if it does not converge significantly slower. In certain cases one can theoreti-
cally indicate the best choice. Assume A is a symmetric matrix and partition A as

A r

Let us consider the convergence rate of Gauss-Seidel applied to the problem Ap 0
and the convergence rate of the Gauss-Seidel algorithm applied to the problem



MATRIX METHODS FOR QUEUING PROBLEMS 541

BO -c. We may writeB asB =Lo + DR + L, whereLo is the strict lower tri-
angular part of B. Similarly we may write A asA L + D + Lr where L is the
strict lower triangular part of A. The rate of convergence of the Jacobi method
applied to B is governed by the eigenvalues of Tjo DI(Lo + L). The eigen-
values of Tso are also the eigenvalues of So DI/2(LB + Lr)D v2 which interleave
the eigenvalues of SA D-I/Z(L + LT)D -1/2, because So is the principal
(n-1)X(n-1) submatrix of the symmetric matrix SA. Now the Jacobi algorithm
applied to A is governed by the eigenvalues of Ts, which are the eigenvalues of SA.
Thus, the relationship of the eigenvalues of Tso, represented by y to those of Ts
represented by x is

l<--Xl<--yl<--X2<--y2<--...<---Xn_l<--Yn_l<--Xn 1.

If A were 2-cyclic and consistently ordered, x=-1, and the eigenvalues of the
Gauss-Seidel method applied to both problems are the squares of the eigenvalues of
the Jacobi method applied to both problems. Thus in this case, Gauss-Seidel applied
to the B matrix is controlled by max(y2,y2_l), and Gauss-Seidel applied to the A
matrix is controlled by max(x22,x,2_) and is definitely faster than the same method
applied to B. Thus the condition that guarantees convergence, also guarantees that
Gauss-Seidel applied to the singular matrix would be faster.

As another case consider the following matrix

(4.9) A a where 13 (c + d),
b /= -(e+f).

The controlling eigenvalue for the Gauss-Seidel method applied to the singular prob-
lem is bcf (o[3/) while that for the nonsingular scheme involving the top 22
matrix is ac (etl3). Thus if a=c=e= and b=d=f=9, then the controlling eigen-
value for Gauss-Seidel for the singular scheme is 81/1000 while if one deletes the last
row and column, the controlling eigenvalue is 1/100. However, given a matrix of the
form (4.9), there always exists a symmetric permutation of A, so that the singular
system is better.

In practice, we have observed that the magnitude of the controlling eigenvalue
for the singular scheme has always been less than that for the nonsingular iteration.
When n is large, the largest eigenvalue for the nonsingular iteration matrix will nor-
mally be so close to 1 that the method will be excruciatingly slow. In fact, the first
time the nonsingular scheme was tried by the author, convergence became so slow
that she suspected that the program was faulty and only inspection of the eigenvalues
for a small problem allayed those fears. In section 4.2 the controlling eigenvalues for
the singular scheme and nonsingular scheme are given for several examples.

4.2 Numerical examples. In this section we will describe our experiences in
applying various splitting schemes to two very different types of problems. The first
problem is one of overflowing queues described in [10]; the second concerns tandem
queues in a packet switch network and is described in [9].

In Problem (I) traffic is offered by s independent streams to s groups of servers
with some overflow capability. In this paper we will concentrate on the case when
s=3. We will assume that there are hi, l= 1,2,3 servers in the primary, secondary,
and tertiary groups and demands arrive with Poisson arrival rates hi, l= 1,2,3, and
all demands are satisfied at an exponential service rate with mean rate Ix If Pi,j,k is
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the steady state probability that there are demands in the primary, j demands in
the secondary and k demands in the tertiary, then the Kolmogorov equations are

(4.10) (Xl(1--i,nJ,n2k,n3) + h.2(1--j,n2k,n3 "+" )k3(1--k,n3 "+- (i +j+ k)l)Pi,j,k

I.L(i+l)(1--i,n,)Pi+,j,k + Ix(j+l)(1--j,n2)Pi,j+l,k + po(k+l)(1--k,n3)Pi,j,+
+ (1--3j,O)(hl3i,nl+ h2)Pi,j-l,k + (1--3k,O)(hl3i,n+ h2aj,n2+ h3)Pi,j,k-1

+ h( 1 )i,o)Pi- 1,j,k.

These equations indicate that a demand arriving at the groupi,i= 1 or 2, is served
there unless all n servers are busy, in which case it is served by the next group. A
demand arriving at the third group is served there, unless all n3 servers are busy, in

which case it is lost.
The matrix A looks like the standard seven point operator that one encounters

while discretizing an elliptic partial differential equation in three dimensions. Since

the matrix is block tridiagonal in which the diagonal blocks are also block tridiagonal
and are almost separable, one is faced with many options for the M-matrix in (4.1).
One could use point Gauss-Seidel and set M to the lower triangular portion and the
diagonal of A. One could use line Gauss-Seidel and set M to the lower triangular

portion, the main diagonal, and the first superdiagonal. Thirdly, one could take
advantage of the algebraic structure and partition the problem as

ll A12 A13 04/ Pl
A21 A22 0 A2 1)2

(4.11)

/As1 A420 A33A43 A34[A44)
=0

where All is separable and p corresponds to i=O,1,...,nl-l,j=O,1,...,n2-1, and

k=0,1,...,n3; A22 is separable and P2 corresponds to i=n,j=O,1 n2-1, and

k=0,1,...,n3; A33 is separable and 1)3 corresponds to i=0,1 ,nl-l,j=n2, and
k=0,1 n3; and A44 is tridiagonal and 1)4 corresponds to i=nl,j=n2, and

k=0,1,....,n3 Moreover A21, A3, A42 and A43 have at most one nonzero element per
row and A13, A24, A34, A12 have at most one nonzero per column.

If M represented the lower triangular and diagonal blocks of (4.11) and one
used the separability of the diagonal blocks as in section 3.2, the following block

Gauss-Seidel scheme is reasonable:

Until convergence
Solve Allptk)=-A12pk-1)-A13Pk-l) for ptk)
Solve AE2Pk)= -AElPtk)-AE4Pk-l) for pk)
Solve Aaapk)=--Aaptk)--Aa4P-1) for pk)
Solve A44Pk)= -A42Pk)-A43P) for pk).

Because of the separability of A, A22, and A33 solving linear systems with these
huge matrices reduces to a number of matrix by matrix multiplications as we shall
now show.
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Let T(n,aj bj,c)) denote an n n tridiagonal matrix with aj as its jth subdiagonal
element, bj as its jtn diagonal element and cj as its jth superdiagonal element. Let

T T(n3+ 1,-h3,ha(1-j,n3+l)+(j- 1)I,-jix),

T2 T(rtE,-hE,hE+(j- 1)ix,-jlx),

T T(nl,--)kl,k ld-(j- 1)ix,--jtx),

T4 T(nE,--hl--hE,hl+hE+nl+(j 1)ix,--jla,),

T5 T(n3+ 1,-h2-ha,(h2+h3)(1-J,n3+l)+nElx+(j- 1)IX,-j).

Then

AI I@I@T+I)T2)I+ T3)I@I,

A22 I@T+ T4(R)I,

A33 I@T2+ Ts(R)I.

Because the T matrices are tridiagonal with nonpositive off-diagonal elements, there
exist Q matrices, which are easily computable, such that

(4.12) QjTjQ Dj for j= 1,2,3,4,5

where Dj is a diagonal matrix. Thus

Q3 Q2t) QI()All() Qi- Q-l(R) Q- II)DI+I@D2@I+D3@II
which is a diagonal matrix. Similarly, A22 and A33 can be transformed into diagonal
form.

We considered accelerating the Gauss-Seidel algorithms using the popular SOR
technique. If A is written as A=L+D+ U, where L represents the lower triangular
blocks, D the diagonal blocks, and U the upper triangular blocks, then the SOR
iteration can be written as

(4.13) p(k+) (rL+D)-l((l_r)D_rU)p(k)
which may also be written as

(4.14) p(k+) p(k)_(L+r-D)-lAp(k)
where r is a relaxation parameter. When r= 1, SOR reduces to Gauss-Seidel. One
can show that if the matrix is q-cyclic and consistently ordered then the best r, r*, is
the unique real root less than q/(q-1) of the equation(see [15], p.109)

(4.15) (ixr*)q qq(q-- 1)-(q-1)(r*-- 1)

where tx is the controlling eigenvalue of the Gauss-Seidel method.
In Table 4.1 we chose one particular problem with n 1000 and indicate the sen-

sitivity of point SOR, line SOR, and block SOR to changes in r. Notice that the
optimum r value was not the same for the three schemes and that r value which
worked well for one scheme would not necessarily work well for another. Also notice
that sometimes a small change in r could double the number of iterations. Consider-
ing the number of variables, it was surprising how few iterations were required to
decrease the residual to 10-6 the convergence criteria. Because the problem was 3-
dimensional, for good values of r, the decrease in the number of iterations for line-
SOR was not as significant as would be expected for 2-dimensional problems. The
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decrease in the number of iterations for the block scheme was certainly significant.
Moreover, the block scheme was significantly less sensitive to changes in r.

Table 4.1
Sensitivity of SOR to r when

hl=h2--h3=6, nl=n2=n3=9, = 1

No. of iterations

r point SOR line SOR block SOR
1.0 118 100 32
1.1 98 82 26
1.2 81 67 20
1.3 67 53 14
1.4 54 40 18
1.5 43 26 24
1.6 35 34 32
1.7 39 57
1.8 45 106

Table 4.2
Timings for the SOR schemes on the Cray-1

Problem 1" n= 1000

point SOR line SOR block SOR
r 1.6 1.5 1.3

time in sec. .202 .157 .006+ .044
no. of iterations 35 26 14
time per iteration 5.7 10-3 6.0 10-3 3.15 10-3

Problem 2: n =3375

point SOR line SOR block SOR
r 1.8 1.6 1.3

time in sec. .822 .757 .014+.182
no. of iterations 42 37 18
time per iteration 1.95 10-2 2.04 10-2 1.01 10-2

In Table 4.2 timing information is given for the three schemes for two different
problems. The programs were run on the Cray-1 and for the block separable
scheme, which involved many matrix by matrix multiplications per iteration, the sys-
tem provided software was used for the linear algebra tasks. The first problem was
the same as that given in Table 4.1. In the second problem nl=n2=n3 14, so that
n=3375, i=1.0, and hl=h2=h3=9.0. For all methods r was varied in increments
of .1, and the times are reported for the best r for that problem. Notice that the
reported r varied somewhat between the two problems. As would be expected the
line method was not significantly more expensive than the point method per iteration.
The parallel nature of the block scheme really is evident in the timings. The first
number in the time row for the block scheme indicates the startup time required to
determine the Q’s in (4.12). The second number indicates the time for the iteration
portion. If n n2 n3 m, then point Gauss-Seidel and line Gauss-Seidel require
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9m3+O(m2) operations per iteration, while the block separable method requires
6ma+7m3+O(m2) operations. The operations in the block scheme are highly vector-
izable. For problem 1, the block scheme theoretically requires 6 times more multipli-
cations per iteration than the point scheme and for problem 2, 10 times, but as the
timings indicate each iteration is about half as expensive as the point scheme. Cer-
tainly on a vector machine the block scheme is the preferable method. On a machine
that does not vectorize matrix-matrix multiplications, the block scheme would cer-
tainly not have enjoyed such a position.

In problem (II) the question of how much should be in M for the Gauss-Seidel
method was of secondary consideration. A more fundamental question was the order-
ing of the states because the Kolmogorov matrix was the sum of a 2-cyclic and a 4-
cyclic matrix. Thus consistent ordering was important for the convergence of the
method. The problem stemmed from the modeling of a 2-node packet switch net-
work[9]. Each node consisted of three tandem queues, which meant that the prob-
lem was 6-dimensional. The state space for each node was the base of a tetrahedron
and if one considered the steady state probabilities as given by the 6-dimensional
matrix

Pi,j,h,i’ ,j’ ,h’

then for a given b, the size of a shared buffer space, and w, the size of a window
buffer,

O<_i+j<_b,

O<--i +j’ <-b,

j<_h<_w,

j’ <-h’ <-w.

Table 4.3
State count for 2-node packet switch network

buffer size window size state count space required by
naive data structure

4 2 961 5625
5 2 2116 11664
6 2 4096 21609
8 4 21025 164025
9 4 34225 250000

Because of the geometry of the state space, the representation of the space in the
computer added another facet to the problem. Table (4.3) compares the number of
states in the state space for given values of b and w with the number of spaces that
would be required if the state space were represented by a six-dimensional matrix
with i,j,i’,j’ <-b and h,h’ <-w. Obviously one had to be careful in the choice of data
structures so that a problem that was of sufficient interest to the modelers could be
solved given the storage space available on the machine. Note that most

implementations of any iterative scheme require at least one scratch vector of the size
of the state space besides that containing the probability vector.
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The Kolmogorov equations for problem (II) have the form

api,j,h,i’,j’,h’ bpi- 1,j,h,i’ ,j’,h’ "+" cpi,j,h,i’- 1,j’,h’ "+" dPi+ 1,j,h,i’ ,j’,h’ at- epi,j,h,i’ + 1,j’,h’

-}-fPi+ ,j- 1,h ,i’ ,j’ ,h’ q- gPi ,j,h,i’ + 1,j’ ,h’ at- spi,j ,h- 1,i’ ,j’ ,h’

-:t- tpi,j,h,i, ,j’ ,h’- -Jr- up ,j + 1,h + 1,i’ ,j’ ,h’ -}" vpi,j,h,i’ ,j’ + 1,h’ + 1.

where a ,b ,c ,d,e ,f,g ,s ,t,u,v depend on the indices of p. The zero structure of the A
matrix for a very small problem is given in Fig. 4.1 The off-diagonal x’s in Fig 4.1
should be considered as diagonal matrices. The diagonal x’s should be thought of as
matrices having the same zero structure as given in the whole figure. Obviously, the
matrix does not have symmetric zero structure and is not reminiscent of problems
one usually encounters in modeling in the physical sciences. Along the diagonal one
notices tridiagonal blocks of varying sizes. They are caused by local traffic that will
not be transferred to the other node in the network. The 4 cycles in the graph are
caused by foreign traffic which is ultimately destined for the other node in the net-
work. Before it gets there, the foreign traffic visits several queues while waiting to
be processed and sent over the transmission lines. If all the traffic were local, the
matrix would be 2-cyclic and the ordering of the elements in the state space would
not be of ultimate consideration. If all the traffic were foreign, the matrix would be
4-cyclic and the ordering of the elements in the state space would be highly signifi-
cant.

XX X
XXX X
xxx X
XX

X XX
X XXX
X XX

X XX
XXX

XX

X XX

X XXX
X

X

X

X

X
X

X

X
XX
X XX x
XXX

XX
X XX
X XX
x XX

FIG. 4.1

Table 4.4 gives the controlling eigenvalues of point Gauss-Seidel for various
traffic mixes and various ordering schemes for a small problem. Scheme A uses the
ordering given in (4.5), scheme B uses that in (4.6), scheme C that in (4.7). Note
that schemes B and C do not always converge to a single vector. When there is no
local traffic, after a while every third iterate for scheme B will be the same and every
second iterate for scheme C. The table also indicates the controlling eigenvalues if
one had deleted the last equation and pushed the last column of the singular matrix
to the right hand side. This always produces a convergent scheme because the coeffi-
cient is now a nonsingular M-matrix no matter what the ordering. However,
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convergence can be excruciatingly slow. The rate of convergence for the nonsingular
iterations is also dependent on the ordering. Since one may think of the nonsingular
scheme as a slight perturbation of the singular scheme, if the singular is misordered
so that it has an eigenvalue of the T-matrix other than on the unit circle, then there
should be an eigenvalue for the nonsingular scheme close to the unit circle retarding
convergence. Thus an ordering that would guarantee convergence for the singular
scheme would probably improve the convergence rate for the nonsingular scheme.
Thus the ordering of the equations may be considered important for both schemes
and if one is going to worry about ordering for the nonsingular scheme, one might as
well use the singular scheme.

Table 4.4
Convergence behavior for Problem (II)

scheme percentage of controlling eigenvalues
local traffic. singular iterations

A 0.0 -.24-+ .05i

controlling eigenvalues
nonsingular iterations

.70

A 50.0 .15-+ .14i .89
0.0 cube roots of

unity
50.0 -.25-+.66i

C 0.0 -+ 1 -+ .84
C 50.0 .5 .92

Queuing problems involving tandem queues often give rise to balance equations
with nonsymmetric zero structure for which the ordering of the states in the state
space is important to the convergence of Gauss-Seidel. Fortunately, in these prob-
lems the traffic flow itself often suggests an appropriate ordering. For example, in
problem (II) let us set b= 1 and w= 1 and consider only the first three indices. The
state space will contain the states (0,0,0),(1,0,0),(0,1,0), and (0,1,1). A packet
entering the system will visit the states in exactly the order just given and that is
exactly the ordering for Scheme A. Any cyclic permutation of the ordering will also
give rise to a convergent scheme, but inverting the order of any of the states will not.
The point is that the traffic flow itself defines a convergent ordering.

For problem (II), point SOR tended to be highly sensitive to changes in r. It
was not unusual that changes of 10% in r would double the number of iterations.
Furthermore, this problem was not like those found say in the usual discretization of
Laplace’s problems in which point SOR will converge for 0<--r-<2. Often values of
r= 1.5 would cause divergence. Moreover, the optimum value of r would change for
different traffic mixes. Using an estimate of the controlling eigenvalue of the
Gauss-Seidel method that was determined by the change in iterates, an algorithm was
implemented which determined-r* via equation (4.15). The program, which deter-
mined r dynamically, tended to require about 20% more iterations than beginning
initially with the optimal r*. We often found that increasing r greatly at first pro-
duced very large changes in the iterates and it was not always clear whether the
iterates were diverging or whether they would eventually settle down. Thus when
trying to estimate r*, our program incremented the current value slowly.
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Chebychev acceleration (See [15]). of Gauss-Seidel was also applied to this prob-
lem. Chebychev acceleration entails knowing the location of the foci(b-a) and
(b+a) of the ellipse enclosing the eigenvalues of M-N for the Gauss-Seidel method.
In Chebychev acceleration the p’s are generated using the following 3-term
recurrence relation"

(4.16) p(k+ 1)= ik+ (/(L +D)-lUp(k)+( 1 /)p(k)) + 1- ik+ 1)p(k- 1)

where

k+
2=2/(2- tr2),

--(1-(o’/2)2t,) -1 for k>2

and /= 1/b,tr=a/b. As Table 4.5 indicates Chebychev acceleration of Gauss-Seidel
seemed to be less sensitive to changes in the parameters for that scheme than SOR.
In Table 4.5 the problem had 4096 variables so that convergence was really very fast.

Table 4.5
SOR and Chebychev acceleration

r No. of iterations
in SOR
1.00 44
1.05 30
1.10 27
1.15 > 100

tr No. of iterations No. of iterations
in Chebchev /= 1.5 /= 1.0

.1 44 38

.3 41 35

.5 36 28

.7 28 33

.9 60 > 100

For problem (II) taking advantage of the tridiagonal blocks on the diagonal did
not produce a significant change in the number of iterations when foreign traffic
dominated because the matrix was largely 4-cyclic. Moreover, since each row had
about 11 nonzeroes, increasing the number of nonzero diagonals in the M matrix
from 5 to 6 would not be expected to generally produce grand results. Table 4.6 indi-
cates the behavior of line and point Gauss-Seidel for various traffic mixes.

Table 4.6
Line Gauss-Seidel vs. point Gauss-Seidel

percentage No. of iterations No. of iterations
local traffic point G.S. line G.S.

10 45 44
30 68 60
50 82 70
70 94 68
90 80 52

Again the problem had 4096 variables. Because convergence was so swift it was con-
sidered unnecessary to consider partitioning A into larger blocks as in problem(l). If
we had, the natural partitioning would have grouped together all the queues at one
node and each block would have had rows. The storage required for the sparse
LU decomposition of the diagonal blocks would have overflowed the machine if the
LU decomposition had been computed for each block for any problem of say
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n> 1000. The eigendecomposition approach, as used in problem(I), would have been
preferable storagewise, for the eigenvectors for most of the diagonal blocks would
have been the same. However, the overhead for initially computing the eigenvectors,
the Q matrices, would probably require more time than doing a point SOR scheme
because now the matrices are not similar to tridiagonal symmetric matrices.

4.3 Implementation advice. In general because the queuing problem statement
describes each column of the A matrix, a column orientation of an implementation of
an iterative scheme is easier to implement than a row orientation. Unfortunately, a
column orientation usually entails storing another scratch vector. From our experi-
ence, equation (4.14) is the easiest form of SOR to work with because it naturally
lends itself to a column orientation. Equation (4.14) requires 50% more work per
iteration than the standard row oriented version of SOR, but for this additional
effort, one receives the residual, Ap. Because it is possible that the convergence will
be so slow that the difference between iterates will be small when one is not near the
solution, it is much safer to compute the residual and use it as a convergence criteria.

We have also found that it is much more economical to store the diagonal of the
A matrix if there is sufficient space rather than to regenerate it each iteration.
Because of the regularity of the off-diagonal elements, it is rarely necessary to store
them.

It is not that difficult to detect if the problem is inconsistently ordered and to
correct the situation. First of all, if the transition matrix describing the flow in the
state space changes in only dimension at a time, then the problem is 2-cyclic and is
consistently ordered. Difficulties arise when there are tandem queues and hence the
A matrix is not 2-cyclic. Let us assume we have the following queue situation

queue 1 queue 2
C

with k spaces in the first queue and rn spaces in the second queue. Let Pi,j denote
the probability of having spaces in queue occupied and j spaces in queue 2 occu-
pied. Transitions between states may be specified by the following rules:

(4.17)

if <k (i,j) (i + 1 ,j) at rate a
if i>0 and j<m (i,j) (i-1,j+ 1) at rate b
if j>0 (i,j) (i,j- 1) at rate c

The following algorithm for numbering the columns of the A matrix is very natural,
but unfortunately leads to an inconsistent ordering

L,-0

FOR I 0 TO K
FOR J 0 TO M

{
L,-L+ 1
COLUMN(L) CORRESPONDS TO STATE (I,J)
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If one set m and k both to 1, the A matrix would have the following zero structure:

x

(4.18) x x
x

x

which is obviously not consistently ordered.
If the algorithm had been rearranged to
L,-0

FOR J 0 TO M
FOR I 0 TO K

L,-L+ 1
COLUMN(L) CORRESPONDS TO STATE (I,J)

the matrix A would have been consistently ordered and would have had the following
zero structure for m= 1 and k= 1:

x

(4.19) x

x x

x

Thus one would suspect that the innermost loop should correspond to the first queue
in the line and the outermost to the last queue. As mentioned earlier, the traffic pat-
tern itself dictates the ordering. Unfortunately, the situation is not always that sim-
ple. It is not unusual for the Pi,j to represent the probability that there are spaces
available in queue 1 and j spaces available in queue 2. The following rules would
then govern the traffic:

if i>0 (i,j) (i-1,j) at rate a
if i<k and j>O (i,j) (i + 1,j- 1) at rate b
ifj<m (i,j)-*(i,j+l) at ratec

As far as the zero structure of the A matrix is concerned, and j have switched roles
from the previous case. Thus the ordering of the states which previously had led to
an inconsistent ordering of the A matrix would now lead to a consistently ordered
matrix and vice versa. Moreover the following ordering scheme would also lead to a
consistently ordered A matrix:

L,-0

FOR J M TO STEP BY -1 TO 0
FORI K TO STEP BY -1TO 0

{
L,--L+ 1
COLUMN(L) CORRESPONDS TO STATE (I,J)

}
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Thus if one makes sure that the innermost loop index corresponds to the first queue
that traffic enters, one should also make sure that the loop index is running in the
correct direction. If traffic entering the queue causes the state space index to
increase, the loop should be run forward. If traffic entering the queue causes the
state space index to decrease, as in the last example, the loop should be run back-
wards. It is not completely unusual for someone modeling a system to think of space
"occupied" in one queue and space "available" in another. In fact the whole question
of consistent ordering was brought to this author’s attention by just such a problem.

For most people with queuing problems specifying the matrix is a major prob-
lem. Even when the iteration scheme converges, most people still are uncertain
whether the singular matrix accurately reflects their model. Often they have been
forced to solve the Kolmogorov equations explicitly because their model is not simple
and it is not easy to verify that they have encoded their model correctly. The data
structure used to represent the state space can sometimes make the task more diffi-
cult. Sometimes the geometry of the state space has necessitated a complicated trans-
lation of the state space into an array which can be squeezed into the machine. If
the state space is a generalization in many dimensions of a tetrahedron, it is not
unusual for the user to decide to store only the admissible states in the system and to
store them in one long array. The programming language also might impose a com-
plicated data structure. For example, in FORTRAN, the maximum array dimension
is 7 and if one has an 8-dimensional state space, a bit of computation is required to
access the correct elements in the space. The fact that a queuing problem is usually
relatively simple to specify but might be difficult for the ordinary modeler to solve
suggests that a compiler be written that takes as input some specification of a queu-
ing problem and creates a program to solve the problem. The compiler would
remove from the user the task of dealing with a data structure and deciding the ord-
ering of the columns of the matrix.

In conclusion, we have shown that some of the techniques that have been used
to solve nonsingular M-matrix problems may be applied to solving singular problems
that have arisen during the modeling of queuing networks. We have solved problems
with as many as 35,000 variables on relatively small machines. Some care must be
taken in ordering the equations to insure convergence of some of the methods but it
is not difficult to determine this ordering. Taking advantage of the algebraic struc-
ture of the singular matrix may sometimes be cost effective and the concept of separ-
ability that is utilized with great success in [4] can also be applied here. We have
shown that in many cases, if a Gauss-Seidel like algorithm converges for the singular
system, it will probably be faster than applying the same scheme to the problem in
which the singularity has been deleted. Lastly, it should be mentioned that many of
the people who design networks and wish to model them are not extremely conver-
sant with the concepts that are basic to numerical linear algebra. They are hardly as
sophisticated mathematically as the typical physicist who wishes to solve a large
linear system that has arisen during the solution of a partial differential equation.
Thus any means of presenting a solution technique in terms of his language is
encouraged.
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COMPUTING A TRUSTREGION STEP*
JORGE J. MOR AND D. C. SORENSEN

Abstract. We propose an algorithm for the problem of minimizing a quadratic function subject to
an ellipsoidal constraint and show that this algorithm is guaranteed to produce a nearly optimal solu-
tion in a finite number of iterations. We also consider the use of this algorithm in a trust region
Newton’s method. In particular, we prove that under reasonable assumptions the sequence generated
by Newton’s method has a limit point which satisfies the first and second order necessary conditions
for a minimizer of the objective function. Numerical results for GQTPAR, which is a Fortran imple-
mentaton of our algorithm, show that GQTPAR is quite successful in a trust region method. In our
tests a call to GQTPAR only required 1.6 iterations on the average.

Key words. Newton’s method, trust region, ellipsoidal constraint, global convergence

1. Introduction. In an important class of minimization algorithms called
"trust region methods" (see, for example, Sorensen [1982]), the calculation of the
step between iterates requires the solution of a problem of the form

(1.1) min{, (w) :11 w II < A}
where A is a positive parameter, II .11 is the Euclidean norm in R, and

(1.2) q(w) =-- grw + 1/2wrBw,
with g 6.R n, and B R nxn a symmetric matrix. The quadratic function k gen-
erally represents a local model to the objective function defined by interpolatory
data at an iterate and thus it is important to be able to solve (1.1) for any sym-
metric matrix B; in particular, for a matrix B with negative eigenvalues.

In trust region methods it is sometimes helpful to include a scaling matrix for
the variables. In this case, problem (1.1) is replaced by

(1.3) min{k (v) :11Dv II < A}
where D R is a nonsingular matrix. The change of variables Dv w shows
that problem (1.3) is equivalent to

(1.4) min{ (w) "11 w II < A}
where (w) k(D-lw), and that the solutions of problems (1.3) and (1.4) are
related by Dv w. Because of this equivalence, we only consider problem (1.1).
Also note that if, as is usually the case, D is a diagonal matrix, then it is easy to
explicitly carry out the change of variables and solve problem (1.4).

The use of a trust region method in a nonlinear optimization problem
requires the solution of many problems of type (1.1). These problems do not
usually require accurate solutions, but in all cases we must be able to find an
approximate solution with a reasonable amount of computational effort, and the
approximate solution found must guarantee that the trust region method has the
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right sort of convergence properties. In this paper we are concerned with these
two issues; namely, robust and stable algorithms for the solution of (1.1) and the
impact of these algorithms on the convergence properties of trust region methods.

Goldfeld, Quandt, and Trotter [1966], Hebden [1973], Fletcher [1980], Gay
[1981], and Sorensen [1982], have discussed (1.1) in connection with trust region
methods. Their algorithms are based on the fact that if (1.1) has a solution on
the boundary of {w:ll wll < A} then, in most cases, a solution of (1.1) can be
found by determining h >/ 0 such that B + h I is positive definite and

(1.5) II (B + XI)-lgll-- A

In one case the hard case equation (1.5) has no solution with B + h I positive
definite, and this leads to numerical difficulties. Hebden [1973] proposed an algo-
rithm for the solution of (1.1) which is basically sound except for its treatment of
the hard case. Gay [1981] improved Hebden’s scheme and showed that under
certain conditions the approximate solution determined by his algorithm is nearly
optimal. His algorithm, however, may require a large number of iterations in the
hard case.

We propose an algorithm for the solution of (1.1) which is guaranteed to pro-
duce a nearly optimal solution in a finite number of steps. Specifically, given
parameters tr and tr in (0,1), the approximate solution s satisfies

q(s) q* o’(2-O’l)max{lq* I,o2} II sll (1 +r)A
where q is the optimal value of (1.1). We also consider the use of our algorithm
in a trust region Newton’s method. In particular, we prove that under reasonable
assumptions the sequence {x} generated by Newton’s method has a limit point x*
which satisfies the first and second order necessary conditions for a minimizer of
the objective function f. Numerical results for GQTPAR, which is a Fortran
implementation of our algorithm, show that GQTPAR is quite successful in a
trust region method. In our tests a call to GQTPAR only required 1.6 iterations on
the average.

The outline of the paper is as follows. The theoretical basis of an algorithm
for the solution of (1.1) is laid out in Section 2, while in Section 3 we present the
algorithm and show that the solution generated by the algorithm is nearly optimal.
In Section 4 we consider the use of this algorithm in a trust region Newton’s
method and prove that the combined algorithm has very strong convergence pro-
perties. Numerical results are presented in Section 5.

2. Structure of the problem. Problem (1.1) has a tremendous amount of
structure and it is important to understand this structure in order to construct a
suitable algorithm. The following results expose this structure and provide a
theoretical basis for the numerical algorithm. Note that these results provide
necessary and sufficient conditions for a point p R" to be a solution to (1.1) and
that there is no "gap" between the necessary and sufficient conditions.

LEMMA(2.1). Ifp is a solution to (1.1) then p is a solution to an equation of the
form
(2.2) (B + X I)p -g,

with B + h I positive semidefinite, h >/ O, and h (A --II p II) 0.
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LEMMA(2.3). Leth R, p R satisfy (2.2) with B + hi positive semidefinite.
(i) IfX 0 and IIp II < A then p solves (1.1).

(ii) p solves tO (p) min{q (w) II w II II p II}
(iii) Ifh >/ 0 and lipll-- A then p solves(1.1).

IfB + h I is positive definite then p is the only solution to (1.1).
Simple proofs of these lemmas are given by Sorensen [1982]. Lemma (2.3)

is important from a computational standpoint since it provides a perturbation
result that is useful in setting termination rules for the iterative method used to
solve (1.1).

The solution of (1.1) is straightforward if (1.1) has no solutions on the boun-
dary of {w:ll w II < A}. In fact, (1.1) has no solution p with II p II A if and only
if B is positive definite and II B-g II < A. To prove this claim, first note that if B
is positive definite and II B-gll < A then Lemma (2.3) immediately shows that
p -B-lg is the solution to (1.1). On the other hand, if (1.1) has a solution p
with Ilpll < A then Lemma (2.1) shows that h 0 and that B is positive
semidefinite. If B were singular then Bz 0 for some z with II p + z ll A and
then Lemma (2.3) implies that p + z is a solution to (1.1) on the boundary. This
contradiction establishes our claim.

Now assume that (1.1) has a solution on the boundary of {w :11 wll < A}. If
g is not perpendicular to the eigenspace

S--={z:Bz=Xz, z # O}

where h is the smallest eigenvalue of B, then the nonlinear equation II pll A
where

p, -(B + aI)-lg

has a solution h >/ 0 in (-h 1,oo). Moreover, Lemma (2.3) implies that Px is the
solution of problem (1.1). Reinsch [1967,1971] and Hebden [1973] observed
independently that to solve II p II-- A great advantage could be taken of the fact
that the function II p II - is a rational function in a with second order poles on a
subset of the negatives of the eigenvalues of the symmetric matrix B To see
this consider the decomposition

B= QAQrwithA=diag(h,h2, ...,h)and QrQ= I,

and observe that
2

(2.4) II pll IIQ(A + aI)-Qrgll , YJ

= (x + a) 2

where y is the ith component of Qrg. In the next section we elaborate on the
importance of this observation.

If g is perpendicular to S then the equation II p II A may still have a solu-
tion h >/ 0 in (-h 1,oo) and in this case the solution to (1.1) can be obtained as
above. If, however, II pll- A has no solutions in (-h,oo) then this leads to
numerical difficulties. We call this situation the "hard case".

A characteristic difficulty of the hard case is that II pll < A whenever
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B + a I is positive definite. For example, if

B- 0 1 g 1

then X----1, and if B + I is positive definite then II pll 2 < 1/. In the hard
case, a solution to (1.1) can be obtained by solving

(B X lI)p -g

for p with II p II < A and by determining an eigenvector z S. Then

(B h 11) (p + " z) -g

and II p+zzll A for some r. Lemma (2.3) now shows that p+zz solves (1.1).

3. The algorithm. Consider the solution of II p II m. The rational struc-
ture of II pll 2 may be exploited by applying Newton’s method to the zero finding
problem

(3.1) b(a) 1_ 1 0.

Newton’s method is very efficient when applied to (3.1) since 4 is almost linear
on (-h 1,oo). Moreover, the computation of the Cholesky factorization of B + . I
makes it possible to compute the necessary derivative whenever a (-h,oo).
There is no need to compute the eigensystem of B as suggested by Goldfeld,
Quandt, and Trotter [1966]. The following algorithm updates h by Newton’s
method applied to (3.1).

ALGORTnM(3.2).
1) Factor B + h I R rR
2) Solve R rRp -g

3) Solve Rrq =p

lillpllq,112[4) Let ) := + 1:"

Let h >/ 0 with B + h I positive definite and A > 0 be given.

II p II- A
A

In this algorithm R TR is the Cholesky factorization of B + h I with R R"
upper triangular. Although not represented in this simplified version, it is neces-
sary to safeguard k in order to obtain a positive definite B + hi and guarantee
convergence. These safeguards, and the convergence criteria for this algorithm are
discussed later on in this section.

If properly safeguarded, the iteration produced by Algorithm (3.2) is
sufficiently rapid to solve most problems of type (1.1) expected in practice. How-
ever, in the hard case this scheme may require a large number of iterations to
converge; in particular, if g--0 then Algorithm (3.2) breaks down. In the hard
case it is necessary to supply a vector z that is an approximate eigenvector of B
corresponding to h 1. Indeed, as pointed out at the end of Section 2, in the hard
case a solution to (1.1) is

(3.3) p -(B XlI)tg + zz,
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where the superscript " denotes the Moore-Penrose generalized inverse, z fi S,
and is chosen so that II p II----A. Note that actual computation of the two
orthogonal components of p indicated in (3.3) may require more computational
effort than is reasonable in the context of an optimization algorithm. Moreover,
recognizing that a solution of the form (3.3) is required may also be time consum-
ing. Fortunately, there is a completely acceptable alternative. The following
result provides a foundation for this technique.

LEMMA(3.4). Let 0 < r < 1 be given and suppose that

B+XI=RrR, (B + XI)p=-g ,X >/ O.

Let z E R n satisfy

(3.5) IIp+zll= A, IIRzll 2 o-(llRpll2+hA2).

Then

where

Proof. First note that for any z R,
-O(p+z) >/ 1/2(1-r)(llRpll +hA2) >/ (1-r)[’[

is the optimal value of (1.1).

(3.6) q (p + z) -A (11Rp II 2 + hll p + z II 2) + 1/511Rz II 2.
Then for any z which satisfies (3.5),

-(p+z) > /2(1-o-)(11Rpll 2 +
Moreover, if $ "= $ (p + z’) where It p + z" II A, then (3.6) implies

-$(p+z < 1/ IIRpll2+hA2

The last two inequalities yield Lemma (3.4).
A consequence of Lemma (3.4) is that [$(p+z) $* < rlk* [. This

shows that if (3.5) holds then p + z is a nearly optimal solution to problem (1.1).
A consequence of the proof of Lemma (3.4) is equation (3.6). This expres-

sion is quite useful and will be used throughout this section.
Gay [1981] has a result similar to Lemma (3.4) but the assumptions are

stronger than those in Lemma (3.4). Instead of (3.5), Gay’s assumptions imply
that max{ll p I1,11 z II} < A and that

Since II p II < A and II z ll < A, it is not difficult to show that (3.7) implies (3.5).
A weakness of (3.7) is that in the hard case it may be a severe restriction on h.
This claim can be made precise by first noting that (3.7) implies that

Now, when It pll A for some in (0,1) then II zll (1-)A and thus

Ix +x l .<
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Since can be quite small (specially if g is small) in the hard case, this estimate
shows that if is small then h must be very close to h before Gay’s assump-
tions are satisfied. As a consequence, an algorithm based on (3.7) may require a
large number of iterations in the hard case. Note that this weakness is not shared
by (3.5).

The main use of Lemma (3.4) is in the hard case. In this situation we have
h > 0 with B + hi positive definite and the solution p of (2.2) satisfies
II p II < A. We can then attempt to satisfy (3.5) with z z by letting z satisfy
II p +z II A and by choosing , with II II 1 such that II R II is as small as pos-
sible.

Given with II II-- 1 and p with II/7 II < A there are usually two choices of
z which satisfy II p + ’11 A, and equation (3.6) implies that the choice with the
smaller magnitude minimizes q (p + z ). This choice is

A2 II p II 2

pT -I- sgn(pT)[(pT)2 -t- (A2- II p ll2)f/

A vector with II II 1 such that II R II is as small as possible can be obtained
with the LINPACK technique (Cline, Moler, Stewart, and Wilkinson [1979]) for
estimating the smallest singular value of a triangular matrix R. In this technique
a vector e with components _+ 1 is selected so that the solution w to the system
R rw e is large. Essentially the idea is to select the sign of the components of
e to cause maximum local growth of w as the forward substitution proceeds.
Then the system Rv w is solved for v. The vector v has the property that if__

v
II v II

then II R II is usually close to the smallest singular value of R. In the appendix to
this paper we show that with the LINPACK technique, II R II is close to zero if h
is near h . This property guarantees that (3.5) is satisfied by z ’ when h is
sufficiently close to -h The LINPACK technique is attractive because it is
computationally inexpensive (roughly n2 arithmetic operations) and quite reliable,
but there are other possibilities, for example, the algorithms of Cline, Conn, and
Van Loan [1982]. We emphasize that the only property of required by our algo-
rithm is that II R II approach zero as h approaches h 1.

An important ingredient of the iteration is the safeguarding required to
ensure that a solution is found. The safeguarding depends on the fact that b is
convex and strictly decreasing on (-h ,oo). This fact was discovered by Reinsch
[1971] and follows from (2.4). It implies that Newton’s method started from
h (-h ,oo) with b (h) > 0 produces a monotonically increasing sequence con-
verging to the solution of b (a)= 0. In addition, if h (-h ,oo) and b (h) < 0
then the next Newton iterate h+ is such that either h+ < -h 1, or b (h+) >/ 0.

The safeguarding scheme uses parameters h, h v, and ks such that
[h t, h v] is an interval of uncertainty which contains the desired h, and h s is a
lower bound on-h .
Safeguard h

1) X := max(X
2) X := min(X, X v);
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3) If h < X s then h := max(0.001h v, (h ch v) /)
Safeguarding schemes of this type have been used by Mor6 [1978] for the case in
which B is positive semidefinite and by Gay [1981] for the general case. The first
two steps of the safeguarding scheme ensure that h [h c ,h v] while the third
step guarantees that the length of the interval of uncertainty is reduced. The third
step is crucial; if the length of the interval of uncertainty remains bounded away
from zero then the third step can only be executed a finite number of times. This
last point will become clear once we set down the rules for updating the safe-
guarding parameters.

Given ks and a trial h, the rules for revising ks are as follows. If
h ( (--hl,OO) and $(h)< 0 then Ilpxll < A and we can compute z and k as
described above and set

(3.8) h s := max(h s, h II R 112).

Since R is the Cholesky factor of B + hi it follows that for any such that
II 11 1 we have

Thus, if h s is a lower bound on- h then (3.8) guarantees that the updated h s is
also a lower bound on-h . If h <-h then we can update h s by noting that
during the Cholesky decomposition of B + h I it is possible to find 5 >/ 0 such
that the leading submatrix of order < n of

TB + hi + etet
is singular. In addition, it is possible to determine u R such that

(B + hi + etetT)u 0

with ut 1 and u 0 for > I. It follows that

x s :-- x x + (i. II

is a lower bound on-h .
Gay [1981] proposed updating h s via (3.9) but (3.8) is new. Since II R}II is

usually close to h + )t, updating h s via (3.8) tends to avoid trial h for which
B + h I is not positive definite and thus reduces the number of iterations required
for convergence.

The rules for updating h ; and h v are fairly simple; they are presented in the
following summary of the updating rules for the safeguarding parameters.
Update h L by, h s

1) Ifh E (-h 1,) and (h) < 0 then

hv:=min(hv,h)
else

h c := max(h, h)
2) Update X s using (3.8) and (3.9);
3) Let X c := max(h c, X s)
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Initial values for the safeguarding parameters are

s max{-/3 ii}

where/3, is the ith diagonal element of B, and

he=max 0,hs, A

Ilgll
+liBilu= A

These choices of hL and h v are similar to those used by Gay [1981]. They are
based upon the observation that (2.4) implies that

where h and h are, respectively, the smallest and largest eigenvalues of B.
Other choices of initial values are possible, but these are simple and are particu-
larly effective for large values of II g

The final ingredient of the iteration is the convergence criteria. The idea is to
terminate the iteration with a nearly optimal solution of problem (1.1). Given

and in (0,1), and a trial h 0 such that B + h I is positive definite, a vec-
tor p is computed as in Algorithm (3.2). If

(3.10) a-II p III A, or II p II A, X 0,

then the algorithm terminates with s =p as an approximate solution. The hard
case is taken into account by computing p and whenever II p II < &, and if

(3.11) II R(r)II 2 (2-1)max{,ll
then the algorithm terminates with s p + z as the approximate solution.

An additional subtlety of the convergence tests is that if both (3.10) and
(3.11) are satisfied then we choose the approximate solution s for which (s) is
least. This is easy to do because (3.6) shows that (p + r) (p) if and only if

II R (z)II 2 X(2 II pll).

This subtlety is not theoretically necessary but is nice to have from a computa-
tional point of view. Also note that the factor of 1(2-) in (3.11) is needed
so that in each case (s) satisfies a bound of the same form. This is made clear in
the discussion that follows.

We now show that (3.10) and (3.11) guarantee that if the algorithm ter-
minates then the approximate solution s satisfies

(3.12) (s) " (2-)max{]* I,}, II sll (1 +)a,
and thus s is a nearly optimal solution of (1.1). First consider (3.11). If
II Rp II + h > 2 then the assumptions of Lemma (3.4) are satisfied when is
replaced by 1(2-) and hence (3.12) holds for s p+r. Now suppose that
II RII + h . To establish that (3.12) holds in this case, first note that if

(p + z’) where II p + z* II then (3.6) implies that

I ’1 ’A(II Rpll + XA) ’A.
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We now use this result and (3.6) to obtain that

b (p-l-r-) =-/(11Rp II 2 -I- hA 2) -t- 1/511R (r,) II 2 * -+- 1/o’(2-o’)o’2.
Hence, (3.12) also holds in this case.

The next result shows that if the algorithm terminates when (3.10) is satisfied
then (3.12) holds with s p.

LEMMA(3.1 3). Let 0 < tr < 1 be given and suppose that

B + KI= R rR, (B + XI)p=-g ,h > O.

Iftk* is the optimal value of(1.1) and/fll p II > (1--tr)A then

Proof. Just as in the proof of Lemma (3.4), note that (3.6) holds for any
z R" and hence,

--" < 1/2[llRpll2 h-hA2].
Moreover, (3.6) with z 0 also implies that

-q,(p) > /2(-,r)’-(ll Rpll 2 +
The last two inequalities yield Lemma (3.13).

We have now discussed all the ingredients of the iterative scheme for solving
problem (1.1). The following algorithm summarizes these ingredients and defines
a typical iteration.

ALGORITHM (3.14).
1) Safeguard h
2) IfB + hi is positive definite then factor B + hi R TR

otherwise go to 5;
3) Solve R TR p g
4) Ifll p ll < A, computer and
5) Update h L, h U, h S;
6) Check the convergence criteria;

7) IfB + h I is positive definite and g ; 0 then update h via steps
3 and 4 ofAlgorithm (3.2); otherwise update h via h := h s

The last step of Algorithm (3.14) deserves some explanation. If B + h I is posi-
tive definite and g ; 0 then the Newton iterate of Algorithm (3.2) tends to be a
lower bound on -hi for II g II sufficiently small and thus updating h via h s is a rea-
sonable choice when g 0. Also note that setting h to h s forces a safeguarded
choice of h in the next iteration, and that this is a desirable strategy whenever the
Newton iteration cannot be used.

We now claim that after a finite number of iterations Algorithm (3.14) pro-
duces a h (-h ,oo) with b (h) > 0 or an arbitrarily small interval of uncertainty.
If we assume that the length of the interval of uncertainty remains bounded away
from zero then the third step of the safeguarding scheme guarantees that h < h s
only happens a finite number of times. Now, if h < -hi then h < h s holds on
the next iteration. Finally, if h (-hl,OO) and b(h) < 0 then recall that the next
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Newton iterate h+ is such that either h+ < -h 1, or (h+) > 0. The above argu-
ment shows that h+ < -hi can only happen a finite number of times, so eventu-
ally h+ (-h,o) and b(h+) > 0. This establishes our claim.

The importance of the above claim should be evident; given
with (h) > 0 then Algorithm (3.14) eventually satisfies (3.10), while if the
interval of uncertainty is small then R is nearly singular and it is then possible to
satisfy (3.11). Thus Algorithm (3.14) terminates in a finite number of iterations
with an approximate solution s which satisfies (3.12).

A frequent application of Algorithm (3.14) is to the solution of a sequence of
problems of the form (1.1) in which only A is changing. In particular, in trust
region methods we need to solve a sequence of problems for decreasing values of
A and then it is possible to improve the initial choice of h . Assume that h and
h c are the final values of these parameters for a specific value of A. Given a new
value A+ < A then h c is still a lower bound for the new problem. Moreover, the
convexity and monotonicity of b shows that an update of h based on a Newton
step for

6/() 1 1
A+ II p II

is also a lower bound for the new problem. This improvement on the initial choice
of h c follows a suggestion of Ron Dembo.

One of the differences between Gay’s [1981 algorithm and Algorithm (3.14)
is that in Gay’s algorithm h 0 is always tried first. It is not at all clear that this
is a desirable strategy, and it seems preferable to try h 0 first only if the safe-
guarded h is zero. Note that if B is positive definite and II B-g II < A then Algo-
rithm (3.14) terminates in at most two iterations. In fact, if initially h > 0 then
the convexity and monotonicity of b and the positive definiteness of B guarantee
that the next trial h is zero.

We have already mentioned that another difference is the updating of h s via
(3.8). A final difference occurs when g 0; Gay’s algorithm is not defined in this
situation, but Algorithm (3.14) handles this case appropriately.

4. Trust region methods in unconstrained minimization. We now consider
the use of Algorithm (3.14) in the context of trust region methods for uncon-
strained minimization and show how Algorithm (3.14) can be used to produce an
efficient and reliable version of Newton’s method.

Let f" R--R be a twice continuously differentiable function with gradient
f and Hessian f. In Newton’s method with a trust region strategy, each
iterate xg has a bound A k such that

f (Xk
where

q (w) Vf(Xk) rW + A wrV2f (xg) w
In other words, q k is a model of the reduction in f within a neighborhood of the
iterate Xk. This suggests that it may be desirable to compute a step s, which
approximately solves the problem

(4.1) min{q
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If the step is satisfactory in the sense that x + s produces a sufficient reduction
in f, then A can be increased; if the step is unsatisfactory then A should be
decreased.

ALGORITHM(4.2). Let 0 </z < r/< 1 and 0 < Yl < Y2 < 1 < )’3 be specified con-
stants.

1) Let Xo R n and A0 > 0 be given.

2) For k 0,1,2, until" convergencd’
a) Compute f (xg ) and 2f (xk)
b) Determine an approximate solution Sk to problem (4.1).
c) ComputePk (f(Xk + Sk) f(xk))/ qk(Sg)
d) If p g < tz then h :---- A [7A,7A] and go to b).
e) Xk+ Xk -I- Sk

f) If Pk < 0 then Ak+ [)’2Ak,Ak else Ak+ [Ak,)’3Ak].
This is a basic form of Newton’s method which does not include a scaling matrix
for the variables. To include a scaling matrix, subproblem (4.1) is replaced by

min{O k (W) II Dk w l[ < A k}
where D is a nonsingular matrix. We shall not discuss this generalization here;
however, it is important to note that our results hold if {Dk} has uniformly
bounded condition numbers.

In this section we are mainly interested in conditions on the approximate
solution sg of problem (4.1) which guarantee that the sequence xg generated by
Algorithm (4.2) is convergent to a point x* with f(x*) 0 and 2f(x*) posi-
tive semidefinite. A minimal requirement on Sk is that there is a/3 (0,1) such
that

--q(Sk) > /3max{--q(w) w af(Xk) ,ll Wll < Ak} Ii Skll < A k

Under this assumption, Powell [1975] proved that if 0 then some subse-
quence of {f(Xk)} converges to zero, while Thomas [1975] showed that if
tz > 0 then the whole sequence {f(xk)} converges to zero. These results indi-
cate that we can expect {Xk} tO converge to a point x* with f(x*) 0. Soren-
sen [1982] proved that we can also expect to have f(x*) positive semidefinite
provided there is a constant tr (0,1) such that

kk(sk) min{kg(w):11 wll < 5 k}
with

II sg II < 5 E [(1--tr)Ak,(l+o-)A].
Unfortunately the termination criterion (3.11) is not necessarily consistent with
these conditions and thus this result does not allow the choice of sg provided by
Algorithm (3.14). An appropriate generalization of Sorensen’s results can be
obtained by assuming that there are constants/3 > 0 and fl > 0 such that

(4.3) --Iltk(Sk) " fllll///l with II sgll < [32Ag.

An immediate consequence of (3.12) is that if q ; 0 then the approximate solu-
tion Sk provided by Algorithm (3.14) with o’2--0 satisfies (4.3). Of course, if
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$; 0 then f(xg)- 0 and V2f(xg) is positive semidefinite and thus Algo-
rithm (4.2) terminates at Xk. Lemma (3.13) shows that Sorensen’s assumptions
imply that (4.3) holds.

Assumption (4.3) can be expressed in an alternate form which is more con-
venient for proofs of convergence. If pg R is a solution to problem (4.1) then
Lemma (2.1) implies that there is a parameter h g such that

:f (xk) + h k I RkRk (:f (Xk) + h k I)Pk --f(Xk) h k ) 0

and with k (Ak II Pk II) 0. A calculation now shows that

(4.4) [$ ;[ 1/ (11RgPk II 2 + h gA k).
This expression for $; shows that if (4.3) holds then

(4.5) -$ k (Sk) 1/2fll (11RkPk II 2 + h kAg2),
and thus the iterates {Xk} generated by Algorithm (4.2) satisfy

(4.6) f(Xk) f(Xk+l) >/ 1/2/x/31 (11RkPk li 2 + h khg).
These two inequalities are essential to the proof of our next result.

THEOREM(4.7). Let f "Rn’-’R be twice continuously differentiable on the level
set {x’f(x) < f(x0) and consider the sequence {Xk} produced by Algorithm
(4.2) where Sg satisfies (4.3). If f is a compact set then either the algorithm ter-
minates at xl E f because f (xl) 0 and2f(xl) is positive semidefinite or {Xk}
has a limit point x* f with f (x*) 0 and 2f (x*) positive semidefinite.

Proof. If f(xt)= 0 and 2f(xt) is positive semidefinite for some iterate
xt f then the algorithm terminates; otherwise (4.3) implies that $ k (Sk) < 0 for
k >/ 0 and thus {xk} is well defined and lies in f.

Let us now prove the result under the assumption that { k} is not bounded
away from zero. If some subsequence of { k} converges to zero then since fl is
compact we can assume, without loss of generality, that the same subsequence of
{Xk} converges to some x* in the level set f. Since 2f(Xk)+hkI is positive
semidefinite, 2f(x*) is also positive semidefinite and f(x*)- 0 follows by
noting that

II RkPg II 2 )
II 2f(xk) II -I- h k

and that (4.6) implies that {11Rgpg II} converges to zero.
We can show that {h g} is not bounded away from zero by contradiction. If

then (4.3) and (4.5) yield that

__qlk($k ) . 1/fll)kkAk2 , 1/

Now, a standard estimate is that

(4.8) If (Xk/Sk) f (xg) k (Sg)

max II V2f(xk+ Sk) V2f(xg)II,
0<:<1
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and thus the last two inequalities show that

-I IBI maxllV2f(xk+eSk)--V2f(x,)ll(4.9) p 1 < [/3 o.<e<.

Inequality (4.6) implies that {A} converges to zero and hence {11 s& II} also con-
verges to zero. Thus the uniform continuity of 2f on fl together with (4.9)
implies that p > aq for all k sufficiently large and then the updating rules for A
yield that {A} is bounded away from zero. This is in contradiction of the fact
that {A} converges to zero.

The result we have just established is only a sample of the available results
for Algorithm (4.7) under assumption (4.3) for s. All of the results of Sorensen
[1982] hold, and in particular, it can be shown that if f has a finite number of
critical points in the level set 1 then every limit point of the sequence {x}
satisfies the second order necessary conditions. We now prove a stronger version
of this result.

LEMMA (4.10). Let x* be an isolated limit point ofa sequence {Xk in R n. If{Xk
does not converge then there is a subsequence {xj} which converges to x* and an

> 0 such that II xtj+l- xt2 II > .
Proof. Choose > 0 so that if II x-x* II < and x is a limit point of {Xk}

then x x*. If Xk2--X* II < then define lj by

lj max{l’llxi-x*ll < ., kj 1}.

In this manner, a subsequence {xt) is defined such that

Ilxtj-x*ll , Ilxtj+l-x*ll > ,
It follows that {xt) converges to x
large. Hence,

and thus II x* II / for all lj sufficiently

II xt.i+ xt II II xtj+- x* II II xt- x* II

as desired.

THEOREM(4.11). Let f "R --* R be mice continuously dOeferentiable on the level
set II {x’f(x) < f(x0) and consider the sequence {Xk} produced by Algorithm
(4.2) where Sk satisfies (4.3). Ifx* is an isolated limit point of {xk} then 2f(x*) is
positive semidefinite.

Proof. If {Xk} converges to x* then Theorem (4.7) shows ( the compactness
of II is only used to guarantee that {Xk} is bounded ) that 2f(x*) is positive
semidefinite. If {Xk} does not converge then Lemma (4.10) applies. Thus, if {xt2}
is the subsequence guaranteed by Lemma (4.10) then A tj >//32, and since (4.6)
shows that {h gag2} converges to zero, {h t2} must then converge to zero. We can

now use the positive semidefiniteness of 2f(Xk)-I-hgI to conclude that
,2f(X*) is positive semidefinite, m

We have already noted that Thomas [1975] proved that {f(xk)} converges
to zero. Hence, if 2f(x*) is nonsingular at a limit point x* of {Xk} then x* is an
isolated limit point, and Theorem (4.11) shows that 2f(x*) is positive definite.
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Since q k (Sk) 0 we have that

(4.12) 1/511 sk II < II 2f(xk)-I II II f(xk) II

whenever Vf(xg) is positive definite, and thus Lemma (4.10) shows that {Xk}
converges to x*. This establishes the following result.

THEOREM(4.13). Let f "R n R be twice continuously differentiable on the level
set II {x’f(x) < f(x0) and consider the sequence {Xk} produced by Algorithm
(4.2) where sk satisfies (4.3). Ifx* is a limit point of{xg} andVf(x *) is nonsingu-
lar then {xg converges to x* and f (x*) is positive definite.

An additional result which is helpful in establishing rate of convergence
results is that under the assumptions of Theorem (4.13) the sequence {A} is
bounded away from zero. To prove this first note that if e0 > 0 is a lower bound
on the eigenvalues of Vf(Xk) then (4.4) shows that

q [ > 1/0min{A k,ll SII }
where

sgN _2f(Xk)-f (Xk)"
Now, (4.12) implies that 1/ll Sk II < rll sll where r is an upper bound on the con-
dition number of Vf(xg), and hence assumption (4.3) shows that there is a con-
stant e 0 with

--Ill k (Sk) /" 1/2 11] Sk

This estimate and (4.8) then yield that

max II V (Xk+ Sk) V (Xk) II
0<<1

and thus p > for all k sufficiently large. It follows that [AI is bounded away
from zero as desired.

Rate of convergence results can be obtained with the additional but mild
assumption that there is a constant /33 > 0 such that if II sll < flA k then
s---- sv. For example, Algorithm (3.14) satisfies this assumption because if we
have II s II < (1--o-)A then h----0. In particular, note that if II s II < A then
(3.11) cannot be satisfied because then Algorithm (3.14) would set II s II A.

Under the above assumption, Theorem (4.13) can be extended to show that
/x] converges to x" with a Q-superlinear rate of convergence and that if 2f is
Lipschitz continuous then the rate of convergence is quadratic. The proof is not
difficult; since /11 Skll < 11 sll where is an upper bound on the condition
number of the Hessian matrix at xg, eventually II sgll < fl3Ak, and then {Xk}
becomes an unmodified Newton’s method. The rate of convergence results are
then standard.

5. Computational results. Algorithm (3.14) has been implemented in a For-
tran subroutine GQTPAR, and in this section we present the results of GQTPAR
on two sets of test problems. Since our main concern here is the performance of
GQTPAR in a trust region method, we used 0.1 0.1 and 0"2 0 in the conver-
gence criteria (3.10) and (3.11). The reason for setting 0"2 0 is that 0"2 is only
required to deal with the case where g 0 and B is positive semidefinite and
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singular, and in this situation, a trust region method terminates. The initial choice
of h depends on the test and is described below. All tests were performed in dou-
ble precision on a VAX 11/780. This provides an accuracy of about 17 significant
decimal digits.

The first set of tests is concerned with the performance of GQTPAR in the
context of a trust region Newton’s method. The test problems used are the 18
unconstrained minimization problems described in Mot6, Garbow, and Hillstrom
[1981a]. For each problem it is possible to specify a set of starting points, and in
8 of the problems it is also possible to specify the dimension. A particular set of
test cases is defined by the data provided to the test drivers. We used the sample
data provided in Mor6, Garbow, and Hillstrom [1981b] which defines 52 test
cases. The dimensions of the problems specified in this set of tests range from 2
to 12.

The trust region Newton’s method used follows Algorithm (4.2) and proved
to be quite successful on these problems. Details of the Newton method will
appear elsewhere. For the purposes of this paper it suffices to remark that on the
first call to GQTPAR the initial h is zero, but on succeeding calls the initial X is
the same as the final h from the previous call of GQTPAR. At the end of Section
3 we pointed out that it is possible to obtain a more educated guess for the initial
h, but this choice provides a stringent test of GQTPAR.

The performance of GQTPAR on these problems was very satisfactory.
There were 2580 calls to GQTPAR and the average number of iterations per call
was 1.63; the largest number of iterations was 10. In about 20% of the calls con-
vergence criterion (3.11) was satisfied.

The second set of tests is designed to exercise the various features of
GQTPAR as an individual algorithm on problems of type (1.1). For these prob-
lems we decided to use

(5.1) h
II g II
h

as the initial h. Unless other information is available, this is a reasonable
automatic choice. In these problems we generated sequences of uniformly distri-
buted random numbers with the RAND function of Schrage [1979]. Given an
integer seed, RAND generates a random number in (0,1) and changes the seed.
Thus a sequence of random numbers can be generated by repeated calls to
RAND.

A convenient way to define a problem of type (1.1) is to set B QDQr for
some orthogonal matrix Q and diagonal matrix D, and to then let g-- Q for
some vector . This makes it possible to generate a (potentially) hard case by set-
ting to zero the component of corresponding to the smallest element of D. The
structure of B is scrambled by choosing the orthogonal matrix Q of the form
O0203 where

0= i_ 2 ww?
Ilwjll x j-- 1,2,3,

and the components of w are random numbers uniformly distributed in (-1,1).
A problem of type (1.1) can be generated be specifying A, , and D; different
choices lead to problems with various characteristics.
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We consider four different ways of specifying and D. In all four cases, the
elements of and D are initially chosen as uniformly distributed random numbers
in (-1,1). This choice leads to the general case; as mentioned above, a hard case
can then be obtained by setting to zero the component of corresponding to the
smallest element of D. A positive definite case is obtained by replacing D by
and in the saddle point case all the components of g are set to zero.

The choice of A is critical; if a is chosen from (0,1) then the tests are easy
because (5.1) is almost always an excellent choice. A harder test is obtained if A is
chosen as uniformly distributed from (0,100), and this choice is made in our tests.
We have observed that a wider distribution in the choice of A does not affect the
results significantly, and that the range (0,100) appears to be the hardest choice
for these problems.

We now present the results of tests in each of the above four cases and for
dimensions 10, 20, 40, 60, 80, and 100. For each case and each dimension we
generated 5 problems and recorded both the average and the maximum number of
iterations required for convergence. The results are presented in the tables below.

TABLE
The general case.

Number of iterations

Dimension Average Maximum

10 2.0 4

20 2.6 5

40 3.2 4

60 3.0

80 3.2 4

100 4.0 5

TABLE 2
The hard case.

Number of iterations

Dimension Average Maximum

10 1.6 3

20 2.2 3

40 3.0 3

60 2.8 3

80 3.2 4

100 3.2 4
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TABLE 3
The saddle point case.

Number of iterations

Dimension Average Maximum

10 1.6 3

20 2.0 2

40 2.6 3

60 3.0 4

80 3.6 4

100 3.2 4

TABLE 4
The positive definite case.

Number of iterations

Dimension Average Maximum

10 2.4 4

20 2.0 2

40 2.4 3

60 2.4 3

80 2.4 3

100 3.0 4

An interesting aspect of the results for the general case is that Algorithm
(3.14) terminated on condition (3.11) in 26 out of the 30 cases. This shows that
(3.11) is powerful enough to terminate the algorithm even on non,hard cases.
For smaller values of try, however, it is more difficult to satisfy (3.11) and this
gives GQTPAR a chance to produce an iterate h >-hi with b(h) > 0. Once
this occurs, the Newton iteration converges quadratically and (3.10) is eventually
satisfied. As noted above, the results improve for smaller choices of A, and for
example, if A is chosen from (0,1) then the maximum number of iterations is 2.

The results of Table 2 show that the hard case, once recognized and treated
properly, can be handled with the same computational effort as the general case.
In contrast to the general case, the results for the hard case are sensitive to the
choice of o’1 since in this case it is necessary to determine h and Algorithm
(3.14) determines h with a bisection-type process. Another interesting point is
that for these problems Algorithm (3.14) does not always terminate on condition
(3.11) since the hard case only occurs if A > II p II for >/ --hi. This situation
is avoided in the saddle point case by choosing g 0.

The saddle point case is unusual because the algorithm and the results are
independent of the choice of A, and termination always occurs on condition
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(3.11). Although setting g 0 is an extreme choice, the numerical results are
insensitive to the choice of g provided the components of g are sufficiently small.
For example, if the components of g are chosen from (-10-8,10-8) then the
number of iterations increases by 1 in two of the problems, but otherwise the
results are unchanged.

In the positive definite case, the choice of A as a uniformly distributed ran-
dom number from (0,100) resulted in exits with h---0 in about half the prob-
lems, and this explains why the average number of iterations is close to 2. On the
other hand, if A is chosen from (0,1) then (5.1) leads to termination on the first
iteration.

These results show that GQTPAR performs adequately in all cases. As
expected, a smaller value of r requires more iterations, but the increase is
surprisingly small in most cases. The choice o- 0..1 is very satisfactory in many
cases since it does not require a large number of iterations and produces a nearly
optimal approximate solution as predicted by the theory.

6. Concluding remarks. We have presented an algorithm for the con-
strained quadratic minimization problem (1.1) and reported the computational
results of the implementation GQTPAR. This implementation uses the Cholesky
factorization to solve systems of the form

(B + hI)u= v,

but it is possible to use other factorizations. For example, the decomposition

(6.1) B QTQr

where Q is orthogonal and T is tridiagonal leads to systems of the form

(T + XI)w= Qrv u= Qw,

and since Algorithm (3.14) is invariant with respect to orthogonal
transformations, it is possible to produce an implementation which only requires
on the order of n arithmetic operations per iteration. We have not used this fac-
torization because we expect GQTPAR to be used in a trust region method, and
in this case our numerical results show that a call to GQTPAR requires less than
two Cholesky factorizations on the average.

Another argument against the use of factorization (6.1) is that it usually
ignores the structure of B. In particular, for sparse systems the Cholesky factori-
zation offers many advantages. Good software based on the Cholesky factoriza-
tion currently exists for the solution of positive definite linear systems, and this
together with an estimator of the smallest singular value of a sparse upper triangu-
lar matrix is all that is required to provide a trust region Newton’s method for
optimization problems with a sparse Hessian matrix.

It would be of interest to develop a method for large scale problems of type
(1.1) which does not require the solution of linear systems. Iterative approaches
along the lines of conjugate directions or Lanczos type methods have been con-
sidered, but a complete solution is not known to us.
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AI}l}endix. The purpose of this appendix is to prove that if is the LIN-
PACK estimate of a right singular vector of R corresponding to the smallest
singular value, then II R II is near zero when R is nearly singular.

As mentioned in Section 3, the LINPACK technique constructs a vector e
with components +_ 1 such that the solution w to the system R rw-- e is large.
Then the system Rv w is solved for v, and

is the LINPACK estimate of the singular vector. If R is exactly singular then the
following description must be modified, but in this case R--0 is obtained so
there is nothing to prove. Therefore, we now assume that R is nonsingular and
show that if p 0 is the (i,j) element of R and

j--1 i--1

then

(A.2) II R.;II < nV(1 +p)min{ IPk I’1 < k < n }.

Thus, if B + X I R rR and X is near h then some diagonal element of R is
near zero and (A.2) implies that II R} II is near zero.

To establish (A.2) we first note that for any vectors v and w such that
Rrw=eandRv= w we have

(A.3) II w II 2 < n’/ll v II

In fact, the Cauchy-Schwarz inequality shows that

II wll-- II R-tell 2-- eTR-1R-Te < II ellll vii

and thus (A.3) follows because each of the components of e are _+ 1 Also note
that (A.3) implies that

II w II n ’A
(A.4) II R} II <II v II II w II
We now show that the LINPACK technique for selecting w does cause II w II to
grow if R is nearly singular. To prove this, recall (Cline, Moler, Stewart, and Wil-
kinson [1979]) that if (o, ...,(Ok- have been specified then we compute

k-1
pi
(k-l)-- ZPtiWl, k

/--1

and consider two possible choices of Wk"

k

If
n n

i--k+l i=k+l
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then to k 60 - is chosen, and otherwise o k tO - is chosen. Since

it follows that

max(Io L I, I)

n

ItOk - E IPi(k-l) - [9kitOk
=k+l

Thus, in view of (A.1) we have that

< (l+p)llwll l<k< n.

This inequality together with (A.4) shows that (A.2) holds as desired.
Estimate (A.2) is quite crude, and it certainly is not being offered as an indi-

cation of the accuracy of the LINPACK estimate. The only purpose of (A.2) is to
validate the use of the LINPACK estimate in Algorithm (3.14). It is of interest
to note that the same proof techniques show that the look-behind algorithm (with
unit weights) of Cl:ae, Conn, and Van Loan [1982] also satisfies an estimate of
the form (A.2).
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THE BORDERING ALGORITHM AND PATH FOLLOWING NEAR
SINGULAR POINTS OF HIGHER NULLITY*

HERBERT B. KELLER?

Abstract. We study the behavior of the bordering algorithm (a form of block elimination) for solving
nonsingular linear systems with coefficient matrices in the partitioned form (. g) when dim N(A)>= 1.
Systems with this structure naturally occur in path following procedures. We show that under appropriate
assumptions, the algorithm, which is based on solving systems with coefficient matrix A, works as A varies
along a path and goes through singular points. The required assumptions are justified for a large class of
problems coming from discretizations of boundary value problems for differential equations.

Key words, path following, bordering algorithm, block elimination, singular systems

1. Introduction. We study here some specific procedures for solving linear sys-
tems of the special form

X X

The matrix s is of order N + u with the indicated submatrices: A of order N, D of
order u, B is N x u and C is u x N. The vectors x, g e RN and 1, / R v. Such linear
systems arise when using Newton’s method in some specific path following algorithms
to be discussed later. Indeed it is families of systems of the form (1.1) that we solve
in applications and invariably N >> u. In fact a major part of our current interest stems
from the fact that in the course of this process the matrix A becomes singular or near
singular, while remains nonsingular. The so-called bordering algorithm that we use
to solve (1.1) when both A and s are nonsingular, which is based on solving systems
of the form

(1.2) Av=b, v, b s IN

can be shown to be valid for our applications when A is singular. (The bordering
algorithm is but a special case of block Gaussian elimination.) Our analysis has been
presented in [8] for the case u 1. However this is not generally available and it is
somewhat surprising that the case u _-> 1, treated here, can be done so simply. Thus
the present study includes the results of [8] but is independent of that reference.

In 2 we formulate the bordering algorithm for solving (1.1) when A and are
nonsingular. We also show how the Woodbury formula [4] can be used in this case
but under more restrictive conditions.

In 3 we examine the solution of (1.1) when A has nullity u and is nonsingular.
We use here bases for the right and left null spaces of A. In 4 we show how these
bases are obtained from an exact LU-decomposition (with pivoting) of A. Then in
5 we show how the bordering algorithm can be applicable to this singular case when

a finite precision factorization is employed.
The LU-factorization of singular matrices must, in general employ full pivoting.

However, for a large class of "banded" linear systems arising from discretizations of
boundary value problems for differential equations, we show that partial pivoting can

* Received by the editors March 15, 1982, and in revised form July 26, 1982. This work was supported
by the U.S. Department of Energy under contract EY-76-S-03-0767, Project agreement #12, and the
U.S. Army Research Office under contract DAAG 29-78-C-0011.

t Applied Mathematics, California Institute of Technology 217-50, Pasadena, California 91125.
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be used until half a bandwidth from the end; only then is full pivoting required. This
is done in 6 where we also briefly describe the path following applications.

2. Bordering algorithms: nonsingular A and . Suppose A and are nonsin-
gular. Then we can solve (1.1) as follows. Determine the N u matrix V and the
vector w Rn from

(2.1a, b) AV=B, Aw=g.

Find R" by solving

(2.2) (D CTV)I I- CT"w.
Then evaluate x n as

(2.3) x=w- V.
This procedure is simply a form of block Gaussian elimination that results from the
factorization

VA ff))=(cA )( D_cTv)CT

Since A is nonsingular V and w are uniquely defined by (2.1 a, b). Since in addition
1 is nonsingular the Schfir complement of A in 1 must be nonsingular and this is just

(2.4) D -CTA-1B =D-CT"V.

Thus is uniquely defined by (2.2). Using these results in (1.1) we see that the solution
is obtained.

After an LU-factorization of A we need only , + 1 backsolves to obtain V and
w. Then we must solve the uth order system (2.2). The inhomogeneous term in this
system and the formation of x in (2.3) requires the equivalent of 2u inner products
of N-vectors. Thus for N >> u, our main case of interest, the bulk of the work is in the
factorization of A.

Another interesting procedure for solving (1.1) is to use the last , equations to
eliminate from the first N equations. This can be done if D is nonsingular--a
requirement not imposed above. When this holds we obtain

(2.5a, b) --D-l(’y-cTx), (A-BD-ICT)x=g-BD-Ly.

Note that the coefficient matrix in (2.5b) is just the Schiir complement of D in
Thus if, as we have just assumed, D is nonsingular this Schfir complement is also
nonsingular. But we also note that this coefficient matrix is an at most rank
modification of A; that is BD-CT has the structure required to apply the Woodbury
formula [4, p. 124] to solve (2.5b). Specifically if A is nonsingular then

(2.6a)

where

(2.6b)

(A -BD-1CT)- =A-1 +A-1BTCTA-,

T=(D-CTA-IB)-.
The inverse in (2.6b) exists since T- is just the Sch/ir complement of A in s. Howevar
the application of (2.5a, b) and (2.6a, b) is more restrictive and more costly than the
bordering algorithm and so we do not consider it further here.
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3. Singular A, nonsingular . We now turn to the case of singular A with nullity
,. Equivalently we can assume that

dim Ae(A) ,,
(3.1a, b, c) aV(A) span {bx, ", b}, cI)-- (b

aV(A) span {, , }, =-( ).

Under condition (3.1a) the matrix of (1.1) is nonsingular if and only if (see [1,
Appendix II])

(3.2)
Co) dim(B)=u, c) (B)f3Y(A)=O,

cz) dim Y? (C) u, c3) oV(C’) Ae(A) 0.

Using the N u matrices and of basis vectors introduced in (3.1b, c) we can
reformulate (3.2) in the equivalent form"

B is nonsingular <=> (3.2Co, c),
(3.3a, b)

Ca is nonsingular<=> (3.2c2, c3).

The proofs of the indicated equivalences are exercises in basic linear algebra.
To solve (1.1) in this case we rewrite the system as

(3.4a, b) Axo+Bo g, Caxo+Do /.

Multiply (3.4a) by q7- and use (3.3a) to get

(3.5) o (qB)-a(ag).
With this value of o in (3.4a) we obtain

(3.6) Axo g-B(qTB)-aqg.
This clearly has a solution since the right-hand side is in (A). The general solution
of (3.6) is

(3.7a) Xo x +o,
where x is any particular solution and o [" is arbitrary. Using this in (3.4b) we
obtain on recalling (3.3b) the unique value for o:
(3.7b) 0 (CT())- [,/_Dto- CTxP].
The unique solution of (3.4a, b) is thus given in (3.5) and (3.7a, b).

To evaluate this solution representation we need , , xp, 12o and [0. Again for
N >> u the work in solving for the u-vectors/o and o is negligible compared to that
in solving for the 2u + 1 vectors in RN. We turn next to the determination of the
null vectors.

4. Right and left null vectors. To compute the right and left null vectors of A
when (3.1) holds we must use some form of full pivoting. Thus with appropriate
permutation matrices P and O, corresponding to row and column interchanges in A,
we must work with

A =PAO.
To avoid notational complexity we will, as usual, assume that the indicated interchanges
have already been made in the systems (1..1) and (2.1a, b) and thus use A rather than



576 HERBERT B. KELLER

A. Then we may assume that A can be factored, via Gauss elimination, in the form

(4.1) A =LU=_( L,. Orv( Ur U,,,
Lvr L, / 0vr

Here, r + u N, Lr and Ur are nonsingular r r matrices, Iv and e are u u matrices
(/ the identity), 0rv and 07"vr are r u matrices of zeros, Urv is r v and Lv is u x r.
For exact calculations, which we assume for this section

(4.2) e 0.

The matrices Lr and U are triangular with forms

X
(4.) u ".

1 0 Ur

In addition u... u 0.
To find the right null vectors we note that

A= if and only if U=.
With the unit vectors e N, 1 N ] N u, we seek vectors N such that

j aj
-ej

are right null vectors of A. We find that this is the case for a 0 provided the i satisfy

U+ Ur.e, 1 j u.

Thus a set of u independent right null vectors of A is given by

U21Ur.[(4.4a) k
Similarly the left null vectors of A satisfy

for arbitrary nontrivial e N . Thus if we choose for e the basis {e} for N we obtain
the set of u independent left null vectors

(4.4b) *((L:)-L)
Note that and are each determined by solving only triangular systems. Thus

both nullspaces are obtained using only backsolves for the factorization LU.
g. Pefiel elelfis lssgl. In finite precision calculations, with

A as in 4, we do not get e0 as assumed in (4.2). If A is appropriately scaled,
then with full pivoting in t-digit floating arithmetic we assume an estimate of the form

(5. ) I1 IA x 0- E0.
Indeed all the nonidentically zero elements (i.e., 0 and 0) and nondiagonal elements
of L and L have errors that can be bounded by the same quantity.
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To assure that our procedures and analysis are applicable we must assume that
the factorization procedure can, at least, correctly determine the nullity. A reasonably
simple test that we have found works well in many applications (see 6) is to set u n
when

N--n,N-n(N-n)(5.2) max la I<
i>N-n

(N-n-l)
N-n-l,N-n-1 I"

j>N-n

(k) for the kth stage of theHere we employ the usual Gaussian elimination notation a q

elimination. We have used 6 in [10-3, 10-2] for many calculations. There are more
robust procedures for rank determination than Gauss elimination, such as QR- and
SV-decompositions. However for the differential equations applications these other
procedures are prohibitively expensive while Gaussian elimination does not suffer
from the pathological cases designed to show that it does not always work.

Further we shall require that after the numerically factored form (4.1) is obtained
it satisfies

(5.3) min lu, >>e0,
i-<r

say, for example,
Finally we require for the analysis of this section that the matrix

(r)(5.4a) ev--(aii ), r <i <=N, r <f <-_N,
(r)is nonsingular. Of course this would be the generic case if the elements a ii were truly

random roundoff. But we can insure this in the actual calculations by setting

(5.4b)

where, say,

With the above assumptions and the assurance that (5.4a) holds, we proceed to
examine the bordering algorithm (2.1a, b)-(2.3) using the factorization (4.1) and shall
see how it relates to the solution in 3. We neglect for the moment all errors in the
factorization save those of e. At the end of our analysis we easily include the effects
of all the errors. To conform to the partitioning in (4.1) it is useful to introduce the
notation

(rrv (Brv) (gr)(Wr)(5.5) V-
g,/’

B= g= w----
B gv

Specifically, Vr,, and Brv are r v, V and B, are v x v, gr and Wr S R, gv and w R.
With (5.5), (4.1) and (4.4a, b) we obtain from (2.1a)"

(5.6a, b) V ((LUr)-B’ -gO V,, =- Vp -Op V, e,,V,, -xItrB
\ O ]

and from (2.1b)

((LrUr)-lgr OPW, W
p dPW,, 8vW, --aYl T(5.7a, b) w=\ 0 ]

g"
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Since ev is assumed nonsingular Vv and w are uniquely determined. We use (5.6a)
and (5.7a) in (2.2) to get

(D CTVP - cT(vu) -- CTwp --- cT(wv,

Multiply this by (TB)-ae(cT)-I, whose existence is assured by (3.3a, b), and use
(5.6b) and (5.7b) to write the result as

(5.8) = (aJd’TB)-I{(attTg)-e,(cTdp)-I[’y--CTwP--(D -CTVP)]}.
Recalling (3.5) and the fact that [[e,I]<< 1, the above implies

(5.9) t to + 6(e,).

From (5.6b) and (5.7b) we get with the aid of (5.8)

e(w- Vvj)=-e,.(cYo)-a[l-Dt-cT(wp- VPt)].

After cancelling the e factor above, we use (5.6a) and (5.7a) to get from (2.3)

(5.10a) x=w- V=(wp- VP)+o(cTo)-I[’y--D--CT(wp- VP)].

Setting

(5.lOb) xp =-wp- VPo
and using (5.9) we find on comparison with (3.7a, b) that

(5.11) x Xo+ff(e).

Thus we conclude from (5.9) and (5.11), that the bordering algorithm (2.1a, b)-
(2.3) applied to solve (1.1) with singular A satisfying (3.1) yields an (e) accurate
solution provided an LU-factorization is used to yield (4.1) with e nonsingular and
satisfying (5.1) and (5.3). We must observe that since (5.3) holds the errors in computing

q, V and w are also at most (eo) and so the estimates in (5.9) and (5.11) remain
valid when these inexact values are used in the above derivation.
When A is singular or near singular and we use the bordering algorithm, even with

a good pivot strategy, some loss in accuracy is to be expected. This occurs when
forming x as in (2.3) and is due to cancellation of leading digits. One way to circumvent
these errors is to use the "singular A algorithm" given by (3.5) and (3.7). This can
be quite practical when A is sensed to be near singular since the bases of null vectors

and q are easily determined as in (4.4a,b).

6. Path following applications. The computational linear algebra problems dis-
cussed above were in fact motivated by the path following applications we now
describe. We shall also show that when these applications come from consistent, stable,
discrete approximations to a broad class of differential equation problems then very
efficient partial pivoting procedures can be used for the Gaussian elimination to
determine the nullity and the LU-factorization of (4.1). Full pivoting need only be
invoked in processing the final "block" in the special banded or block tridiagonal
systems that arise.

We assume that some nonlinear operator equation has been discretized and that
the resulting finite dimensional problem has the form

(6.1) G(u, ) =0.

Here G’ N+a_N is an appropriately smooth function, u N and A E. We are
concerned with computing families or "paths" of solutions, (u, A), of (6.1). One of
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the most effective ways to do this is known as Euler-Newton continuation. Thus if
(u(A), A represents an arc of solutions of (6.1) the tangent to this arc is in the direction
(ux (A), 1), where ux satisfies

(6.2) Gu(u(A ), A )u -G (u(,), A ),

then a good approximation to the solution (u(A + A), A + AA) is given by

(6.3) u(A + AA) u(A) + AA ux (A).

This is the approximation obtained by using one "Euler step" to solve (6.2) numerically.
Now we use this approximation as the first iterate in Newton’s method to solve (6.1)
ath +Ah"

GuAu u+l(6.4a, b) V=-G, u =u +Au.
Here we have used G -= Gu(u (A + AA), A + AA), G =- G(u (A + AA), A + AA).

This procedure generally works extremely well. But during the course of the
continuation or path following, difficulties occur if the N xN Jacobian matrix Gu
becomes singular. Such singular points are not uncommon and indeed they can be
extremely important in the applications. Their most frequent occurrence is at limit
points, say (Uo, A0) where

(6.5a, b) dim f(Gu(u0, Ao)) 1, Gx (Uo, A0) Range [Gu(uo, A0)].

Geometrically this occurs at points where the tangent to the path becomes vertical
on a u versus A graph. At bifurcation points we also have (6.5a) but not (6.5b). In a
number of other important cases the null space dimension is greater than one. These
include multiple limit points [1], Hopf bifurcation and period doubling bifurcations
in the study of periodic solution branches [2], fold following [3], and critical boundary
paths [9]. In all of these cases there are additional parameters in the problem
formulation (for example: the period, T, of the periodic solution, etc.) or there are
natural parameters that can be introduced. Indeed the idea of introducing additional
parameters leads to our current study and the application of bordering.

At limit points the difficulties are easily eliminated, in principal, by simply using
some arclength-like parameter to describe the path. Thus we imagine a family or arc
of solutions of (6.1) given by (u(s), A(s)) for s c R. Let (io, o) be the tangent
to the solution arc for s So. Then we consider the scalar constraint

(6.6) N(u, A, s)io" (U-Uo) +o(A -Ao)-(S-So)=0.

Now we seek to solve (6.1) and (6.6) simultaneously for Is- Sol not too large. We call
this procedure pseudo-arclength continuation [7], since if we let s -+ So, then (6.6) implies

II/,o11 / IAol 1.

Thus s- So in (6.6) is a local approximation to arclength.
If Newton’s method is used to solve (6.1) and (6.6) simultaneously for (u(s), A (s))

we get for the Newton corrections (Au , AA v) a linear system of the form (1.1) with

When (6.5a, b) holds we can easily show that evaluated at (Uo, A0) is nonsingular.
Thus for (u, A ) close to (Uo, Ao), is nonsingular while G is close to the singular
matrix Gu(Uo, A0). In this situation our analysis in 5 with u 1, is applicable to the
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solution of the Newton equations. As previously mentioned this u 1 case is also
discussed in [8]. However in the higher dimensional periodic bifurcation and fold
following cases [2], [3], [9], where u 2, our current analysis is also applicable. The
inflation procedures used to get systems of order N + 2 are along the same lines as
the above but considerably more complicated so we do not sketch them here.

To show how partial pivoting can be justified for an important class of singular
A G,, we consider the linear boundary value problem

B(A)r(a)

(6.8a, b, c) y’-A(A, t)y f(t), a <t <b,

B(A)y(b)

Here y, f e ", Ba is p x m, Bb is q X m, p + q m, [a E P and Ib E q. Of course in
applications this may represent the linearization of some nonlinear problem but that
is not important for our current discussion. If Y(A; t) is a fundamental solution matrix
for (6.8b) then it is well known [6] that (6.8a, b, c) has a unique solution for each
(f, Ia, Ib) if and only if

(6.9a) F(h =_ det (B(h Y(h a ))Bb (h) Y(h b)
O.

Indeed the "eigenvalues," A, of the homogeneous case of (6.8a, b, c) are just the roots
of

(6.9b) F(A) 0.

If A(, t), B(&) and Bb(A) are analytic in then the same is true of F(A) and we
have that the eigenvalues are isolated and accumulate only at oo (or else all values
are eigenvalues). We make one further assumption:

(6.10) The eigenvalues are nonconstant functions of the coefficients in Bb (,).

Suppose we approximate the solution of (6.8a, b, c) by using the Box scheme:

B, (A)Yo I,

Y-Yi--A(h, ti_l/2) Yi+Yi-l=f(ti_/2), l<_j<_j,(5.1 la, b, c)
h 2

B(h)y =B.
If we order the difference equations as indicated and denote the N--re(J+ 1)
unknowns as ya ___

(yr,.. ", yf)r, then (6.11a, b, c) can be written as

(6.12) flh(h)yh
where Ah (h) has the block tridiagonal structure

(6.13a)
Jh(A )[BI, Ai, C]

B. k--K] }q’ C --- }q.
In particular,

(6.13b) A0(A)=(B-’)) AI(h)=--(-B-X(--h-) }p}q



THE BORDERING ALGORITHM AND PATH FOLLOWING 581

Now from [6, Thm. 2.9] we conclude that: if A is not an eigenvalue (i.e., root of (6.9b))
then for some ho > 0 and all h <-ho the matrices {h( )} are nonsingular with

(6.14) I11 )11 < g.

It is further shown in [5, 5], that when (6.14) holds a restricted form of pivoting
yields LU-factorizations of the form:

(6.15) a(h) [/3t, 6t, 0][0, aj, 7i], 0<-/" <-J,

where at,/3t, 6t and 7t are m m matrices. The restriction on the pivoting is such that
it allows interchanges within the set of m equations (6.11b) at any fixed net point (a
restricted form of row-pivoting for h) and it allows interchanges within the m variables

Yt associated at each net point (a restricted form of column-pivoting). Both of these
pivoting strategies insure that the zero structure of the Bt and Ct are preserved in the
/3t and 7t, respectively. To obtain factorizations of the form (4.1), (4.3) we use these
techniques with 8t and at in the triangular forms

(6.16) = c.=-
X 1 0 x

We note, by (6.13b) that the coefficients defining Bb () do not enter into the elimination
procedure until the final m x m block is to be factored as

(6.17) s Ar(A) .t’Yr- (1’3--)
Furthermore since/3j contains zeros in the last q rows (as in all the Bt of (6.13a)),
the last q rows on the right-hand side of (6.17) are just those of Bb (A).

Now if A is an eigenvalue we could invoke (6.10) to ensure that the elimination
does not fail until all but the last block has been processed. This is simply done by
changing the data in Bb (h) so that the current value of is no longer an eigenvalue.
Then the complete factorization is valid. But this uses data from B() only in the
final block. Thus in the singular case (i.e., at an eigenvalue) we need not actually
change any data--we merely use full pivoting in the final fact0rization of (6.17). A
similar argument can be used to justify these techniques on discrete approximations
for many other classes of functional equations including elliptic boundary value
problems. The crucial requirement is some analogue of (6.10) which insures that
changing the boundary conditions changes the eigenvalues.

Acknowledgments. I wish to thank the referees for helpful comments on the
original version of this paper.
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ITERATIVE SOLUTION OF LINEAR EQUATIONS IN ODE CODES*

C. W. GEARf AND Y. SAAD

Abstract. Each integration step of a stiff equation involves the solution of a nonlinear equation, usually
by a quasi-Newton method which leads to a set of linear problems involving the Jacobian, J, of the
differential equation. Iterative methods for these linear equations are studied. Of particular interest are
methods which do not require an explicit Jacobian but can work directly with differences of function values
using J6 f(x + 6)-[(x). Some numerical experiments using a modification of LSODE are reported.

Key words. Newton, nonlinear equations, stiff equations, initial value problems, ordinary differential
equations

1. Introduction. The solution of the large sparse nonlinear equations arising at
each integration step constitutes an important part of the cost of numerical integrators
for large, stiff systems of ordinary differential equations (ODEs). To handle stiffness,
an integrator must be implicit (or, equivalently, involve an approximation to the
inverse of the Jacobian system). We will discuss predictor-corrector linear multistep
schemes in which an explicit predictor is used to get a first approximation for an
implicit corrector, although the techniques to be discussed are applicable to other
schemes such as implicit Runge-Kutta.

For illustration we will frequently use the forward Euler/backward Euler pair,
as they introduce all of the difficulties associated with the linear systems, although in
practice higher-order methods are used to achieve typical accuracy of three to five
digits. The forward Euler predictor for the differential equation y’ =f(y, t), where f
is a Lipschitz continuous mapping from RN+I to RN, is

(o)(1.1) Y,, P,, Y,,-l + hn-lY n--1,

where y, is an approximation to y(tn), y’ an approximation to f(yn, t) and p =y(O
is the predicted or first approximation to y,. The stepsize h,_l -t,- t,_ may change
from step to step, so we use a subscript in (1.1) to emphasize this fact, although we
will drop it from now on. The backward Euler corrector to be solved at each step is

(1.2) Yn Yn-1 + hf(yn, tn)

which is, in general, a nonlinear equation in yn. If solved by Newton’s method, we
get the iteration

(o+1) (a) (q)(1.3) yn =y +x

where x (q is the solution of
(q) (q)(I hJ) x (q)

Yn-1 -Jr- hf(y ( t, y, b

or

(1.4) Ax (q) =b().
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Currently at the Department of Computer Science, Yale University, New Haven, Connecticut 06520.
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Here, J is the Jacobian 0f/0y evaluated at a suitable point. Note that A is just a shift
and scale of this matrix. (In typical problems, J is slowly varying from step to step,
so it is not important that J be reevaluated frequently in practical codes because
iteration (1.3) converges at a reasonable rate when J is near the Jacobian.)

Systems (1.4) are very often sparse and nonsymmetric, and they are usually solved
by direct methods. Little has been done so far on treating these linear systems by
iterative methods. The symmetric case has been recently considered by Miranker and
Chern [10] using conjugate gradient methods. Iterative techniques are advantageous
in many cases, particularly when the number of equations is very large and when the
Jacobian is not easily computable.
Although the use of iterative techniques might seem costly at first compared to

direct methods, because only the right-hand side of (1.4) changes frequently, there
are several reasons why it is not so. One reason is that the solutions of the linear
systems need not be very accurate--the predicted value p, is fairly accurate so the
Newton corrections x Cq), q =0, 1, made by (1.3) are small compared to yCq)n and
relatively few digits of accuracy are needed in the x ". In fact, the aim of the corrector
step is to attempt to gain stability by eliminating the components of the error vector,
corresponding to the large eigenvalues of the Jacobian which have been amplified by
the predictor.

This can best be seen by considering the simple test ODE y’ =Jy where J
diag (AI, A2,’’’ ,AN). If y and A are the corresponding scalar values of any one
component of this problem, we have (assuming that y ’n Aye)

(1.5) yO). =P, =(1 +hl)yn-,

(1.6) y (q +)n =Yn(q) q-X (q)

(1.7) (1 h )x Cq y_ (1 hA)y (,q.

In an iterative scheme, (1.7) is solved only approximately. If hA is small, y (,0 is an
accurate approximation to Yn; the right-hand side of (1.7) is small for q 0 (it is
(hA)2yn_a). For these cases it is necessary only that the x (q be small. If hA is large
and negative, y,_x, which is approximately y0 e "-, is small for t,_ >0. However,
y(0 will be amplified by O(hA). In this case, the right-hand side of (1.7) will be O(hA)
for q 0, so (1.7) must be solved more accurately to reduce y, to its correct value in
a small number of Newton iterations.

The preceding paragraph raises the problem of choosing an iterative technique
more suitable for stiff ODE methods. More precisely, the question is" which iterative
techniques possess the property of being more accurate in the eigenspace correspond-
ing to the large eigenvalues? The class of projection methods on the Krylov subspaces
K,, span [r0, Aro,’", Am-ro] possesses the above property. The best example of
a projection method on the Krylov subspace is the conjugate gradient algorithm for
symmetric positive definite matrices. This method can be extended to unsymmetric
matrices by requiring that the residual vectors form an orthogonal sequence, a property
which is known to be true in the symmetric case.

In the context of stiff ODEs, the projection method must be used at each step.
In each projection process a basis of the Krylov subspace is generated along with a
representation of (the restriction of) the matrix A in this subspace K,,. Here we obtain
further simplifications in regard to the integration of stiff ODEs:

(i) The basis of the Krylov subspace and the rn x rn representation of A need
not be generated at each integration step.; once they are computed, they can be saved
and used in several subsequent steps as long as J is slowly changing.
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(ii) When the stepsize is changed by the integrator the shift of the Jacobian matrix
changes, but this does not change the Krylov subspace so it need not be recomputed,
only the factorization of the m m representation of A in the subspace must be
recomputed and, as will be seen, this is not costly.

(iii) There is no need to store the Jacobian in any fashion; all that is needed is
to be able to compute z Jv for any given v and this may be easily realized by the
approximation Jv [/(y + 6v) -f(v)]/6.

In this paper we examine the application of iterative methods based on the Krylov
subspaces to ODEs and analyze the linear constant coefficient case. We report the
results of some numerical experiments carried out by including some of the techniques
discussed in a widely available code, LSODE. This problem may be a fruitful area
for future work, and some additional modifications are discussed which could lead to
further improvements in ODE codes.

2. The Krylov subspace method for solving linear systems.
2.1. The Krylov subspace projection method. This subsection summarizes the

earlier paper Saad [11]. Consider the system

(2.1) Ax =b,

where A is N N (nonsymmetric). Suppose that V, [v 1, , v, is an orthonormal
system in RN and let x0 be an initial guess of the solution. By definition, a projection
method on the subspace K, span IV,,] is a method that obtains a solution of the
form x,, x0 + V,,y, such that

(2.2) VT. (b -Ax.) 0

therefore

(2.3) x,, x0+ Vm(vTmAV,,)-1 V,,ro,T
where ro b-Axo is the initial residual. Note that the m m matrix Hm VTmA Vm
is the representation of the linear application IImA IK. where II,, is the orthogonal
projector onto K,..

Of particular interest is the Krylov subspace projection method where K, is the
Krylov subspace K,, span [ro, At0,..., A"-lro]. The following algorithm, for the
solution of eigenvalue problems, described first by Arnoldi, provides .a simple way of
building an orthogonal basis v 1,’’ ", v, of K, along with the representation H,
VAV.:

Algorithm.
1. Compute ro b-Axo and take V ro/llroll.
2. For]=l,2,...,mdo

(2.4)

(2.5)

where

and

(2.6)

where

i+l Avi ,Y_.,, hqvi,
i=1

hit (Avi, vi)

hi+l,i’
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An important fact is that the matrix VAVm is the m x m upper Hessenberg
matrix whose nonzero elements are given by (2.5) and (2.6). Furthermore the vector

TV,,ro in (2.3) is equal to Ilrollel where el= (1, 0, 0,. , 0)’.
The approximate solution Xm is therefore easy to compute and (2.3) becomes

(2.7)

The fact that H, is Hessenberg means that the operator H is easy to compute via
an LU decomposition of Hm. However, if the dimension m is small, an LU decomposi-
tion is inexpensive even if H, is not Hessenberg. This is imporant for the technique
discussed in the next paragraph.

The/’th step of Step 2 in the above algorithm represents a Schmidt orthogonaliz-
ation of Avi against all the previous vectors v I, V2,"" ’, Vi. When j increases, this
becomes intolerably time consuming and above all requires too much memory. A
natural idea to escape this difficulty is to orthogonalize Av against the previous p
vectors where p is some small integer. The algorithm which is derived from this
produces a sequence of vectors vl, v2,’", Vm which is no longer orthonormal but
satisfies the incomplete orthogonality property

(2.8) (vi, vi) 0 for 0 < li -/’1 < p.

The first algorithm will be referred to as Arnoldi’s algorithm and the second as the
incomplete orthogonalization method (IOM). The only difference between the two
algorithms lies in (2.4) which for IOM becomes

(2.9) 3j+a Avj- hiivi,

where ij max {1,/" p }.
The approximate solution x,, is again defined by (2.7). This second method can

be interpreted as an oblique projection method on the Krylov subspace Km and is
analyzed in Saad [13]. It is important to mention that although all vectors Vg are
needed for forming the approximate solution Xm by formula (2.7), only the most recent
p + 1 are necessary at step j to form Vj+l. This means that one may store the vectors

v. in secondary storage as soon as they are computed, and read them back at the final
stage when the combination xm Xo + WmYm is formed (with y, I[rollHlet).

We point out that a number of similar algorithms have also been developed by
Jea and Young [8]. One of their methods (ORTHORES) is theoretically equivalent
to ours but no secondary storage is used. Note that their methods may break down
if the symmetric part of A is not positive definite. It is also possible in our case to
derive an algorithm which does not require secondary storage preserving the benefits
of forming the approximation Xm in a stable way, thanks to an implicit stable factoriz-
ation of H,,. We omit the details which can be found in Saad [14].

Thus far nothing has been said about how to choose the two parameters rn and
p. The dimension m of K,, must be, ideally, equal to N in which case the approximate
solution x,, is exactly A-b. However, good accuracy is achieved for m far less than
N. In practice an upper bound mmax is fixed a priori and the residual norms are
estimated periodically by using the formula (see [11])

(2.10) lib -Axl[
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As soon as the residual norm estimate is small enough or the dimension mmax is
reached, the algorithm stops. After that one could restart by taking x0 equal to the
last approximate solution. In stiff ODEs, however, we shall use the algorithm without
restarting because the outer Newton iteration will be repeated if the residual is
insufficiently small. The choice of the parameter p, the number of vectors against
which the vector Av is orthogonalized at each step, is more difficult. The optimal p
for a given problem is related, in a nonobvious way, to the degree of symmetry of A.
When A is symmetric, then, with p 2, the algorithm is equivalent to the conjugate
gradient method. Thus, when A is almost symmetric, the choice p 2 will be the most
efficient. In any case, p should not exceed 10 or 15 and should be taken smaller if A
is nearly symmetric and larger if not. Note that there is also a possibility of reducing
p during the integration by examining the matrix H,," p should be such that the hii’s,
</’-p can be considered small in comparison with the hit’s for/’-p <_-i <_-/’. (See Saad

[14].)

2.2. Application to stiff ODEs. All methods for solving stiff ODEs give rise to
one or more linear systems involving the Jacobian. If the backward differentiation
formulas are used, namely,

k

(2.11) Y. Z otiYn-i + hof(yn)
i=l

the linear system is

(2.12) (I-hoJ)x =b,

where b is the residual of (2.11) and x is the increment to the current approximation
to y.

The matrix J appearing in (2.12) might be difficult to compute and above all to
store. However, a look at the algorithm of 2.1 shows that the matrix A- I- hfloJ
is not really needed explicitly. All that is needed is to be able to compute the vector
u -Av for any given v, and this can be achieved through the formula

1
Yv--[/(t, y + v)-f(t, y)]

which will necessitate only one function evaluation if f(t, y) is already available from
the previous computations.

Suppose that at a certain integration step t, we use the Krylov subspace method
for the system Ax b, where A I-flohJ. This means that we generate a sequence
of vectors V,, [vl, v2, , v,,] and a Hessenberg matrix H,,, representing A in the
subspace K, span V,, ], and that we solve the problem Ax b at the step t, by (2.7).
The important question is whether we can use the same subspace Km and the
representation H,, to solve the following problems arising at steps t,+l, t,+z, ". There
are two separate problems here. The first arises if the Jacobian changes significantly
from step to step; the second arises because the shift h/30 does change from step to
step. In typical stiff equations the stepsize has to be sufficiently small for integration
accuracy so that the significant ("large") components of the Jacobian do not change
much from step to step (that is not to say that equations cannot be constructed in
which J changes rapidly, but they do not occur too often). This fact is used successfully
in most current codes that only update the Jacobian periodically and can be used
equally well if iterative techniques are used to solve the linear system. Hence, we are
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concerned at subsequent steps with solving

(2.13) A’x =b’,

where

(2.14) A’=I-hoJ.
Note that the stepsize h’ and the coefticient/3 of the method can be very different
from h and/30. According to (2.3), if we apply Arnoldi’s algorithm on Km to solve
the new system (2.13), we obtain the approximate solution

T T(2.15) Xm x0+ Vm(VmA’Vm)- Vmro,

where r0 b’-A’xo is the initial residual (Xo is a initial guess to the solution of (2.13)).
TThe matrix VmA Vm may, at first, look difficult to form, but it is easy to compute

7" VA VmVA Vm using the technique used by Enright [3]. Let us consider (oh/oh’) 7"

Tinstead of VmA Vm. If we set a floh/’oh’ we have

T T
aV,A Vm Vm [I fl oh ’J] Vm.

Hence

(2.16) T TaV,A Vm Vm(I-flohJ)Vm +(a--1)VTmVm.

Since Vrm Vm I, we obtain

and (2.15) becomes

TotVmA’Vm =Hm + (a 1)/

T(2.18) qm Vmro.
Note that this technique is not dependent on Hm being Hessenberg. If the dimension
m is small, the factorization of the operator (Hm + (a 1)I) is inexpensive.

A few remarks are in order. First, notice that no function evaluation is required
Tto build the approximate solution Xm. In fact, all that is needed is to compute a Vmro,

to solve an m x m system having a Hessenberg form, and to accumulate VmYm with
ym =a(Hm +(a-1)I)-qm. Secondly, the derivation of (2.17) assumes that Vm is an
orthonormal system, but this will not be true in the case of the IOM method. However,
on multiplying (2.16) on the left by (vTVm)-, we see that (2.17) is still valid provided
wereplaceqmin(2.18)bycm (vTVm)- TVmro, andHm by(VrVm)-1 TVm (1 flohJ) Vm.
This final matrix can be shown to be a rank one perturbation of Hm, (see Saad [11]),
and is the matrix representation of the section of A in Kin, that is, of HmAI,, where
IIm is the orthogonal projector onto Km. It is usually well approximated by Hm (Saad
[13]). Note that it would be needlessly expensive to compute m because we only need
a rough approximation to the solution of (2.13) and this can be achieved by taking

Tqm Vmro. Practically, however, Vro is not the best choice. If we notice that at the
earlier step t, when Vm has been generated, the residual r0 is, apart from a multiplicative

Vmro by v ,constant, equal to v l, we may consider replacing T roe or even better,
taking m =Yl= (rvi)ei where is some integer of the same order as p, e.g., l=
max (5, p + 1).

where

(2.17) Xm =Xo+aVm(Hm +(a 1)/)-qm,
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3. The problem of stability.
3.1. Accuracy of the solution in the dominant subspace.
3.1.1. Basic property. An important property of the Krylov subspace method is

that it provides an approximate solution to Ax b, which is more accurate along
the eigenvectors of A corresponding to the eigenvalues lying in the outermost part of
the spectrum. In the case of stiff equations we are particularly interested in the
dominant subspace which corresponds to the right part of the shaded spectrum in
Fig. 1 since A I hoJ.

FIG. 1. The shaded region indicates the part of the spectrum where the solution is accurate.

Suppose that the basic algorithm of Arnoldi is used to solve the system Ax b,
and let xm be the approximate solution obtained at the mth step. Let us denote by
II, the orthogonal projector onto the subspace K, and by Ug, an eigenvector of A
associated with hg. It is known that the distance I1(I 1-Im)uil[ between ui and the subspace
Km decreases rapidly to zero with m, for the eigenvectors ug associated with the
eigenvalues situated in the outermost part of the spectrum (see Saad 12]). (Throughout
this paper [1. denotes the Euclidean norm.) The following lemma gives an explanation
of the above-mentioned property.

LEMMA 1. The residual r b -Axm is such that

Proof. (rm, ui)=(rm, ui--[ImUi), because IImugK,, and the residual r,, is
orthogonal to K,. The result (3.1) follows immediately. Q.E.D.

3.1.2. Symmetric case. We shall first consider the consequences of Lemma 1
when A is a symmetric matrix.

PROPOSITION 1. Let A > A2 >" > Av be the eigenvalues of A, and let Og be the
acute angle between the initial vector vl and the eigenvector ui, < N. Let

i___[1 Aj- AN
7i 1 + 2 Ai- Ai+I

Ki K1 1.

Then

K___2__(3.2) [(r.,, u)l <-Ilr.l[
Tm-i(’Yi)

tan Oi,

where Tk represents the kth degree Chebyshev polynomial of the first kind.
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Proof. The result follows from (3.1) and an inequality for II(I-H )u, established
in 12]. Q.E.D.

The above inequalities are of interest only when is small compared with N
because then the quantity Ki/T,,-i(yi) decays rapidly as m increases, being fixed. The
same result can be shown when the eigenvalues are labelled in increasing order. As a
consequence, I(r, u,)l/llr.ll is very small when Ai belongs to either extremity of the
spectrum and becomes larger when Ai is in the middle of the spectrum.

Since we have IIrll-lY/= (r,,, u,)2l 1/2, the above proposition means that for
belonging to the outermost part of the spectrum, the component (r,,, ui) of the residual
along the eigenvector ui is much smaller than the average

It is natural to ask whether a similar result holds for the error vector (x*-x,,),
where x* is the exact solution of Ax b. The answer is given by the following corollary.

COROLLARY 1. The error vector x*-x,, is such that

< IIAII,,, Ki tan 0i.(3.3) ](x*-x,,, ui)[= i-/lllX -x,llT,_i(Ai
Proofi Using r, =A(x*-x,,) and (3.2), we get

Hence,

tan 0I(A(x*-x,,), u,)l

I(x * x,, Aui)l <= IIAII [Ix* x.llK,--
tan 0i

Zm_i(]/i)"

But Aui Aui, which gives the desired inequality. Q.E.D.
Note that when A is positive definite, the coefficient IIAII/IAel is just A 1/A.
The above result can be interpreted in the same way as the result for the residual

vector.

3.1.3. Unsymmetri case. When A is nonsymmetric, the exploitation of Lemma
1 is more complicated because the distance II(I-II,)ull is more difficult to estimate.
A result as simple as (3.2) is not available in the general case where A admits complex
eigenvalues. However, it can still be shown, in a way similar to that used in [12], that
II(I- 1-I,)uill decreases rapidly to zero as m increases when u is one of the eigenvectors
associated with the extreme eigenvalues, thus showing that we have essentially the
same phenomenon as above, namely that the components of the residual corresponding
to the outermost part of the spectrum will be damped out more rapidly than the others.

In the particular case where all the eigenvalues of A are real and simple, a result
similar to that of the symmetric case can still be shown. Suppose that h > h 2 >" >h
are the eigenvalues of A and let vl "iN- 101iUi" Then we can formulate the following.

NPROPOSITION 2. Suppose that al 0 and let Bi i=i+1 lai/a[. Let / and Ki be
defined as in Proposition 1. Then the residual vector rm satisfies

(3.4) ](r,,, ui)l<__l]r,,ll Ki
rm_i (,]/i i"

Proof. Inequality (3.4) is a consequence of Lemma i and the following inequality,
which can be derived by arguments very similar to those used in [12],

KiI1(I- II,, )uill <-
Tm_i (,Yi fli. Q.E.D.
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The above inequality does not show, however, that the component of the residual
or of the error is small. Suppose Ul, u2," ’, Ul are eigenvectors corresponding to the
largest elgenvalues and let Y.i=l yiui be the orthogonal projection of r, onto the
invariant subspace span [u 1, u2, ’, Ul], that is, the yi’s, 1, 2, , m, minimize the
norm

If we set U=[ul, u,...,u], g=(’l,y,’",/) then. we have g=
(UU)-Ur, and hence

(3.5) Ilgll--<

where - is the norm of the inverse of the Gramian of the system U. Therefore, the
components yi, 1, of the residual in the subspace span [UI] will be small because
the inner products UiUr,,, are small in general, as inequality (3.4) shows. This obviously
depends on the norm of [UU]-1 which is also equal to the inverse of the smallest
singular value of the system U.

The above arguments concern the case of full orthogonalization (Arnoldi) only.
For IOM a result similar to Lemma 1 is needed. Consider the subspace L,,
span [w 1, w2,. ", Wm] where

Wi Vi--(Vi, Vm+l)Vm+l

and denote by O,, the orthogonal projector onto L,,. Then, as was shown in Saad
[13], the residual vector r,, is orthogonal to L,, and we have

(r,,,, ui) (r,,, O,,ui) + (r,,, (I 0,,, )ui) (r,,,, (I O,,,)ui),

which shows the following analogue of Lemma 1"

I(r.., u,)l <--Ilrll
Although it is difficult to obtain any quantitative results for the distance
between ui and the subspace K,,, in general K,, and L,, are not too different and
II(z-O,,)uill is again a small quantity.

3.2. The problem of stability in the presence of an approximate inverse of the
Jacobian.

3.2.1. The quasi-Newton corrector. A P(EC) predictor-quasi-Newton-corrector
method can be written as follows

P: Yn,0 lliYn-1 -{-iidn-i.
i=1

C" For/’=l, 2,...,M-ldo

Yn,]+l Yn,] -t- B -1 h0C’(y,a) + (cy,_ +/3idn-i)-
i=1

(3.6)

Yn Yn,M dn 00 Yn
i=1

(Oiyn--i +idn-i)

where B -1 is an approximation to the inverse of (I- hoJ) and J is the Jacobian of

" relative to the variable y. (Note that d is the approximation to hy that satisfies
the corrector equation. It is not hC’(yn) unless the corrector has been solved exactly
by the iteration. This is important for stability.)
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We shall simplify the notation by setting

k

(3.7) Ec E (otiYn-i +idn-i).
i=l

The corrector iteration (3.6) corresponds to M steps of the Newton method for solving
the equation

(3.8) y hBof(yn + Y-,c

starting with the predicted value yn,o and using the approximation B -1 for the inverse
of ! ohJ.

3,2.2, Convergence of the corrector iteration, The first question that arises is
under what conditions on B would the corrector iteration converge if it were iterated
for an infinite number of steps. Let us assume that (3.8) has an exact solution y,,,.

Consider the error y,,+ -y,,,

(3.9) y,+ y,* y, y,* +B-[hof(y,) + Ec y,].

f(Y.,i) can be expressed as

(3.10) f(Yn.) f(Y..*) +J(Y..,- Y..*),

where the (i, k) entry of the matrix Ji is the partial derivative of fi relative to the kth
variable y, evaluated at a point between (y...) and (y..i). Substituting (3.10)
into (3.9) and using the fact that y... h0f(y..*) +Z we get

Y..i+ Y..* Y..i- Y..* +B-[h0G(Y..i Y..*) + Y..*- y..i]

or

(3.11) y,+ y,. (I h0)]y,. y,).

As a result of (3.11) we can derive sufficient conditions for convergence of the
corrector iteration such as ][I-B-(I-hoYi)lla < 1 W, for a certain norm. This
means, however, infinitely many assumptions. If we make the simplifying assumption
that the Jacobian is constant and nondefective, then the above condition becomes

(3.12) lit B-(t hfioJ)[ <

Furthermore, we have a choice for the norm used in (3.12). Since we would like to
interpret the result (3.12) in terms of the eigenvetors of J, it seems natural to consider
the following norm

max

where {ui}= ... N is a basis of Cs consisting of eigenvectors of J such that ]lull[ 1 and
where we dee Ilxl[1 Z=l Iil

N
for x = u. IIAII is the corresponding matrix

norm. Equation (3.12) then reads

max II(Z-(1-hoAi)B-)uII < 1
i=l,...,N

or

(3.13) /i <]l-hoAi1-1 i= 1,...,N.
1- h/3oAi

Note that this norm is just the classical norm I]’ I[1 relative to the eigenbasis.
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The left-hand side of (3.13) is lust the residual norm of the eigenpair ui, (1- hCJohi)-1

for B -1.
The interpretation of (3.13) is as follows. Since B- is an approximation to

(I- hl3oJ)-, we can consider that the eigenvectors ui of (I- h/0J)-1 associated with
(1-h/0h)-1 are approximate eigenvectors of B -. Inequality (3.13) tells us that a
sufficient condition for convergence of the corrector is that the residuals of the
eigenpairs ui, (1-h/0hi)- for B -1 have a norm smaller than [1-h/0hi[-. Such a
condition will be more difficult to satisfy for the most negative hi for which I1 hl3ohi]-is small, while it will not cause any difficulty for the small eigenvalues for which
[1- hlJoh[-- 1. In other words, B- should be a good approximation to (I- hoJ)-1

in the dominant space.

3.2.3. The error equation. We now assume that the sufficient condition (3.12)
is fulfilled and we will analyze the stability of the method for a linear equation of the
form y’ =Jy. Since there are difficulties in estimating the global error y(t.)- y.,M, we
proceed in a different way by estimating Yn y.,M- y. where y. is the approximation
at tn that would be obtained if the corrector were solved exactly at each integration step.

Since we assume that the underlying integration method is stable and accurate,
it is sufficient to estimate the additional error introduced by the iterative scheme.

We will distinguish between the two sequences by denoting by 17. the sequence
obtained as described in 3.2.1 when an approximate inverse, B -1, of A (I- hoJ)
is used with M iterations, that is, 37. y... These two sequences satisfy

(3.14) y h/oJy + Zc,

(3.15)

where

k k

i=1 i=1

and r. is a residual term which takes into account the fact that the corrector is not
solved exactly.

Subtracting (3.14) from (3.15) we get
k

(3.16)
]=1

where g, a. hy’
Let/j 0,/" 1,..., k (BDF formulas); then

k

(3.17) g. A -1 . Ol.in-i -A-Ir..
/=1

If we expand Y. and r. in the eigenbasis {U}g=a.N as

N N

i=1 i=1

we obtain for each component the equation

) k
o(i)(3 18) l (i) 1

1 ohhi =1

(i)
En

1-ohhi"
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The homogeneous part of (3.18) is the difference formula that arises from applying
the k-step BDF method to 6 ’i) Ai6i (with stepsize h). We assume that the stepsize
is such that this is either an absolutely stable process, or an accurate representation
of a slowly growing solution in the case of positive Aih. If the process is absolutely
stable, there exists a constant gi such that the solution of (3.18) can be bounded by

(3.19)
(u)

16 (i) <= Ki max
=k,n 1-/30hi

If the solution is slowly growing, a bound of the form

(3.20) 16 <K ect max
1 e

]=k,n - 1 ohAi

can be obtained by standard techniques.
(i)The error terms e are nothing but the components in the eigendirections of

the residual in solving the corrector. In the case of small hAi, the residuals of the
predictor are of order O(h’/1) for a method of order p, so it is necessary only that
they not be amplified by the corrector process. In the case of large hA the results of

(i)3.2.2. show that e can be made as small as desired provided that B is a fairly
good representation of (I-hoJ)-1 in the dominant subspace. Hence we conclude
that if B has the properties described in 3.2.2, the corrector can be iterated until
the residual is suitably small and the effect is that the additional errors due to the
iteration will be bounded when the underlying integration technique is stable.

3.2.4. Practical considerations. There are a number of difficult-to-analyze tech-
niques that can be used to get the greatest advantage from iterative methods. Some
of these will be discussed in this section.

Reducing h. As the stepsize is reduced, fewer eigenvalues are part of the dominant
subspace, so the dimension rn needed for V, can be reduced. In some cases it will
be worth restricting h to be smaller than that dictated by integration accuracy in order
to reduce m and reduce the work per step. For example, if halving h reduces m by
more than a factor of two, the integrator will probably be faster with the smaller h.

Reeomputing V,,. If the problem has a few isolated large eigenvalues, then it is
likely that V,, can be kept constant over several steps. However, if there are several
clusters of large eigenvalues, it is probably more efficient to recompute V,, frequently.
This is because if we have a small number, Ix, of isolated large eigenvalues, and m is
of order Ix (e.g., m =Ix or rn =Ix + 1), the projection process will have the effect of
correcting the errors anywhere in the dominant subspace. The process then can be
regarded as a method of correction in the dominant space similar to the one described
in [1]. If on the other hand there are several clusters, reasonable accuracy can be
obtained with m equal to the number of clusters, if V,, is recomputed anew for each
step starting with the corresponding residual and if all eigenvalues are simple. In
addition to the effect of damping the components of the error in some of the large
eigenvectors, recomputing V, frequently will have the effect of solving the linear
systems to greater accuracy. Finally, it is worth mentioning that in practice the need
for recomputing a new V, can be detected in a way similar to the way that the need
for a new Jacobian is detected in the codes which implicitly use the Jacobian matrix--
that is, by examining the convergence (or otherwise) of the iterative steps in the
Newton solution of the corrector.
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Representing the dominant space. We have seen that B should be a good
representation of A (I- hoJ) in the dominant subspace. Because B is based on
the Krylov subspace {Aqro, q =0, 1,..., m-1} it is a good representation for the
extreme eigenvalues including the small ones. If, instead, we use the space {Aqro, q
s, s + 1,..., s + m- 1}, we will emphasize the large eigenvalues. This effect can be
increased by using J instead of A since the unimportant eigenvalues of J are those
near zero. The use of Aqro as the starting vector for the Krylov space reduces the
significance of the component corresponding to the smallest eigenvalue AN by I(1-
hBAN)/(1-hBoA1)l compared to the component corresponding to the largest. For
small [h/30hN[ and large ]hfl0h 1[ this is approximately [h/30h 11-. Use of Jqro results in
a reduction of [AN/A 1[q. The ratio of these is [h[3ohN[q, and for the nonstiff eigenvalue
AN, [hfl0hN[ is less than one.

If we use Jqro as a starting vector, the initial approximation x0 must be chosen
carefully. In a typical code we first approximate yn with an explicit predictor pn, and
then solve (3.8) for the correction by

n Pn + X,

where

Ax E + hof(p.)-p. ro.

If we solve this only in the dominant space, then the component of 37, in the
subdominant space is simply the predicted value. Therefore, we should set x0 to be
r0, which is equivalent to treating the nonstiff components with a simple PEC method.

Starting with Jqro suffers from two serious drawbacks: it is expensive for q > 0
Tand we must compute [VV,]-1V,ro and cannot use the approximations suggested

in 2.2. However, we will see that one outcome of another modification suggested
below is to be able to use q 1 without additional difficulty.

If a single method is used for all components, it has to be a method for stiff
equations such as BDF. This is not the best choice for the nonstiff components, so it
is natural to ask if it is possible to use a nonstiff method such as Adams for the nonstiff
components. The answer is shown to be affirmative below. Suppose that method (A)
(e.g. Adams) is a nonstiff method and method (B) (e.g. BDF) is a stiff method.
Superscripts will be used to distinguish the methods. We get a PEC method (A) by
executing

f(A) =Pn -’Xl

with

(3.21) .. (A)x ro + h/3o rtPn) -Pn.

Now we consider solving (3.8) for method (B) setting

(3.22)
;. +

(t h(on)J)xz A(U)xz rl Z(f)+ hB (o)f(f(.a

If this is solved only in the dominant subspace, this causes components in that subspace
to be solved by method (B). We can prove the following:

PROPOSITION 3. Suppose that J has a complete set of eigenvectors and that the left
and right invariant subspaces corresponding to the eigenvalues h 1, h2, Am of J are
spanned by the rows of U7" and columns of V, respectively, where U and V are N m
matrices. Then, if the operator (A(B))-1 involved in solving (3.22) is represented by
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V[UrA(B)V]-IUr, the solution to y’=Yy by (3.21) and (3.22) is that obtained by
treating the components corresponding to h 1, ", , by method (B and the remainder
by method (A).

Proof. The proof follows by diagonalizing the system. Q.E.D.
The significance of this result is that if V, and Vr approximate V and U we

can expect to approximate this behavior which is desirable if to are the only
dominant eigenvalues. (On the surface it appears that the cost is higher because it is
necessary to save d,_ values for Adams and y,_ values for BDF formulas. There are
ways to avoid this. See, for example, Gear [7].)

When (3.22) is solved iteratively, we should build the Krylov space K
span [rx, Yr, , Y-Xr] and a basis V to solve Ax2 rx. Let us examine r in terms
of r0. Combine (3.21) and (3.22) and assume f(y)= Yy to get

r Z + hS)f(p, + ro)-p, ro
(A)/

(A)fern)+hn)f(pn)-(2)-ho f(pn)]+hn)Jro.
The first term is the difference between the solutions by a PEC method using methods
(B) and (A), respectively. For the nonstitt component it is O(h p+I) where p is the
minimum of the orders of the two methods and one plus the order of the predictor.
Hence, it is small for nonstitt components. Hence, rl has properties very similar to
that of h[3(oB)Jro: smaller in the nonstiff components by a factor proportional to 1/Ih 1],
Thus, the Krylov subspace {J%l,q=O, ...,m-l} has similar properties to
{Jqro, q 1,’’’, m }.

4. Numerical experiments. The numerical experiments described below were
performed on a Prime 650 (which has a 48 bit mantissa in double precision giving
about 14 decimal digits) and a DEC 20. The first series of tests treated has been
adapted from Krogh’s example given in [3, p. 218].

First, n functions zi, 1, 2, , n are defined by

dzi 2(4.1) -iz+z, i=1 2,... n,
dt

where the/3 are negative constants. Then a vector y is set equal to

(4.2) y Uz,

where

2 T(4.3) U I ---- uvObviously y satisfies a differential equation of the form

y’ =Ay +g(y),(4.4)

where
2

A=U diag (/3i)U, [g(y)]i = Ui( U.,y,)
(Notice that U-1= U.) The solution of each equation (4.1) is

(4.5) z(t)
1 + c e
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where Cg is adjusted according to the initial value zg(0). The exact solution of (4.4) is
therefore immediately obtainable by use of (4.5) and (4.2).

Another interesting feature of this class of exam’ples is that one can easily choose
u and v such that the Jacobian is more or less close to a symmetric (or a skew
symmetric) matrix. Also, the degree of nonlinearity can be controlled by adding a
multiplicative constant y before the term z/z in (4.1)"

dzi 2

dt iZi @ yz

(In that case the solution (4.5) must be replaced by: -/3g/(y + ci e-’t).) The following
expression of the Jacobian of [4.4)

(4.6) J(t) U[diag (/3, + 2zi)]U

can be used for comparisons with methods using explicit Jacobians.
The dimension N has been taken relatively small so as to allow comparisons with

other methods. (Note that the storage of the Jacobian increases as N2.) The following
distribution has been taken for the elements/3i" /31 =-1000,/32 =-800,/33 =-500,
/4 =-300, i =-100(N-i + 1)/(N-5) for i>=5. The vectors u and v have been
chosen as follows" u (0, 1, 1,..., 1, 1) 7 v (1, 1, 1,..., 1)r and the initial values
are such that y (0) Uzo with

z()=(-1,-1,...,-1)r.
Three different methods have been run on this example. They all use BDF schemes
with automatic determination of stepsize and order as implemented by Hindmarsh in
the code LSODE. LSODE was modified to include the IOM method and projection
process described in 2 as an additional option. The first method uses (full) Gaussian
elimination to solve the linear systems and the Jacobian is directly provided by the
user. The corresponding method flag in LSODE is MF 21. The second method, as
the first, uses the Gaussian algorithm but the Jacobian is internally generated rather
than provided by the user, the method flag is MF=22. The third method is a
combination of the IOM method and the projection process. The method flag is
MF 26 for this new method. For the last case, the parameter p (the number of
vectors against which the vg is orthogonalized) has been tested with two values p 4
andp 9, while mmax (the maximum number of vectors vg generated) is set to 3 x (p + 1).

TThe value of the parameter used for approximating V,,ro, is, as suggested at the
end of 2.2, defined by max (5, p + 1). Table 1 compares, for N 50, the results
obtained when (4.4) is integrated from to 0 to 1 with an integration tolerance
EPS of 10-6.

TABLE 1

MF 26 MF 26
MF 21 MF 22 p 4 p 9

Total number of function evaluations
Total number of steps
Core memory required
Run times (minutes on PRIME 650)

182 1382 720 643
151 151 184 180

2972 2972 1035 1750
1’08 1’09 1’19 1’05

The run times are not very different from those of the first two methods (MF 21
and MF- 22) because the dimension is relatively small. When N 80, the results
shown in Table 2 are obtained.
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TABLE 2

MF 26 MF 26
MF=21 MF=22 p =4 p =9

Total number of function evaluations
Total number of steps
Core memory required
Run times (minutes on PRIME 650)

175 1935 733 640
149 149 186 172

7142 7142 1545 2410
2’57 3’03 1’55 1’38

Another class of examples for test purposes is provided by the heat equation on
a domain lq of I:.

Au= Vxf, Vt[to,
Ot

u (t, x) 0 Vx Ofl, Vt [to, tx],

U(to, X)=Uo, x f.

Suppose that is the square (0, 1) (0, 1) and that the five point discretization is
employed for the x variable. Then the above problem yields the following linear
system of ODEs:

y’(t) -Ay (t), E [to, tl],

y(to) U(to, x), 1, 2,..., N,

where x, xz, , xu are the N interior discretization points of f with N n if each
side of the square is discretized into n interior points. Here A is the Laplacian block
tridiagonal matrix

where B is the tridiagonal matrix with diagonal elements +4 and off-diagonal
elements -1.

Since the matrix A is symmetric, the parameter p can be taken equal to 2 in
which case IOM is equivalent to the conjugate gradient method. Another important
simplification here is that the Jacobian is A itself because of linearity, so we do not
need to use the numerical differentiation formula.

The following experiment was performed on a DEC 20 computer using double
precision with a machine unit roundoff 10-9. The initial distribution of temperature
(u0) was taken to be uniformly equal to one in the interior. When n 10, to 0,
tx 1.0 we obtain the following results:

total number of steps: 183;
total number of function evaluations: 724;
total number of reevaluations of V and H,: 98;
work space required: 1560;
CPU time on the DEC 20" 52.31 sec.
Note that the function evaluations include the operations of the form Jx since

the Jacobian and A are identical.
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LSODE can treat this problem more efficiently by using the LINPACK band
solvers because A is of banded form with half bandwidth 10. The corresponding
method flag is MF 25 and the results are as follows"

total number of steps: 131;
total number of function evaluations: 530;
total number of re-evaluations of the Jacobian: 18;
work space required: 4022;
CPU time on the DEC 20:21.48 sec.
Note that although the direct solver (MF 25) is to be preferred in this simple

case, large work space use is in favor of the iterative method. Space usage can become
prohibitively large for finer discretization if MF 25 is used.

5. Practical considerations. In the light of observations made during various
numerical experiments we are in a position to make a few remarks. First we wish to
give a few more practical indications on the choice of some of the parameters which
are important for the performance of the IOM. It is possible to determine dynamically
the parameter p by observing the elements of the Hessenberg matrix generated. The
algorithm is first started with some initial p which is then reduced to Pnew if it is
observed that the elements outside the pnewth diagonal of H, become small. More
details on this may be found in Saad [14]. There is no upper limit restriction on the
parameter rn except for the physical limitation due to the storage. As explained earlier,
the actual m used at a given step is determined by convergence criteria and does not
exceed some fixed value mmax. In most of our tests mmax was taken to be 20 or 30.

There are two important factors for the performance of the algorithm which are
the accuracy, TOL, in the solutions of the linear systems and the parameter e in the
difference formula used to approximate Jx. For the solutions of the systems, various
other papers and our analysis in 3 shows that we should not require a high accuracy.
In fact our experience is that satisfactory results are obtained by stopping the process
as soon as the residual norm is reduced by a factor of order 0.01. Selecting an optimal
parameter e in the difference formula for approximating Jx is a more difficult problem.
If e is too small then the rounding errors made in the numerator are amplified by a
factor of order 1/e which leads to an inaccurate result. If on the other hand e is too
large then the approximation of Jx .will be poor. Any reasonable choice of e should
attempt to reach a compromise between these two difficulties.

We now wish to discuss briefly the use of other possible iterative methods. Among
the simplest iterative methods that might be used in stiff ODE methods are the
relaxation methods. These require the Jacobian explicitly and so they do not offer
the same generality of usage as those methods in which only operations of the form
x --> Jx are needed. A case in which the SOR method can be applied is the use of the
method of lines for solving parabolic equations. In these cases the Jacobians are simple
to compute and have a convenient structure which makes any iterative method easy
to apply. For more general problems in which the Jacobian does not have any particular
structure and/or is not easily available, the relaxation methods are no longer of
interest. Relaxation methods also have the disadvantage of requiring an optimal
parameter o which is often difficult to estimate. One might argue, however, that when
the system varies slowly it is not unreasonable to expect the optimal parameter to
have a similar smooth behavior which would facilitate the computation of (.Oopt. But
when we deal with stiff systems we may have large variations in the matrices A of
the system due to common large stepsizes, which means that the parameter actually
has to be estimated anew for every step after the transient phase. Finally we should
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point out that the rate of convergence of SOR is known to be sensitive to the accuracy
of the optimal parameter.

Another class of methods uses the transpose of A as well as A by solving implicitly
or explicitly the normal equations A7"Ax A 7"b. There are several arguments against
this approach, the most commonly given in the literature being that the normal
equations increase the conditioning of the original equations. In our case it is also
not desirable to work with the transpose of A which may not be available.

There are a few other methods, among them ORTHOMIN(k) (Eisenstat et al.
[2] and Vinsome [16]), which are similar to ours in that the solution belongs to the
Krylov subspace, but in which the solution is produced directly in a conjugate
gradient-like algorithm instead of using secondary storage. It has been observed in
some experiments discussed in 11] that the two classes of methods behave in a similar
way in terms of amount of work. A version using secondary storage can also be derived
from the ORTHOMIN (k) algorithms although the storage would then be double that
required by IOM (k). The unsymmetric Lanczos algorithm, which also belongs to the
class of Krylov subspace methods is an interesting alternative but again requires the
use of the transpose of A.

An important aspect of the iterative methods which we have not considered so
far is the possibility of preconditioning the original system, i.e., of modifying the
system into an equivalent one which is easier to solve. There are several ways of
accomplishing this but most methods amount to approximating the inverse of A by
some matrixM and then solving the system MAx Mb instead of Ax b. The matrix
M may be obtained for example from an approximate LU factorization of A. The
advantage of using preconditionings is the faster rate of convergence that may result
since MA will hopefully be closer to the identity than A. However there seems to be
more difficulties than there are advantages when dealing with the solution of stiff
ODEs. The main difficulty is that we need a technique having a wide range of
application because the systems encountered during the ODE integration may pass
from systems having a positive definite symmetric part (A +A7")/2 to systems having
an indefinite symmetric part. There does not seem to exist any such "universal"
preconditioning technique so far. An exception to this may be found when using the
method of lines for parabolic equations because then the Jacobian is known to have
a structure which lends itself naturally to preconditioning. Preconditioning may then
be helpful for the later steps of integration where h is large and the symmetric part of
the matrix (I- hJ) becomes close to a definite negative matrix (assuming J positive
definite).

A second drawback with preconditionings is that we no longer obtain a solution
which is more accurate in the dominant subspace since the solution will now be
accurate in the dominant subspace of M(I- hJ). Thus the advantage gained from a
faster convergence might well be annihilated by this new undesirable feature. More
experience is needed however before reaching any definitive conclusion.

6. Conclusions. We believe that there are two essential features which make the
Krylov subspace methods attractive. First there is no need for storing the Jacobian
in any form and this is important for the generality of the integration codes. In most
of the available codes different system solvers are called according to the matrix
structure and the method of storage. In methods using Krylov subspaces, on the other
hand, this is avoided thanks to the differentiation formula.

The second important feature of Krylov subspace methods is that we do not need
high accuracy when solving the systems because even when the solution is not accurate,
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the residual is still likely to be small in the dominant space. This is all that is needed
for stability, as our analysis in 3 indicates.
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Abstract. The estimation of the condition number of a matrix relative to inversion is important for
bounding the errors in computer solutions of linear systems of equations. Three methods of estimation are
shown to underestimate the true condition number of particular matrices by arbitrarily large factors. One
of the methods is that employed in the LINPACK software package.
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1. Introduction. In Cline, Moler, Stewart and Wilkinson [1], three algorithms
were proposed for estimating the ll norm condition number of a matrix. Although
none of the algorithms was proved to produce estimates with small errors, matrices
for which previous estimation algorithms produced large underestimates were handled
well by the second of these estimators. Furthermore, in thousands of tests with random
matrices of various distributions and dimensions, rarely has the estimate produced by
the second algorithm been less than 0 of the true condition number. On the basis of
this evidence, the second estimation algorithm was incorporated into LINPACK [3],
a popular package of software for solving systems of linear equations.

It will be shown here that all three algorithms can produce arbitrarily large
underestimates for certain matrices. Two new matrices and two previously mentioned
in [1] will be examined. For three of these matrices, it will be shown that not only is
the condition number severely underestimated for the particular matrix, but that in
fact entire neighborhoods of matrices exist for which underestimates are made.

Finally, some remarks are made upon the larger question of selection of condition
number estimators. In particular, the role of counter-examples is mentioned.

2. The estimators. The value of the condition number of a matrix with respect
to inversion is described in a large selection of numerical analysis texts. The quantity,
which may be defined as

, (A IIAII IIA-II
(for a fixed matrix norm I1" II), is employed in several inequalities relating the error in
the solution of a linear system to perturbations in the matrix or in the right-hand side.
Two such inequalities are:

1. if Ax b and A (x + Ax) b + Ab then

IIx --< (A)
lib I----’

2. if Ax b and (A + ZLA)(x + Ax) b, then

Ilax <
(A)IlaAII/IIAII

IIx (A). IlaA II/IIA
provided
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The vector norm in these inequalities may be any vector norm consistent with the
matrix norm.

Given a matrix norm such as the norm (which equals the maximum of the sums
of absolute values of components in matrix columns) or the l norm (which equals
the maximum of the sums of absolute values of components in matrix rows), then IIAII
may be computed with a moderate number of arithmetic operations (in either case
about n 2 additions and n 2 absolute value evaluations for an n n matrix A) compared
to a factorization of the matrix (about n 3/3 multiplications and n 3/3 additions).
Unfortunately, if IIA-II is to be obtained by first computing A-1 and then taking its
norm, about n 3 multiplications and rt

3 additions are required. Since the solution to a
linear system Ax b can be obtained in about n a multiplications and n a additions
after a factorization has been determined, we see that perhaps three times as much
computational effort is required to determine IIA-II (and hence K(A)) as is required
to solve a linear system. We would like to avoid this extra computational effort. This
can be done if there exists an inexpensive algorithm for estimating I[A-[I (and hence
estimating K (A)), instead of computing it exactly. An algorithm requiring only O(n :z)
operations is desirable.

Several approaches to characterizing the condition number of a matrix without
evaluating or estimating IIA /11 are simply folklore and need to be discussed here for
no other reason than to show that they are worthless and thus, we hope, to give them
much deserved burials. The first is that a moderately sized determinant of a matrix
somehow indicates moderate condition. The second is that the ratio of largest to
smallest eigenvalues in magnitude is an indicator of condition. The third is that if a
matrix is poorly conditioned, a small element will appear on the diagonal of the upper
triangular factor during Gaussian elimination with partial pivoting.

The single n n matrix

1
1 1 0

-_1 -1 1

".. 1
1 -1 1 1

shows the fallacy in all of these notions. This matrix has a determinant of 1, a ratio
of largest to smallest eigenvalue of 1, and a smallest diagonal element in its upper
triangular factor of 1. None of these indicators would suggest ill-conditioning, and
yet the n n matrix has an 11 and l condition number of n2"-1. Furthermore,
equality is possible in the two conditioning inequalities, and linear systems can be
constructed for which slight perturbations could cause arbitrarily poor solutions. The
presence of the poor solutions is invisible to all three of these indicators.

It is helpful to briefly examine the actual relationships between these indicators
and conditioning. The determinant of a singular matrix is, of course, zero, but
determinants of near-singular matrices can be large, and determinants of well condi-
tioned matrices can be small. Eigenvalues which differ greatly in magnitude do indicate
ill-conditioning. In fact, the ratio of largest to smallest eigenvalue does provide a
lower bound on the condition number of a matrix. Furthermore, for symmetric
matrices, this ratio is exactly the 12 condition number. However, for nonsymmetric
matrices this ratio can severely underestimate a condition number. The diagonal
elements in the upper triangular factor also can be used to underestimate the condition
number. In fact, of these three approaches, this one can occasionally be useful:
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empirical evidence suggests that there is a large class of matrices whose conditioning
is predicted by examination of the diagonal of the upper triangular factor. As with
the eigenvalues, though, the underestimate can be severe.

Several approaches which are more sound theoretically as well as empirically
estimate IIA-1II by using the fact that

Ila-11 max IIa-x
0

(where the matrix norm is now assumed to be subordinate to the vector norm), and
attempt to find vectors x in which the ratio IIA-x II/llxll is close to maximal. The three
estimators of IIA-II in [1] are such approaches. They attempt to find a vector x which
maximizes IIA-ll/llxll, where the ll norm is used. Each begins by constructing a certain
vector b and then letting x A-rb. The first estimator from [1] is also described in
Forsythe, Malcolm, and Moler [4]. The subroutine DECOMP found there intends to
implement the algorithm, but contains a typographical error.

Let us assume that A has been factored. (Either of the forms PA =LU or
LPA U is adequate if P is a permutation matrix, L is unit lower triangular, and U
is upper triangular.) We begin by solving UVz b for z, where the elements of b are
chosen during the solution steps in such a way that x A-rb will be (we hope) a
near-maximizer of IIA-xll/llxll. The components of b are +1. Notice that at the
intermediate stage where b, , bs- have been specified, and thus z, , zs_ have
been determined, we have

U l,sZ1 -[- -[- Us-I,sZs-1 -b Us,sZs bs.

This yields two possibilities for zs, depending upon the choice of bs"

Z 1-- Ui, Z Uss
i=1

or

Z- 1 Ui.sZ Uss.
i=1

In the first algorithm of [1], the sign of b is selected simply to maximize Zs. Thus:
ALgORiTHM 1. Choose b, + 1 if Iz +1 >= Iz ;I, and b, 1, otherwise.
The second and third algorithms attempt to consider more the effect of the

selection of the sign of bs, not only on the size ot z, but on the ensuing components
of z as well. In fact, for components f s, , n, we have

(u,z +. + u,_.z_) + u.z + u.z b.
=s+l

The parenthesized expression above is denoted by p)-. Notice that it is fixed since
z,..., Zs-1 are. In an attempt to achieve a greater growth in the components of z,
the second algorithm considers the sum of lu.zl and all the expressions
for ] s + 1, , n. Thus"

ALGORIXHM 2. Choose b +1 if

lUs,sZ
i=s+l i=s+l

and b 1, otherwise.
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The third algorithm modifies this only slightly to reflect the fact that when
pS-:t) + Us.iZs is employed in the calculation of zi, the expression is divided by u.. Thus:

ALGORITIqM 3. Choose b +1 if

Iz+ l+ ., Ip-’) / u,z+ l/lu,l>-IzTl/ Ip-’) / u,z-il/lu,l,
j=s+l j=s+l

and b 1, otherwise.
All algorithms begin with b +1. If the vectors b (and hence the vectors z)

differ in the three algorithms because of a different choice of sign at some step, then
different estimates, of IIA-Xll may result. The final steps of estimation are identical,
however. For all three, having obtained b, solve Arx b for x (this actually only
requires the use of z with the matrixes P and L), and finally solve Ay x for y. The
estimate of IIa-Xll is then bll/llxll, and K(A)is estimated by multiplying the estimated

IIA-Xll by the computed IIAII. The vector norm used in these calculations is the ll norm
and the matrix norm is that subordinate to the ll vector norm. (Henceforth, these are
denoted by I1" I1.)

All of these approaches require O(n :z) operations. The second algorithm has been
used in LINPACK. As implemented there, (using a scratch array of length n), the
second estimation requires about 21/2n 2 multiplications, 41/2n 2 additions, and 2n evalu-
ations of absolute value. There may be an additional 1/2n multiplications and 1/2n 2
additions required depending upon the bs +/-1 decisions. Furthermore, in order to
minimize the likelihood of computations overflowing, rescaling is done, involving as
many as 4n additional multiplications. These figures represent the work in excess of
the approximately n3/3 multiplications and n3/3 additions necessary to obtain the
factorization. Although O(n:Z), this work may be as large as 14n a total multiplications,
additions, and absolute value evaluations, and hence comparable to the factorization
effort for small matrices (i.e. n -< 21).

The description of the third algorithm in [1] is followed by the statement,
"However, this modification increases the volume of computation appreciably." This
statement should be clarified. As mentioned, the current LINPACK condition number
estimator requires between 21/2n: and 7n multiplications, between 41/2n and 5n
additions, and 2n evaluations of absolute value. To implement the third algorithm
(even allowing for rescaling) would require an additional n evaluations of absolute
value and n divisions. Assuming all operations require the same computational time,
the third algorithm requires between 7% and 11% additional time.

3. The counter-examples. Four counter-examples are presented. The first one
was included in [1] and shows that the condition number may be seriously underesti-
mated by the first algorithm. The second and third algorithms perform well on this
matrix. Both the first and second algorithms perform poorly with the second counter-
example; however, the third algorithm is satisfactory. A more severe difficulty with
the second algorithm is displayed with the third counter-example. This matrix can be
arbitrarily poorly conditioned, yet the second algorithm estimates a condition number
of about 2.5. The first and third algorithms perform well on this matrix. Finally, the
fourth counter-example shows that all three algorithms may make poor estimates on
the same matrix.

As mentioned in [1], the matrix

1 0 k -k
0 1 -k k
1 -1 2k+1 -2k

-1 1 -2k 2k+1
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has condition number 24k2+ 22k + 3. The first algorithm estimates only 6k + 1, and
thus the ratio of the estimated condition number to the true value is 1/(4k + 3), which
can be arbitrarily small. The second and third algorithms both yield estimates of
20k2+ 18k + O(1), which are quite acceptable. In summary:

Example A. For k >_-1/2, the 11 condition number of A is 24k2+22k +3; the
estimated 11 condition number (using the first algorithm of 2) is 6k + 1. The ratio
of estimated condition number to true condition number is (6k + 1)/(24k 2 + 22k + 3)
25/k + O(k-2).

The second counter-example is

1 -1 -2k 0
0 1 k -k
0 1 k+l -(k+l
0 0 0 k

The construction of this matrix began with the determination of an upper triangular
matrix U so that U-1 had large elements, yet the b and z selected by the first or
second algorithms (which satisfy Urz b) would have z of moderate size. Using a
U so that

-1 0 0 0

U_r
1 1 0 0

k -k 1 0
_2 0 k -1 k-

with large values of k, we would have this property if b. 1. (The large values of k
and -k would not affect z, since both b and b2 1.) The rest of the construction of
a counter-example simply required choosing a unit lower triangular matrix L so that
little increase would be made in the solution of By x. For this purpose L was chosen
as

1 0 0 0
0 1 0 0

0 1 1
0 0 0

Since

1 -1 -2k 0

-!0 0 1
0 0 0

the resultant

1 -1 -2k 0
0 1 k -k

B=LU=
0 1 k+l -(k+l
0 0 0 k

and this is our matrix whose condition number is seriously underestimated.
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A simple computation yields IIBll--4k / 1 and IlB-*llx 2k + 1 for k->2. The
second estimation algorithm proceeds as follows"

Step 1. bl= l, zl= l.

Step 2. p (2 -1 p (3 2k p (4 0

z 2 and z 0, thus since

121 + I-2k + 2k I+ I-2kl 2k + 2 > 2k -I01 + I-2k + OI + I01,
+b2=landz2=z2 =2.

Step 3. p (327 0 p (427 -2k
+

z3 1 and z =-1, thus since

Ilt/t-2k- l--2k /2>2k-1- l/l-2k /

4-b3 1 and z3 z3 1.

Step 4. p(43) =-2k-1
+ --1

Z 4 2 + 2k and z 2, thus since

+ 21 2k + 2 > 2k 12k I,
4-b4 1 and z4 z4 1.

4-(The choice of z2 z2 rather than z a causes the algorithm to overlook the ill-
conditioning of B.)

It is easy to confirm that

1

x =B-7"b 1
and y =B-x

1
2+2k-

2k-1+2k-2/
[.2k- + 2k-2_]

Thus the estimated norm of B- is

[ly II/l[x (7 + 8k- + 4k-2)/(5 + 2k -)
(7k 2 + 8k + 4)/(5k 2 + 2k),

and the estimated condition number is this multiplied by IIBII =4k + 1 or (28k3+
39k2+24k +4)/(5k2+2k), whereas the true condition number is (2k + 1)(4k +1)=
8k2+6k + 1.

Example B. For k -> 2, the ll condition number of B is 8k 2 + 6k + 1; the estimated

l condition number (using the second algorithm of 2) is (28k3+39k2+24k +
4)/(5k 2 + 2k) 5.6k + 5.56 + 0(l/k). The ratio of estimated condition number to true
condition number is (7k2+8k +4)/(10k 3 +9k2+2k)=.7/k + 1.7/k2+O(k-3).

Experiments with the LINPACK subroutine SGECO using values of k
2, 4, 8,. , 1024 performed exactly as predicted above.

By examining the steps in the estimation, it is easy to see that Algorithm 1 will
produce the same estimate as Algorithm 2 for this matrix. However Algorithm 3
chooses b2 =-1 instead of +1 and thereby yields an estimated condition number of
8k2+ 5 +O(k-). The ratio of estimated to true condition number is about 1-k- +
O(k-).



A perturbation analysis shows that this matrix is not an isolated counter-example
for Algorithms 1 and 2. In fact, it can be shown that if the matrix B is replaced by
B+E where lel-<_ and (e21-e31)(1-e12)>(e32-e22)(l+e11) (a condition which
guarantees that no interchanges are done when performing Gaussian elimination with
partial pivoting on B +E), then the ratio of the estimated to the true condition number
is less than about .Tk -1 +(15 +Sk)e. An example with e -10-5 and k 100 showed
the ratio smaller than .00806 in 10,000 tests with random perturbations satisfying the
above conditions. We may conclude that the matrix B actually sits within an open
set of counter-examples

The third counter-example is

I 1
C= 0

0

For the second algorithm, computations similar to those above result in:

x=z= 2k -2 and y=C-Ix= 5+2k-2

3 +2k-2_] 3+2k-a

(As in example B, the choice of z z rather than z causes the algorithm to
overlook the ill-conditioning of C.) This yields the conclusion"

Example C. For k _->2, the l condition number of C is 6k +2+O(k-); the
estimated l condition number (using the second algorithm) is 2.5 + 1.25k- + O(k-).
The ratio of estimated condition number to true condition number is 1.25k--.625k-:z + O(k-3).

This matrix shows that the second algorithm can produce a bounded condition
number estimate for an arbitrarily poorly conditioned matrix. In this situation both
Algorithm 1 and Algorithm 3 perform well. Each estimates the condition number as
6k -4 + O(k-), and thus the ratio of estimated to true condition number is 1- k -1 +
O(k-).

By perturbations we can show that this matrix is not an isolated counter-example
for Algorithm 2. In this case, if C is replaced by C +E where the components eq of
E are bounded by e in magnitude and e _-< 1/4k -3, then the ratio of estimated condition
number to true is less than about 1/4k-+.45/2ke. An example with e =6.10- and
k 125 showed the ratio smaller than .009981 in 10,000 tests in which the perturba-
tions were selected randomly.

A counter-example to all three algorithms appeared in [1]. Notice that if the
upper triangular factor is a diagonal matrix with all components +1, then all of the
algorithms result in b +l, s- 1,..., n. Thus the z vector is exactly the diagonal
ot U. If a unit lower triangular matrix is selected which is ill-conditioned but for which
both x =L-rz and y--U-1L-Ix are moderately sized, then the ratio of Ilyll to Ilxll
fails to display the ill-conditioning. Essentially we have placed all the ill-conditioning
into the lower triangular factors, yet all the algorithms use the upper triangular factor
to find ill-conditioning. Such a counter-example is the n x n matrix

1

__1 1 0
1 -1 1

1
1 -1 1 -1
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Notice this is identical to the matrix of the second section except for the change in
sign in the (n, n) element. Its li condition number is n2n-I, yet as the following
example shows, all of the algorithms severely underestimate this.

Example D. For n >_-2, the I1 condition number of D is n2n-1; the estimated ll
condition number (using the first, second, or third algorithms) is n. The ratio of
estimated condition number to true condit,ion number is 21-n.

This happens since the upper triangular factor of D is

and with all three algorithms, the choices for bs are + 1. Thus

0 0

x ( and y

-1
so the estimate for liD-Ill is i (yet the true value is 2"-1). Since IIDII- n, the estimated
condition number is n, and the true value is n 2n-1.

This counter-example can be perturbed to yield other counter-examples, but care
must be taken so that the perturbations do not cause interchanges in the elimination
process. For this purpose it is easier to consider perturbing the upper and lower
triangular factors and then obtaining counter-examples by multiplying these factors.
If the upper triangular factor is perturbed in a positive fashion along the diagonal and
in a negative fashion above the diagonal, then all algorithms still produce the decisions
of bs- +1 for all s. If the lower triangular factor is perturbed in a positive fashion
below the diagonal, then a unit triangular matrix still results, and hence no interchanges
will be performed if the product matrix is factored using Gaussian elimination with
partial pivoting. With n 11 and the perturbations selected as above but bounded by
10-5 in magnitude, in over 6,000 experiments, the condition number of the resulting
matrix was always underestimated by a factor of less than .01467 using all three
algorithms.

Table 1 summarizes the results of this section. The notation Ki refers to the
condition number estimated with the ith algorithm.

4. Conclusions. The algorithms found in [1] are not the only ones that have been
suggested. Several extensions to these are found in Cline, Conn and Van Loan [2].
The first extension incorporates a "look-back" strategy to update the selection of b,
to complement the "look-ahead" strategy already present in the second and third
algorithms. The other extension applies a "divide and conquer" approach to the
problem by examining certain principal submatrices. Experimental results with both
extensions are comparable to the LINPACK estimator, yet the first extension performs
poorly on examples B and D and the second extension performs poorly oft examples
A and D. Another proposal is to perform several additional steps of inverse iteration
to the y resulting from the algorithms discussed in [1]. O’Leary [5] proposes computing
the loo condition number using the algorithms from [1] applied to the transpose of the
original matrix. Although the counter-examples mentioned here are not counter-
examples for this approach, it is clear that the transposes of the counter-examples
here are such.
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The construction of counter-examples is insufficient motivation by itsel for
discarding condition number estimation algorithms, particularly those that have per-
formed well in practice. It is the case that for any deterministic algorithm for interpola-
tion, quadrature, or numerically solving differential equations, problems exist for
which the algorithms perform arbitrarily poorly. This is due to the nature of the
problem areas; the solution depends upon an infinite set of input information, and
yet any algorithm must sample only a finite subset of this. In these areas, practical
performance and soundly based heuristics are considered evidence of quality. The
dilemma in judging condition number estimators is different: the opposition of
efficiency and reliability. We can compute a condition number, although at a relatively
great expense. The more difficult algorithms which only purport to estimate the
condition number may be unrealiable.

The importance of the counter-examples is that they make clear that any ettort
toward proving that the algorithms always produce useful estimations is fruitless. It
may be possible to prove that the algorithms provide useful estimations in certain
situations, however, and this should be pursued. An effort simply to construct more
complex algorithms is dangerous. A philosophical question should be answered before
any highly complex algorithm is adopted" given that many condition number estimators
perform well on random tests and in practice, yet fail for particular matrices, is the
design of more and more complex algorithms yielding an improvement in estimation
or is it simply erecting a higher barrier which makes the determination of counter-
examples more difficult and also makes any theoretical analysis close to impossible?
If more and more complex algorithms are constructed simply to escape from counter-
examples, the process may terminate when counter-examples are not to be found
only because of the limitations of human minds, not because of their nonexistence.
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AN EXTRAPOLATION METHOD FOR THE NUMERICAL SOLUTION
OF SINGULAR PERTURBATION PROBLEMS*

F. C. HOPPENSTEADTf AND W. L. MIRANKER$

Abstract. We show how the form of the perturbation approximation for the solution of stiff systems
of ordinary differential equations with an identifiable small parameter can be used to generate associated
nonstiff or relaxed equations. Solutions of these relaxed equations are easily calculated and appropriate
combinations of these solutions furnish numerical approximations to the original stiff problem. Variations
of this method are applied to two classes of initial value problems; those with highly oscillatory solutions
and those with rapidly equilibrating solutions.

Key words, singular perturbations, highly oscillatory differential equations, stiff equations, averaging
methods, matched asymptotic expansions

Introduction. Perturbation methods can be used to derive numerical schemes for
solving ordinary differential equations whose solutions change on widely different
time scales. Such schemes actually improve as the difference between the time scales
increases. On the other hand, numerical implementation of the perturbation methods
can involve costly evaluations of integrals which arise in averaging and matching
conditions, and this approach usually requires some preliminary analysis of the
problem.

Two methods are presented and compared here. These are described in detail
for initial value problems to which the methods of averaging and matched asymptotic
expansions can be applied. First, the perturbation solution is described along with its
direct numerical evaluation. This frequently entails lengthy computations. Next, it is
shown how the perturbation solution’s form can be used to calculate the stiff solution
by combining solutions of associated nonstiff, or relaxed, equations.

In many cases stiff differential equations involve a collection of identifiable small
parameters, say 7, which may be ratios of small to large eigenvalues or ratios of natural
parameters arising in applications, such as reaction rates. Although we consider only
the case where e is a scalar (i.e., a single small parameter) the methods generalize to
cases of several small parameters. First, problems having highly oscillatory solutions
are studied by averaging methods. Then initial value problems having rapidly equilib-
rating solutions are studied using matched asymptotic expansions.

Problems having rapidly oscillating solutions are considered in 1. The averaging
procedure is reviewed, and then numerical methods based on it are presented. First,
we consider direct evaluation of averages, and then an alternative method based on
the almost periodic structure of the problem is described. This accelerates computation
of averages by finding appropriate translation numbers of the function being averaged.
Finally, a third averaging method is described which works in some special cases to
which a form of the ergodic theorem applies. Last, an extrapolation method based
on the already determined translation numbers, along with some illustrative computa-
tions, is presented.

In 2, we study initial value problems having matched asymptotic expansion
(MAE) solutions. First, the matching method is reviewed, then numerical schemes
based on direct calculations of the MAE approximation and on an extrapolation
method are described and sample calculations are presented.

* Received by the editors March 26, 1980, and in revised form April 7, 1982.

" Department of Mathematics, University of Utah, Salt Lake City, Utah 84112.
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.
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AN EXTRAPOLATION METHOD 613

The novelty of this work lies in the introduction of extrapolation formulas, (7)
in the averaging case, (12) in the MAE case. The extrapolation procedures introduced
here are based on perturbation schemes which are appropriate to the two classes of
problems studied here. They are distinct from straightforward Richardson extrapola-
tion formulas which are based on Taylor’s formula and which are not usually appropri-
ate for stiff problems. It must be emphasized that the extrapolation formulas (7) and
(12) break through the typical limitation of the customary numerical evaluation of
one or more terms in the asymptotic expansions supplied by that methodology.

1. Averaging procedures. Many problems to which the Bogolyubov averaging
method and various multi-time schemes are applied reduce to systems of the form

(1) -=f ,x x(O)=:,

where x, f, : e En, and f(z, is an almost periodic function of -. e is a small positive
parameter, and so in this case, the right-hand side involves highly oscillatory behavior.
Multi-scale perturbation methods lead to the approximation

(2) x(t,e)=Xo(t)+exx t, +O(e

where Xo is determined from the initial value problem

dxo(3)
dt f(xo), xo(O) .

The approximation (2) is the sum of the solution’s mean change (x0), a small
correction to account for variation off from T, (ex 1), and higher order corrections
(see [7]). Here f is the mean value of f, defined by

1 I0
r

f(xo) xo) &.

The coefficient x is determined from the formula

(4) xx t, :l(t) + [f(’r, xo)-[(Xo)]d’r.
aO

This expansion method is valid only if x is a bounded function of t, s. Thus, we
assume that the average of f(f(x)) exists as a smooth function of x and that the integral

[f(’,x)-f(x)]d"

is bounded for all T.
In formula (4) 2 is determined at a later step in the perturbation scheme. Since

it will not be needed here, it is not discussed further (see [3]). Thus,

e)=xo(t)+e{l(t)+ [f("r, xo)-[(Xo)]dr + O(e2).x(t,
ao

This approximation suggests several numerical schemes for determining x (h, e)"

A. Computation of f. We wish to determine numerical approximations of x (h, e)
for a given step size h >> e. The customary method for approximating x(h, e) is to
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calculate xo(h) from (3). This requires the calculation of f and in this section we
propose several methods for doing this.

(i) Direct evaluation 9f limr_ (1/T) ’f. A convergence criterion is first set, and
then the integral (I/T) ff is calculated for increasing values of T until the criterion
is met" Given a tolerance 8, there is a value T(8, x) such that

I I0 f(r, x) dr f(r, x) dt < 6 and f(r, x) dr f(x) < 6

for all Tx, T2 -> T(6, x). Thus we can write

I [, T(6,x)

f(r, x dr + O(8)f(x)
T(8, x) J0

and proceed to solve (3). Unfortunately, there is no certain way of finding T(6, x),
and its calculation may depend delicately on the frequencies of f(r, x).

In order to find a candidate for T(6, x), we calculate
T

V(T, x) Jo f(r, x) dr

for 0 =< T -<_ 2 T*, and keep increasing T* until the condition

1 1
V(T*+T’,x) <8sup V(T*, x

(T, + T’)O<=T’<=T

is met. Then we take T(6, x)= 2T*. Usually 2T* is of order 0(1/8). For example,
if f(r, x) sin r, then f(x) 0 and V(T, x) cos T 1. Thus in this case

11 2o<- V(T, x) <=--T’
the maximum being attained in each interval of length 2rr.

(ii) Second difference method. In most applications, the integral of the almost
periodic function f has the form

V(T, x) f(x)T +p(T, x),

where p is an almost periodic function. Thus, given a tolerance 6, there is a 6-translation
number (6, x) such that

Ip(T + T(6, x),x)-p(T, x)l <6

for all T_>-0; in particular, since p(0, x) 0, then Ip(Sg(6, x),x)l<6.
If the frequencies of V, hence of p, are known, then (6, x) can be determined

by a Diophantine approximation procedure [4]. Thus, Fourier transform methods can
be used to determine the spectrum, and a Diophantine algorithm used to find
-(6, x). We do not carry this procedure out here. Instead we find candidates for :g
by an alternate method.

Note that

V(2T, x)-2 V(T, x)=p(2T, x)-2p(T, x).

In particular for T (6, x), we have that

(5) V(2,x)-2V(,x)=p(2,;,x)-p(;,x)-p(,;,x)+p(O,x)=O(6).

Thus, any 6-translation number of p makes (5) of order 8. Unfortunately, the converse
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does not hold; in particular, V(2T, x)-2V(T, x)[ may be small while Ip(T, x)[ is not
small.

Still, by tabulating

V(2T, x)-2V(T,x),

candidates for (6, x) can be found and tested by comparing the value of V(T, x)/T
for several of them, since these should all approximate f(x). In practice, this method
is not worse than the direct calculation of f, and in periodic cases, it reliably gives
f(x) after calculation over one period.

Thus, from either or ii, we use (1/(6, x)) o(’) f(r, x) d- as an approximation
to f and proceed to integrate (3) using this approximation.

(iii) An ergodic method for quasi-periodic systems. In many cases, f is given to
be, or can be transformed into, or can be closely approximated by quasi-periodic
functions of the form

f(’, x)---F(wx’r, ", wa’c, x)

where wl,. ’, wr, are rationally independent numbers, and the function
F(u 1, , ur,, x) has period 27r in each of the L variables u 1, , ur,. In this case,

f(x) =-- rlirno f(z, x) d" (2r)r, F(01, Or., x) dO1 dOr,.

The computational method in this case can proceed by using the formula for f(x)
to integrate (3) directly.

Thus, the time average can be replaced by an average over an L-torus, reminiscent
of an ergodic theorem. This fact is derived rigorously in [5]; note however, that the
result follows intuitively from the generalized Fourier series expansion of F since only
the constant term survives either operation. In this case, calculation of f requires
evaluation of an L-fold integral over a finite domain. This of course can be costly if
L > 4. However, in many problems from nonlinear vibrations, angle variables over
which averaging must be carried out are "sparse" in the system, making this method
practical.

B. The extrapolation method. In this section we use the form of the perturbation
approximation of x (h, e) to generate an extrapolation formula including a remainder
term for approximating x(h, e). The formula employs quantities like x(h, e’) which
are themselves easily determined since e’>> e.

To begin, recall that

V(t, x)=-- f(’, x) dr f(x)t +p(t, x).

We pick T to be a 8-translation number of p by one of the methods mentioned earlier
in this section, or by additional knowledge of the specific problems being studied. Then

p(2T, x)-2p(T,x)= V(2T, x)-2Tf(x)-2V(T,x)+2Tf(x)

V(2T, x)- V(T, x)- V(T, x)

(, x) d--{(x)T-p(T, x)

Ef(’r, x)-f(x)] dr + 0 (,).



616 F. C. HOPPENSTEADT AND W. L. MIRANKER

It follows that

(6) [f(, x)-d(x)] & o().

We will combine this observation with (2) and (4).
Once a T value is found for which (6) is satisfied, we define

h

and calculate x(h, e’/2) and x(h, e’) from (1) by a rth-order numerical method. It
follows from (2) and (4) that

On the other hand,
h/e

x(h,e)=xo(h)+e1+e f [f(’r, xo(h))-f(xo(h))]d’r+O(e 2)
aO

=xo(h)+O(e),

since

Therefore,

(7)

h/e

If(r, xo(h))-f(xo(h ))] d" O(1).

x(h, e)= 2x(h, )-x(h, e’)+O(e)+O(3h)+O(
This formula gives the extrapolation method for calculating x (h, e). It and the previous
methods are compared for an example in the next subsection.

In (7) 2x(h, e’/2)-x(h, e’) is used as an approximate replacement for x(h, e); it
is in fact also an approximate replacement for xo(h). Thus, while calculating x (h, e’)
from (1) is usually much easier than calculating x(h, e) since e’ >>e, it is possible to
calculate xo(h) directly. There are several reasons why this might not be desirable.
Primarily equation (1) with e replaced by e’ is not a stiff equation, and it can be
reliably solved by simple explicit numerical methods. Equation (3) for x0 is not stiff
but its formulation requires the evaluation of the average, f, at several meshpoints.
As discussed earlier, this time consuming step is bypassed by the extrapolation method.

Note that if T differs by the quantity A from the approximation (6, x) of the
&translation number, then from (7), we see that the corresponding difference in the
associated values of x (h, e) is

(8) o a.

The dependence of this estimate on h is illustrated in Table 1.
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C. Sample calculations: a linear system. In this subsection we present simple
calculations performed with the various methods derived here for the linear initial
value problem

du= (()A +B) u’dt
u(0) .

This is transformed into the problem

dv _At/eBeAt/ed--- e v, v (01

by the change of variables u eAt We take v e E4 and (1, 1, 1, 1)Tr.
Running values of V(T, ) are computed using a quadrature increment of A- .01.

The tolerances for each of the methods (i) and (ii) are denoted by (i and 6ii, respectively,
and the corresponding values of T at which the associated computations halt are
denoted Ti and T, respectively. The calculations are carried out for two different
matrices"

0 1 0 0 1 2

-1 0 0
A(2, w)= -10 0 0

A(1, w)=
0 0 0 0 0
0 0 -w 0 0 -w

where w is a parameter specified below.
B is taken to be

1 2 3 4
5 6 7 8

B=
8 7 6 i4 3 2

The average B

1 fr -Att e AtB lim e dt
Jo

can be determined in closed form, whichwe denote byB (1, w) andB (2, w), respectively.
These are compared with B’s obtained by methods and ii, e.g., B (1, w) is compared
with Bi(1, w) and Bii(1, w) in Tables 1-3.

The averaging method gives eh as an approximation to x(h, e). Tables 1-3
compare these approximations for the three ways of determining B. The extrapolation
formula (7) gives an approximation to x (h, e), which is presented in the tables as well.

h/Tiande’These are denoted by Ex (ei) and Ex (eii), respectively, where ei ii h/Tii.
Observe that a value of e is not prescribed for these computations. This demon-

strates the characteristic of numerical methods based on perturbation procedures in
that they supply approximations which are uniformly good for all e smaller in modulus
than some prescribed value e0, say. e0 depends only on the accuracy desired of the
leading term of the expansion as an approximation to the full solution. Calculations
are given for values of e’ conveniently near the appropriate values of hit since e’ is
only approximately determined by the method.
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TABLE 1
Case 1. A A(1, 1/2).
a. Approximations to B

Exact average

B(1, 1/2)

3.5 -1.5 0.0 0.0
1.5 3.5 0.0 0.0
0.0 0.0 3.5 1.5
0.0 0.0 -1.5 3.5

Method (i)

t .001 Ti 163.36

Method (ii)

Bii(1, 1/2)/i(1, 1/2)

3.5 -1.5 -.001 -.001
1.5 3.5 0.0 0.0
0.0 0.0 3.5 1.5
0.0 0.0 -1.5 3.5

tii .001 Tii 25.12

3.501 -1.502 -.002 -.002
1.498 3.499 -.004 -.004
-.004 -.004 3.499 1.498
-.002 -.002 -1.502 3.501

b. Approximations to x(h, e), h .1.

Approximation

e Biih
Ex (.0006)
Ex (.004)

Approximating vector

1.19 1.61 1.61 1.19
1.20 1.60 1.60 1.20
1.20 1.60 1.60 1.20
1.19 1.62 1.62 1.19
1.19 1.62 1.61 1.19

c. Approximations to x(h, e), h .05

Approximation Approximating vector

eNh 1.10 1.28 1.28 1.10
eBih 1.10 1.28 1.28 1.10
eBiih 1.10 1.28 1.28 1.10
Ex (.0003) 1.10 1.28 1.28 1.10
Ex (.002) 1.10 1.28 1.28 1.10

D. Discussion of these numerical methods. Existing stiff differential equation
solving routines, such as Gear’s [6], can degrade markedly when applied to problems
having highly oscillatory solutions since computations must continually be made using
very small increments. On the other hand, methods like those presented here can
require extensive a priori preparation of the system to be solved.

Numerical implementation of the averaging procedure requires the determination
of Ti ( 1A(i)) which is used in direct approximation of f or determination of Tii
( 1A(ii)) as an approximate translation number for p(T,x). The ergodic method
( 1A(iii)) can involve computation of high dimensional integrals.

The ratio h/e is a measure of the system’s stiffness, while 1/(eh) measures the
work involved in direct computation of solutions. On the other hand, Ti/AT (AT is
the increment used in the averaging quadrature) measures the work needed to calculate
f, and rii/AT gives the work involved in calculating the approximate translation
number. While the method based on approximation of f ( 1A(i)) is reliable, it is
costly even for a periodic function f. The work involved in the computation of
translation numbers varies from minimal (e.g., for a periodic function) to no improve-
ment when resonances occur in the integral V. Computations illustrating the ergodic
method ( 1A(iii)) were not carried out here since the process reduces to a well known
quadrature problem.
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TABLE 2
Case 2. A A(1, 1/4).
a. Approximations to B

Exact average

/(1, 1/4)

3.5 -1.5 0.0
1.5 3.5 0.0
0.0 0.0 3.5
0.0 0.0 -1.5

0.0
0:0
1.5
3.5

8i .001

Method (i)

/i(1, 1/4)

Method (ii)

3.50
1.501
.002
.001

/ii(1, 1/4)

.001

.002
3.50

-1.50

Ti 158.34

3.48 -1.51 -.085 -.027
1.40 3.52 -.024 -.026
-.085 .026 3.40 1.53
.024 0.026 -1.47 3.60

-1.50
3.501
.002
.001

8ii .001 Tii 50.28

.001

.002
1.50
3.50

b. Approximations to x (h, e), h =. 1.

Approximation

eah
eliih
Ex (.0006)
Ex (.002)

Approximating vector

1.19 1.61 1.61 1.19
1.18 1.60 1.59 1.22
1.28 1.60 1.60 1.20
1.20 1.61 1.64 1.17
1.19 1.62 1.62 1.19

c. Approximations to x(h, e), h .05.

Approximation

eh
eih
eiihl
Ex (.0003)
Ex (.001)

Approximating vector

1.10 1.28 1.28 1.10
1.09 1.28 1.27 1.11
1.10 1.28 1.28 1.10
1.10 1.27 1.29 1.09
1.10 1.27 1.29 1.09

The value of e’ used in this method is typically much larger than e, but still small.
Therefore, the relaxed problem may still be stiff, but it will be significantly less so
than the original problem.

Finally, we note that formula (7) shows the error arising in the extrapolation
procedure decreases as a power of h; e.g., replacing h by hi2 implies the error changes
from h2/T to hE/(4T). Consequences of this fact are illustrated in Table 1 where
computations are carried out for two or three values of h. For example, from Case
3, Table 3, we see that for the three values of h, h =.1, h =.05 and h =.025,
Ilea-Ex (.00)11- 59.5, IleSa-Ex (.0005)11 8.1, Ile5-Ex (2.5E-4)11= 1.1.
Here I1" denotes the Euclidean norm.

2. Initial value problems having matched asymptotic expansion solutions. Con-
sider an initial value problem

(9)
d-7 [(t, x, y, ),

dy
e -d= g(t, x, y, e ),

x(O) ( (o) + o( ),

y (o) n (e) n (o) + o(e),
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TABLE 3
Case 3. A =A(2, 1/2).
a. Approximations to B

Exact average

B(2, 1/2)

9.17 -28.17 -290.56 -60.48
28.17 -9.17 -52.89 289.44
0.0 0.0 -2.17 29.83
0.0 0.0 -29.83 2.17

Method (i)

t =0.1 Ti =404.28

Bi(2, 1/2)

9.10 -28.03 -289.05 -60.12
28.09 9.03 52.81 -288.48
0.02 0.028 -2.15 29.77

-0.013 0.039 -29.71 -1.98

Method (ii)

tii .0001 Tii 75.4

Bii(2, 1/2)

9.17 -28.17 -290.6 -60.44
28.17 9.17 52.89 -289.44
0.0 0.0 -2.17 29.39
0.0 0.0 -29.83 -2.17

b. Approximations to x(h, e), h =.1.

Approximations

eBiih
Ex (.0002)
Ex (.001)

Approximating vector

-55.4 -26.5 -1.31 -5.98
-55.2 -26.6 -1.29 -5.97
-55.4 -26.5 -1.31 -5.98

1.09 -13.9 -.701 -.873
1.546 -13.6 -.761 -1.01

c. Approximations to x(h, e), h =.05.

Approximation

e_ih
e Biih
Ex (.0001)
Ex (.0005)

Approximating vector

-22.4 -10.9 1.12 -1.55
-22.3 -10.9 1.12 1.54
-22.4 -10.9 1.12 -1.55
-14.2 -9.82 1.12 -1.54
-14.3 -9.77 .97 .81

d. Approximations to x(h, e), h =.025.

Approximation

/h
e
Ex (.00025)

Approximating vector

-9.46 -4.46 1.38 -.036
-8.46 -4.35 1.34 .056

where the real parameter e is near zero. Here, x, f, 6 E" and y, g, rt E". The
reduced problem (e 0 in (9) with the initial y condition cancelled),

(10) d---= f(t, x, y, 0),. x(0)=:(0), O= g(t, x, y, 0),

is assumed to have a solution, x x0(t), y y0(t), on some interval 0 -< <-_ T, the data
f, g, c and r/ are assumed to be smooth functions of their arguments and the Jacobian
matrix

(0)(t, Xo(t), yo(t), 0)

is assumed to be stable (i.e., all eigenvalues lie in the left half plane, bounded away
from the imaginary axis uniformly for 0 <_- _-< T).
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Under these conditions it is known [1] that the solution of (9) has the form

(11)

x(t, e)-Xo(t)+xl(t)e +X(, e)+ O(e2),

y(t,e)=yo(t)+yl(t)e + r( t, )e +O.e2.,(

where X, Y satisfy

<K e -t/’

for some positive constants K and/x. These estimates hold uniformly for 0 <= <-T
and for all small positive e.

We wish to determine numerical approximations of x(h, e), y (h, e), for a given
step size h >> e. In 2A we do this by direct calculation of the leading terms xo(h),
yo(h) of the asymptotic expansion; this is the customary approach. In 2B we derive
the extrapolation method for this approximation. In 2C we present and compare
sample calculations.

A. Direct calculation of xo(h), yo(h). Since h/e >> 1, we can ignore X, Y-terms
in (11), and to simplify the computations we will be satisfied with xo(h), yo(h), as an
approximation to x(h, e), y (h, e). The numerical calculation of higher order terms in
the perturbation expansion is discussed elsewhere (see [2]).

Xo(h), y0(h) can be calculated from (10) in a number of ways. One widely used
method combines Newton iteration and a pth-order numerical method for solving
ordinary differential equations. The result is that

x(h, e) xo(h + O(e)+ O(h"+a),
y(h, e) yo(h) + O(e + O(h+).

B. The extrapolation method. The extrapolation method begins by identifying
a value of e, say e’, which is substantially larger than e in magnitude, but for which
the solution of (9) with e replaced by e’ can be used to approximate x(h, e), y(h, e).
Thus, (9) is solved for larger values of e, and so it can be solved more accurately with
less effort. In many applications the number of operations used in these computations
varies with 1/e and 1/e’, respectively. Therefore we use the ratio e’/e to indicate
the relative number of operations of direct solution compared to the extrapolation
method.

First, a value T is determined so that Ke-T O(hP+). is usually of the order
of the smallest (modulus) eigenvalue of gy, and K depends on Lipschitz constants of
g; and determination of K typically requires special knowledge of the probem. Next,
a value e’= hiT is defined, and system (9) is solved by a standard (order p) integration
method for x(h, e’/2), y(h, e’/2), and x(h, e’), y(h, e’). It follows that

x(h, )= 2x(h, )-x(h, e’)+O(h"+)+O((e’)2)+O(e),

y(h, e)= 2y(h, )- y (h, e’)+O(h’+)+O((e’)a)+O(e).
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These formulas can be derived in the following way: Since

2x(h, =2xo(h)+xl(h)e’+2X + O((e’)2),

and

x (h, e ’) xo(h + x l(h )e’ +X(T, e ’) + O ((e ,)2),
we get by subtraction that

2x(h, ) -x(h, e’) xo(h + O(h’+) + 0 ((e’)2).

On the other hand,

x(h, e xo(h + O(e + O (h+),
and similarly, for y (h, e). The final result is that

x(h, e)= 2x(h, -x(h, e’)+O(h’+)+O(e)+O
(12)

2

y(h, e)= 2y(/, )-y(h, e’,+O(h’+,+O(e,+O((-) ).
This and the direct evaluation methods are compared for two examples in the following
section.

Again, the approximations given in (12), using the extrapolation method, provide
a possible alternative method to direct evaluation of xo(h), y0(h). Both approaches
give the same numerical accuracy. However, analytical preprocessing might be required
to pose the problem in the form (9). Once this is done, the equation 0 g(t, x, y, 0)
must be solved for y at each meshpoint required by the solving method to be used
in the first equations in (10). Both the preprocessing and the solution for the quasi-static
state y can involve a substantial investment of time. These are avoided by the
extrapolation method.

C. Sample calculations.
(i) A linear system. We consider first a linear example of (9) (see [2]):

(13)
dx dy 1

y+l, y (0) r/.dt
y x’ x (O) ,

dt e

The eigenvalues of this system are -1 and -1/e << -1. The exact solution is given by

x(t)=e-’+(1-e-’)e-(i e )(rt_e)(e_,/_e_,) y(t)=e +e-’/(rt-e),

and the leading terms of the matched asymptotic expansion solutions are

x(t)=e-ttj+e{(rt-1)e-t+l}+ y(t)=e+....

Table 4 summarizes our calculations of the solutions for typical e (e 10-5) and h
(h .1 and .01, respectively) values. Evaluation of the matched asymptotic expansion
solution to leading order and the extrapolation method are presented in Table 4.
Since K 1 + In and tx 1 in this case, we take T -In [h P+I/(1 + In I)3. The calculated
values are for e’= h/T (e’=.008 and e’=.003, respectively). Calculations are also
presented for nearby values of e’, since e’ is only approximately determined by the
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TABLE 4
:= r/= 1, p=4,

h =.1, e’ =.008

Extrapolation method

Matched solution

.005

.008

.01

.02

x(h)

.863

.864

.865

.870

.905

y(h)

.002

.004

.005

.010

0.0

e’/e

500
819

1,000
2,000

h =.01 e’=.003

Extrapolation method

Matched solution

.003

.004

x(h)

.986

.987

.99O

y(h)

.0015

.0025

0.0

e’/e

300
400

method. A Runge-Kutta method of order four has been used to calculate the values
of x (h) and y (h) furnished by the extrapolation method in all of the examples presented
in Tables 4 and 5. In order to assure high accuracy and stability these Runge-Kutta
calculations were performed on a submesh of [0, h ] with submesh increment k he ’.

Observe that although e 10-5, the computations displayed in Table 4 are
independent of e and are valid to the accuracy indicated uniformly for all e smaller
in modulus than some prescribed value e0, say. e0 depends only on the accuracy
desired of the leading term of the perturbation expansion as an approximation to the
full solution. This same observation may be made for the example (ii) and Table 5
below.

Notice that the extrapolation method gives an answer to 4% accuracy for h .1,
but it gives better than a 1% accuracy for h .01. Of course, in each case, a submesh
of points, appropriate to ’ is employed to reach these values h =.1 and h =.01,
respectively. For example, in the case h =.01 a submesh increment of 10-3 is
appropriate.

To compare our extrapolation method with the package of C. W. Gear which is
frequently used for integrating stiff differential equations, we employed the latter to
solve (13) with e 10-5 for the case h .01 in Table 4. The package calculates the
solution at h .01 by employing a variable submesh of points which it determines
adaptively. The package requires an average step size of 1.96 10-4 to produce a 1%
answer. The extrapolation method with e’= .003 produces a % answer with a fixed
step size of 9.75 10-4. As e decreases, the latter remains invariant. There are so
many details of variation in each of these methods that this comparison should only
be interpreted qualitatively.

(ii) A model enzyme reaction. A simple enzyme reaction involves an enzyme E,
substrate S, complex C and product P. Schematically, the reaction is

E +S C, C E +
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After some preliminary scaling, this reaction can be described by a system of differential
equations for the substrate concentration (x) and the complex concentration (y) as

(14)

--=-x +(x +k)y, x(0)= 1,
dt

dy
e - x (x + k’)y, y (0) 0,

where e measures a typical ratio of enzyme to substrate (O(10-5)), and k and k’
(k < k’) denote ratios of rate constants suitably normalized (O(1)).

Table 5 summarizes the result of these numerical calculations for e 10-5 h 1
and.01, k=l, k’=2 In this case, K=l, =k’ so we take T -((p + 1)/2) In h.

TABLE 5
X(0) 1, y(0) 0, p 4

h 1, e’= .04

Extrapolation method

Matched solution

.01

.04

.05

.1

.15

.2

x(h)

.953

.96O

.961

.973

.988

.994

.989

y(h)

.323

.325

.325

.328

.335

.341

.331

1,000
4,0O0
5,000

10,000
15,000
20,000

h =.01, e’=.0009

Extrapolation method

Matched solution

.0004

.0008

.0009

.001

.0016

x(h)

.995

.995

.995

.995

.995

.992

y(h)

.332

.332

.332

.332

.332

.332

40
8O
90
100
160

The calculated values are for e’= h/T (e’= .04 and e’= 0009, respectively). Calcula-
tions are also presented for some nearby values of e’.

The extrapolation method gives a 3% accurate solution for h .1, but it gives
better than a 1% solution for h .01. As in the case of Table 4, a comparison here
produces an average step size of 2.4 x 10.4 for a 1% answer for Gear’s package as
opposed to a fixed step size of 2.7 x 10-3 for a 1% answer for the extrapolation method
with e’= .0009. (See the comments following Tables 1-3 above.)
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AN APPLICATION OF MIXED FINITE ELEMENT METHODS TO THE
STABILITY OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATION*

JANET S. PETERSONS"

Abstract. Following the work of Serrin [Arch. Rational Mech. Anal., 3 (1958), pp. 1-13], [Encyclopedia
of Physics, Springer-Verlag, Berlin, 1959], the problem of determining the energy stability of incompressible
viscous flows is cast in a setting where one is required to determine the largest eigenvalue of a partial
differential equation problem. A finite element algorithm for the approximation of this eigenvalue is
presented. Error estimates are derived for the eigenvalue approximation. In addition, some remarks are
given concerning the solution of the algebraic eigenvalue problem resulting from the finite element
discretization. Finally, the use of the finite element algorithm is illustrated by numerical examples.

Key words, finite element, stability, Navier-Stokes, eigenvalue

1. Introduction. We consider the problem of determining the stability of viscous
incompressible flows. Let a fluid motion occupy a bounded region Y(t) and be subject
to a prescribed velocity distribution on the boundary 6 of Y(t). If the velocity field
is perturbed at the instant 0, then the question of stability of the flow is to determine
if the subsequent motion, subjected to the same boundary conditions, will change
radically in character or will vary only slightly. This problem can be addressed by
either standard linear perturbation techniques which require the perturbations to be
infinitesimal in magnitude or by an energy method. The latter approach is considered
here.

Specifically, we want to determine sufficient conditions for the flow of an incom-
pressible viscous fluid to be stable under arbitrary disturbances. Let v be the velocity
of the given flow whose stability we are investigating; let v* be the velocity of the
flow resulting from the perturbation of the given flow and let u be the velocity of the
difference flow, i.e., u v*-v. The energy method is based on the observation that
if the kinetic energy of the difference flow u tends to zero then u must also tend to
zero almost everywhere. Thus, we define the basic flow to be stable provided the
kinetic energy K of the disturbance u tends to zero as increases. Using the energy
method, Serrin [1] was able to formulate this stability question as a linear eigenvalue
problem. We present a brief derivation of this problem.

The initial step in formulating the eigenvalue problem is to obtain an expression
for dK/dt. We first note that since v and v* satisfy the same boundary conditions, u
is zero on 5. Now using this fact, the incompressibility condition and the fact that v
and v* satisfy the nonstationary (nonlinear) Navier-Stokes equations, we obtain the
following expression [1]:

(1.1) dK__ Iv {u grad u: grad u +u D u} dO//".
dt

Here u is the kinematic viscosity and D is the deformation tensor of the given flow
v. The (i,/’) component of is

* Received by the editors August 4, 1981, and in revised form June 14, 1982. This work was sponsored
in part by the Air Force Office of Scientific Research under grant AFOSR-80-0083.

" Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
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The colon in (1.1) represents the scalar product of the tensor grad u with itself. It is
clear that if the right-hand side of (1.1) is negative for arbitrary u satisfying div u- 0
in 7/" and u 0 on 5, then the flow is stable. Note, however that the first term on the
right-hand side of (1.1) is always negative, whereas the second term may be large and
positive due to a high rate of shear of the given flow. Restating these conditions, we
obtain the following variational problem [1]. Seek u such that

(1.2) I.u ). u dO//.

is minimized subject to the conditions

(1.3) div u 0 in ,
(1.4) Igrad u" grad u dT/" 1,

(1.5) u=0 on6e.
Letting -u* be the minimum of (1.2) subject to the conditions (1.3)-(1.5), we see

that the flow is stable when u*< u. Using the standard techniques of the calculus of
variations, we reformulate equations (1.2)-(1.5) as a partial differential equation for
the extremal function u. Introducing Lagrange multipliers p and 7 for the constraints
(1.3) and (1.4), respectively, the Euler-Lagrange equations are given by

(1.6) u. )= -grad p + 7 Au,
in (t),

(1.7) divu-0

(1.8) u=0 on6f.

The flow is stable if the kinematic viscosity u is greater than the maximum eigenvalue
u* of (1.6)-(1.8). Thus, given the deformation tensor 9 of the given flow, we must

calculate the maximum eigenvalue of (1.6)-(1.8) in order to determine sufficient
conditions for the flow to be stable. However, since most flows are too complex to

solve for this eigenvalue exactly, we propose to obtain an approximation to u* by
mixed finite element methods. In the analysis that follows, it is advantageous to rewrite
(1.6)-(1.8) in the form

(1.9) u grad b A u.
in F(t),

(1.10) divu=O

(1.11) u=0 on5

where b p/f, and A 1 / if, ff 0.
We note that the resulting eigenvalue problem (1.6)-(1.8) or equivalently (1.9)-

(1.11) is linear despite the fact that the perturbation u to the given flow may be of
finite magnitude.

2. Notation. Standard Sobolev space notation is used throughout this work [2].
The rth order Sobolev space associated with a bounded region ll is denoted Hr(fl)
with I1" lit indicating the usual norm on H (f). L2(f) is the space of all functions which
are square integrable and is equal to/_/o(f). The inner product on L2 is indicated by
(.,.). Also, H (ll) denotes the subspace of Hl(fl) of functions which vanish on the
boundary while I-I(12) denotes the space of vector fields whose components have
weak derivatives up to order one in L2(f) in each variable and which vanish on the
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boundary of f. For functions u Ho, we will use the norm

Ilull ---(Vu, Vu),
while for functions u H we will use the norm

Ilull (Vu, Vu)/ (u, u),

The operator norm for A" X -* Y is given by

IlAIlx- =sup Ilxllx
xO

3. Abstract results. For the eigenvalue problem (1.9)-(1.11) we consider the
following variational formulation which is obtained by the standard techniques of the
Galerkin method; that is, we multiply (1.9) and (1.10) by appropriate test functions
and then integrate by parts. The weak formulation of (1.9)-(1.11) is to find nonzero
u H01(V), 4’ L(T’) and h R such that

(3.1) a (u, v) + b (v, b) h (Du, v) for all v H(T’),
(3.2) b (u, 0) 0 for all L2(7/’)

where a (., and b (., are bilinear forms defined by

(3.3) a (u, v) Iv- Vu" Vv dO//" for all u, v H(7/’),

(3.4) b(v,b)=Ivq5 divvdT/’ forallvH(), q L2(/’).

It is easily verified that a(.,.) and b(.,.) are bounded bilinear forms; that is,
there exist constants c , c2 such that

(3.5) la (u, v)l--< c lllUllllVlll for all u, v Ho(7/’),

(3.6) Ib(v, c=llvll ll llo for all v n(7/’), q L2(//’).

In addition, a(.,. is coercive on H01(7/") It(T’); i.e., there exists tx >0 such that

(3.7) a (u, u) >_- ce Ilull.
Since the goal is to approximate the solution of (3.1)-(3.2), we introduce finite

dimensional subspaces Vh Ho(7/") and Wh L2(//") which depend upon a parameter
0<h < 1 tending to zero. The approximate problem is to find nonzero (uh, bh)
vhx Wh and ,l h such that

(3.8) a(u,vh)+b(vh, b) Ah(Duh, vh) for all vhVh,

(3.9) b(u, 4,) 0 for all Oh Wh.
The objective of the subsequent analysis is to estimate the difference between A and
,t h as h approaches zero. This error estimate is derived in Theorem 3.4.

The source problems associated with the continuous and the discrete eigenvalue
problems play an important role in the error analysis. For the continuous source
problem, f L2 is given and we seek (u, b) H0(//") L2(7/’) such that

(3.10) a(u,v)+b(v,d)=(f, v) forallvH(//’),
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(3.11) b(u, 0)=0 for all 0 L2(7/’).

The approximate source problem associated with (3.8), (3.9) is to find (uh, qsh)e
vhx Wh such that

(3.12) a(llh, vh)d_b(vh, (h)=(fh) forallvh vh,

(3.13) b(llh, 0h) =0 for all Oh e Wh

where f e L2 is given. Brezzi [3] investigated the existence and uniqueness of source
problems of this type. In order to guarantee the existence and uniqueness of the
solutions of (3.10), (3.11) and (3.12), (3.13), a(., .) and b(., .) must be continuous
as well as satisfy certain stability conditions on the appropriate spaces. The continuity
of a (.,.) and b(.,.) on H xH and Ho x L2 as well as on vhxVh and vhx Wh is
guaranteed by (3.5) and (3.6). The coercivity of a (.,.) is a sufficient condition for its
stability. The stability condition for b(.,.) is proved in [4] on Ho x L2 and in [5], [6]
for the particular choice of subspaces used in the examples.

Next we introduce the components of the solution operator. For the continuous
source problem, we define solution operators S and T such that

(3.14) S’L2-->H and Sf=u,

(3.15) T:L2-->L2 and Tf=dp

where u and b are defined by (3.10), (3.11). Similarly for the discrete source problem
we define the operators Sh and Th such that

(3.16) Sh ".L2--Vh and shf-I1h,

(3.17) Th:L2 Wh and Thf=ch
where uh and b h are determined by (3.12), (3.13). The Sh’s form a sequence of
compact operators since they are maps into finite dimensional subspaces. We now
note that if (A,u) and b satisfy (3.1), (3.2) a comparison with (3.10), (3.11) with

f A Du and the definition of S imply that ASDu u. Similarly if ASDu u then there
exists a b such that A, (u, b) satisfies (3.1), (3.2). This gives the following result.

LEMMA 3.1. (A, u)satisfies (3.1), (3.2) ifand only ifASDu=u, u0.
A similar result holds for the discrete case, which we give for completeness.
LEMMA 3.2. (A h, Uh) satisfies (3.3), (3.4) if and.only if A hshlllh I1h, il

h O.
We assume that S" converges to S in the operator norm and thus S is compact.

For the particular choice of the space Vh in the examples in the next section, we will
see that, indeed, this is the case. This assumption guarantees convergence of the
eigenvalues; that is, given an eigenvalue A of S of multiplicity m, then there are
exactly m eigenvalues of Sh counted according to multiplicity which converge to
[7]. We are now able to compare the eigenvalues A of (3.1)-(3.2) with their Galerkin
approximations A" by comparing the eigenvalues of the compact operator S with
those of

Using the machinery that has been developed thus far, we are now ready to
obtain the eigenvalue error estimate. As a starting point for the estimate, we state
the following result of Osborn [8] for the spectral approximation of compact operators.

THEOREM 3.3. Let h be an eigenvalue of S of multiplicity m and ht,
1, 2,..., m be the m eigenvalues ofS which converge to h. Let 01,’", O,, be an
orthonormal basis for the eigenspace of S) corresponding to (h-), denoted by M(A-1).
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Then there exists a constant c independent of h such that

(3.18) IA-a,I<--c E l=1,2,...,m,
i,j=

where ]t(-) denotes the restriction to M(A -x).
The eigenvalue error estimate is obtained by estimating the first term on the

right-hand side of (3.18). With , )t h defined as in Theorem 3.3 and S, S h, T and Th

defined by (3.14)-(3.17), we have the following result:
THEOREM 3.4. There exists a constant c independent of h such that

(3 19) IA -; Pl<-_c{lls-s s Th -Sh

Proof. To obtain an estimate for the first term on the right-hand side of (3.18)
we estimate (f, (S--Sh)g) where f, gEL2. Adding equations (3.10), (3.11) with v=
(s-Sh)g EIto, 0 =(T- Th)g L2 and using (3.14), (3.15) yield

(3.20) a(Sf, (s--Sh)g)+b((S--Sh)g, Tf)+b(Sf, (T-Th)g)=(f, (s-Sh)g).
We now combine the continuous and discrete source problems (3.10)-(3.13) with f
equal to g to obtain

a (u uh, vh + b (vh, & & h + b (u uh, O h 0,

which holds for all vh e Vh and 0h Wh. Choosing vh= shf, Oh= Thf and using the
definition of the solution operators (3.14)-(3.15) lead to

a((s--Sh)g,S D+b(shL (r-rh)g)+b((S--Sh)g, rhf) 0.

We now subtract this result from (3.20) and use the symmetry of a (.,.) to obtain

(f, (S--Sh)g)=a((S--sh)f, (s-sh)g)+b((S-Sh)g, (T- Th)[)
+b((S-Sh)[, (T- Th)g).

Using the boundedness of the bilinear forms (3.5), (3.6) yields

I(f, (S Sh)g)l <- c {][(S sh)jelllll(S Sh)gl]l
+ ll(s s II,II(T T)/llo + II(s s" )fll lll(T T )g Ilot.

Choosing f 0 and g D0 produces

(3.21)

We now substitute (3.21) into (3.18) and use the fact that [D is bounded to obtain the
desired result.

4. Examples. The approximate eigenvalue problem (3.8), (3.9) is equivalent to
an algebraic generalized eigenvalue problem. This is shown in the usual manner by
choosing bases {Ixe} and {we} for Vh and Wh, respectively. We are then led to

(4.1) (BA /r)(;)=Ah(/ )
where A, B, D are matrices whose elements are given by (A)q a(li, I), (B)q
b (1, to), (D)q (1, I) andX, X2 are vectors whose elements consist of coefficients
in the expansion of u and O in terms of the bases for Vh and W respectively.
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For most problems the system (4.1) is large and sparse. If A is n x n, B, m n,
n > m, then we consider a method for reducing the (n +m) (n + m) system (4.1) to
an (n-m) (n- m) system. To do this we obtain an orthogonal basis for the null
space B by performing a QR decomposition of B T. That is,

B T V1V2) (Ro1)
where Q (V1V2) is an orthogonal matrix and R1 is upper triangular. From (4.1)
Bx 0, and thus using the QR decomposition we have that LVx 0 where L R .
If B is of full rank, L is invertible and thus VXl--0. Using this fact we can reduce
the first equation in (4.1) to

(4.2) VDVzy hVfA Vzy

where y VXl and 7h is (A h)-a. We are interested in finding the maximum eigenvalue
of (4.2).

We consider two computational examples. The first is a plane flow in a rectangle
defined by the deformation tensor

D=
0.5 0.0

This is a simple example to illustrate the feasibility of our approximation algorithm
for two-dimensional problems.

Care must be exercised in choosing the finite element spaces Vh and Wh. For
example, if we triangulate as in Fig. 1A and let yh be the space of continuous vector
fields which vanish on the boundary and are linear in each triangle and Wh be the

A. Box grid. B. Criss-cross grid.

FIG. 1. Grids.

space of functions which are piecewise constant on each triangle, then the numerical
approximation is unstable [9]. Stable approximations are defined by each of the two
following finite element pairs based on the grids of Figs. 1A and lB. For both grids
we define Vh to be the space of continuous vector fields which vanish on the boundary
and are linear on each triangle. For the box grid we let Wh be the space of piecewise
constant functions on each rectangle while for the criss-cross grid we define Wh=
div Vh. We note that in the latter case Wh is a subspace of the space of functions
which are piecewise constant on each triangle. For these specific choices of Vh and
Wh, the error estimates for the source problem are given by [9]

(4.3) [[(S sh)f Iio < ch =Ill I[o,
(4.4) II(s s")f I1 ch Ill Iio,

(4.5) [I(T T")f IIo ch Ilfllo.
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These error estimates do not depend on the uniformity of the grids but are valid for
polygonal regions with nonuniform grids. Note that (4.3) guarantees the norm conver-
gence of Sh to S. Using these estimates in Theorem 3.4 produces the following
eigenvalue error estimate"

(4.6) IA A <= ch 2, l= 1, 2,’’’ m.

The maximum eigenvalue for this example was computed for both the criss-cross
and box grids using the reduction discussed at the beginning of this section. The results
are given in Table 1. The extrapolated value was computed using Richardson’s
extrapolation and assuming the convergence is of order h 2.

TABLE 1

Eigenvalue approximations for two-dimensional flow.

Criss-cross grid Box grid

Maximum Extrapolated Maximum Extrapolated
h eigenvalue value eigenvalue value

.002450 .002437

g .002744 .003412 .002731 .003392

7 .002927 .003434 .002915 .003425
! .003039 .0034448

! .003124 0034449

+/- .003186 00345110
+/- .003233 .00345311
--1 .003268 .00345412
-1 .003296 .00345513

The second example that we consider is Couette flow, which is flow between two
rotating cylinders. Let R2 denote the radius of the outer cylinder which is rotating
with angular speed f2 and let R denote the radius of the inner cylinder rotating with
angular speed 1)1. The deformation tensor for this flow is given by [10]:

where

O 1 0
9=- 1 0 0

0 0 0

(RR2)2(2-1)

First, we write (1.6) and (1.7) in cylindrical coordinates. We then assume that the
flow is independent of 0, the polar angle, and that the solution is periodic in the axial
variable z; that is, the kth axial mode of the flow variables are only functions of r,
the cylindrical radius. In this case the weak form of the equations for the kth mode are

(4.7) -vur dr + p u + r dr ; r dr + k + ur dr
r
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(4.8) --uvr dr r dr + k: + vZr dr,
r

(4.9) k pwr dr ; r dr + k: w2r dr

(4.10) p u + r dr + k pwr dr’= O,

where the first equation holds for all u H, the second for all v H, the third for
all wH and the last for all p L. Here u, v and w are the components of the
velocity and k is the axial wave number [10].

Equations (4.7)-(4.10) were solved numerically. The velocity was approximated
by piecewise linear functions on each interval, and p, by piecewise constant functions
on each interval. The error estimates (4.3)-(4.5) still apply, and thus (4.6) gives the
theoretical rate of convergence.

Computations were performed for various values of and , each verifying
the predicted estimate (4.6). We give here only the case when 1 1.292 and 1.0.
The radii were chosen as R1 3.55 and R =4.03 so that comparisons with known
experiments and previous approximate calculations could be made. Table 2 gives the
computed results for this particular example. The eigenvalue is a function of the axial

TABLE 2

Eigenvalue approximations for couette flow.

Maximum Extrapolated
Intervals eigenvalue value

10 .0062169
11 .0062415 .0063585
12 .0062602 .0063582
13 .0062746 .0063581
14 .0062861 .0063579
15 .0062954 .0063578
16 .0063029 .0063578
17 .0063092 .0063577
18 .0063144 .0063577
19 .0063188 .0063577
20 .0063226 .0063576

wave number k. The given intervals are of equal length h and the extrapolated values
are obtained by using Richardson’s extrapolation and assuming the convergence is
O(h2).

In [10] Serrin reports calculations which provide the stability criterion

(4.11) -<45.5

for the particular pair of radii 3.55 and 4.03. Serrin does concede that this number
is, at best, an estimate, but hydrodynamic experiments do support it. According to
the numerical calculations reported in Table 2, we find that

-<45.93,
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which is in close agreement with (4.11). Here u* is the maximum positive eigenvalue
of (4.7)-(4.10).
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TYPE-INSENSITIVE ODE CODES BASED ON
EXTRAPOLATION METHODS*

LAWRENCE F. SHAMPINE

Abstract. It is shown how to construct a code for the initial value problem for a system of ordinary
differential equations (ODEs) which at every step recognizes and responds efficiently to stiffness and so is
insensitive to the (possibly changing) type of the problem. Extrapolation of the explicit midpoint rule is
used when this is feasible and otherwise extrapolation of a semi-implicit midpoint rule is used.

Key words. ODE, type-insensitive, stiff, extrapolation, midpoint rule

1. Introduction. For a long time, extrapolation of the (explicit) midpoint rule [4]
has been a popular way to solve nonstitt initial value problems for systems of ordinary
differential equations (ODEs). In the last few years Bader and Deuflhard have been
studying the theory and practice of extrapolation of a semi-impliciti midpoint rule for
the solution of stiff problems. They have developed an effective code, METAN1 [1],
which will be the object of our attention in this paper.

To describe our objectives, it will first be necessary to sketch how the extrapolation
methods work. Suppose y0 approximates y (x0), where y (x) is a solution of

d
()

dx
y =/(Y)"

To advance one step H to an approximation of y(x0+H), extrapolation methods
repeatedly integrate from Xo to Xo+H with a low order method and subsequently
combine the results to obtain a high order result at Xo +H. The midpoint rules can
be expressed uniformly in terms of a matrix J. The semi-implicit rule forms the
Jacobian matrix at y0, fy (y0), and takes J to be this matrix. The explicit midpoint rule
takes J to be 0. In the notation

:(y) =:(y)-&,

each subintegration proceeds as follows. An integer 2m is selected, and then with
h =H/2m,

"00 YO, r/1 (I hj)-l[y0 + hff(yo)],

and for k 1,. ., 2m,

nk+ (l hJ)-l[(I + hJ)rlk-1 + 2hff(rlk )].

Finally,

S 1/2(n.+ +
is a smoothed approximation to the solution at x0 +H. Polynomial extrapolation in
h 2 is now done on the $2,, to obtain a high order approximation for y (x0 + H).

If J 0 is used in the scheme just sketched, one obtains a variant of the usual
extrapolated explicit midpoint rule for solving nonstiff problems. The only difference

* Received by the editors June 8, 1982, and in revised form August 20, 1982. This work was performed
at Sandia National Laboratories, supported by the U.S. Department of Energy under contract DC-AC04-
76DP00789.

" Numerical Mathematics Division 1642, Sandia National Laboratories, Albuquerque, New Mexico
87185.
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is in the final smoothing. The one described was devised by Bader to improve the
stability when solving stiff problems. It is not essentially different, when applied to

nonstiff problems, from the usual smoothing of Gragg [4]. It is clear that the principal
role of the Jacobian is to stabilize the computations when solving stiff problems,
although it does affect the accuracy to some degree. There are major costs for the
semi-implicit scheme which are unnecessary for nonstiff problems, viz. the formation
of the Jacobian J for each step H, Gaussian decomposition of I-hJ for each
subintegration, and the solution ot 2m + 1 linear systems for each subintegration.

This outline of the situation suggests the possibility of devising an algorithm based
on METAN1 which would recognize at every step when an explicit method is feasible,
and so produce a code which is effective regardless of the changing problem type--stiff
or nonstiff. This amounts to deciding whether we must use J [y (y0), or can use J 0
for the step. There is already some evidence that an effective code is possible. In his
development of a step size and order selection algorithm for extrapolation methods,
Deuflhard [2] compared METAN1 to some of the very best codes based on extrapola-
tion of the explicit midpoint rule when applied to a standard set of nonstiff test
problems. Despite the fact that METAN1 computes Jacobians by differences of/"
values, it is quite acceptable when compared in terms of the number of evaluations
of/" (function evaluations). However, the total computing time was about three times
larger due to the linear algebra costs. Our principal goal is to reduce these costs to a
minimum by recognizing automatically when they are unnecessary. Another major
goal is to avoid the unnecessary formation of Jacobians and so improve the efficiency
of the code for nonstiff problems. This is more difficult because the information carried
in the Jacobian is invaluable for recognizing stiffness, and because it is not necessarily
true that it is better to take J 0 for a nonstiff problem. The tests reported by
Deuflhard somewhat understate the importance of this goal because the test set consists
mainly of small sets of equations.

It is so convenient for users not to have to worry about what stiffness is, or about
the type changing from stiff to nonstiff and back, that some inefficiency is quite
acceptable. Basically we must avoid degrading the efficiency of METAN1 significantly
when the type is stiff, while providing it with the efficiency of the explicit formula
when the type is nonstitt.

It is becoming common for ODE codes to provide the user with assistance in the
selection of the initial step size. There are actually two goals. One is to select a step
size which reveals to the code the scale ot the problem, and the other is to provide
an efficient step size. The first is by far the more important, and the more difficult,
especially for stiff problems. In our investigation we see how to restrict the user’s
guess for a suitable step size so as to be confident that the scale of the problem is
revealed. Deuflhard’s step size and order selection algorithm is then able to proceed
efficiently.

A recognized weakness of extrapolation methods is that they produce answers
infrequently as compared to alternative methods. This is because a relatively large
amount of work is done at each step, so that the step size must be large for the sake
of efficiency. In our opinion the matter is much more troublesome for nonstiff problems
than for stiff. A by-product of our ideas is a reduction of the costs induced by frequent,
specific output points.

2. Changes to METAN1---a new norm. Our intention was to alter METAN1 as
little as possible so that the effect of our ideas would be clear. Some obvious changes
were necessary. A comparatively subtle matter concerns the error control. METAN1
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has a scalar relative error control in which the error in each solution component is
measured relative to the largest magnitude observed for that component so far in the
integration. To use METAN1, one calls the code with initial values at x T and asks
for an answer (output) at x TEND. A flag can be set if one wants to print out the
answers computed at all the steps on the way from T to TEND. For reasons we take
up in 7, this is the most efficient way to monitor the solution. If one does not realize
this (the prologue of this research code does not point this out), or if one wants output
at specific arguments, it is natural to repeatedly call METAN1 with TEND taken to
be the desired output points. METAN1 restarts itself at each call. This is not par-
ticularly inefficient, because a one-step method is implemented, but it has the serious
consequence of reinitializing the weights of the error control. Because we intended to
ask the code to produce answers at specific points, we added a logical variable to
indicate the first call and so avoid reinitializing the weights on subsequent calls.

One important change was made: a different norm was used. Only a couple of
norms are at all popular in ODE codes. One is the max norm, ]]vl]. (All the norms
used weight the individual components, but we suppress these weights to avoid
notational complication.) In [2, p. 23] Deuflhard objects to this norm because using
it "... may sometimes cause a zigzagging behavior when the index of the maximum
component of the vector varies fast along the trajectory." For this reason some authors
use the Euclidean norm, Ilvll=, and others use the constant multiple called the root
mean square norm:

i=1

These two possibilities do yield smoother behavior, but they are not completely
satisfactory either. One difficulty is that not infrequently they lead to underflow when
solving stiff ODE problems, and this can be a nuisance on some computing systems.
Also, when applied to an error test, ]]error]] e, they require only an average of the
error components to be less than the tolerance e. A lot of small errors allows a
relatively large error in some solution component. In this sense the max norm gives
a more uniform behavior.

Our developments require matrix norms, too. It is most natural to use the
subordinate matrix norm. This is practical with Ilvll, but not with 11112. In the latter
case the compatible Frobenius matrix norm could be used, but the fact that it can be
much larger than I[MII2 is a disadvantage in our application.

An interesting possibility here is the norm Ilvll or, as we prefer, the constant
multiple we shall call the mean magnitude norm"

1 N

It avoids the scaling problems of the Euclidean norm and the lack of smoothness of
the max norm. The subordinate matrix norm,

N

II tll max y,
i=1

is readily computed and is particularly suited to the task at hand: The matrices of
METAN1 which interest us are Jacobian matrices of the function f of (1). They are
formed by differences a column at a time, so that it is convenient to compute the
norm as the matrix is constructed.
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The biggest disadvantage of the mean magnitude norm is that it is even more
liberal in the error control than is the RMS norm. This must be realized in selecting
error tolerances. Presumably users could get accustomed to it just as they have with
RMS, but we confess that for nonstiff problems we prefer the uniformity of the max
norm. Anyway, we needed to change the RMS norm of METAN1 and decided to
try the mean magnitude norm. It proved convenient to reprogram the Jacobian
evaluation as a subroutine and to compute the norm as the matrix was constructed.

The code resulting from the changes described was called METAN2. The only
significant change from METAN1 is the change of norm to accommodate the computa-
tion of norms of Jacobians. Because this change means that results from the modified
code cannot be compared with published results for METAN1, we gave the code a
different name for this paper to avoid confusion. The effects due to our ideas for
recognizing stiffness are all demonstrated by comparison to METAN2.

3. Starting step size. The starting step size plays several roles in any ODE solver.
A crucial one for robustness is that it indicate to the code the scale of the problem.
The fundamental algorithms all presume that the step size varies relatively slowly so
that if the initial step size is much too large, completely erroneous results might be
accepted. Because the step size is allowed to change by only a limited amount at each
step, an initial step size much too small can also impair the efficiency of integration.

METAN1 asks the user to provide the initial step size. Here we propose to reduce
this step size, if necessary, to provide assurance that the code begins on scale. Our
proposal is not intended to provide an efficient choice, only to enhance the code’s
reliability. Deuflhard’s algorithm for step size and order selection [2] differs on the
first step from subsequent ones. On the first step it monitors the computation rather
more carefully, with the consequence that the efficiency of the code is insensitive to
the initial guess, provided that it is on scale.

Our idea is very simple. We insist that the first step be small enough to be regarded
as nonstiff, hence resolving the change in any integral curve. We computed the stability
regions of the various formulas of METAN1 when the approximate Jacobian is taken
to be zero. The Jacobjan J is always formed at the initial point and its (weighted)
norm computed. For later use we state that the explicit method of k extrapolations
is stable, provided that [H] [[J[[a _-< Ck, where Ck 3, 4, 5, 6, 8, 10, respectively.

On the first step we do not know how many extrapolations will be done and,
anyway, we want to be conservative. For this reason we shorten the initial guess as
necessary so that IH[ ]]Jill--< 3. This test on the step size is convenient in this kind of
ODE solver and provides considerable safety. We note that Enright et al. provide
initial step sizes of this general size for their test set [3] to get codes on scale, but
they do not suggest an automatic way to achieve it.

One difficulty in the evaluation of ODE solvers is the provision of an initial step
size. In all our tests the initial guess was taken to be the distance from initial point
to the first output point. This was subsequently shortened as needed by our type-
insensitive code METAN3 in the way described. For consistency in testing, METAN2
was provided the initial step size selected by METAN3. This removed one source of
variability in the testing but, of course, removed the effects of our addition. In view
of the facts that our test is practically free and that the kind of restriction proposed
is generally accepted, we provide here no numerical evidence of its utility.

4. Test sets. For the development of our ideas and for the illustration here of
the results, we need some test problems. There is a widely used set of nonstiff test
problems [5] and a corresponding set of stiff test problems [3]. In [7] we have pointed
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out certain difficulties with the latter set. Here these difficulties are mostly unobtrusive.
A crucial point is that some kind of relative error control must be used. As noted,
METAN1 has available only a relative error control. Another important point is that
some of the problems in the stiff test set are not very stiff. In our use of the problems
this does not matter, because we aggregate the sets and expect the code to do well
regardless of the type.

There is one genuine difficulty. As the description of the semi-implicit midpoint
rule makes clear, linear problems with constant Jacobian are peculiarly related to the
method. Unfortunately, quite a few of the test problems of [3] and [5] are of this
kind. It is even worse. All but one of these problems is homogeneous, and the sole
exception has a constant torcing function. We have separated them out so as not to
distort our understanding of the numerical results. Thus the set NSCJ consists of the
linear problems with a constant Jacobian from the nonstiff test set [5], namely A1,
B2, C1, C2, C3, C4. The set NS consists of the remaining problems from this nonstitt
test set.

There was a complication when working with the test set of stiff problems [3].
Namely, the codes would not solve E4 for all the tolerances considered. We simply
dropped it from our comparisons. Thus, the set SCJ consists of the linear problems
with a constant Jacobian from the stiff test set [3], namely A1, A2, A3, A4, B1, B2,
B3, B4, B5. The set S consists of the remaining problems from this test set except
for E4.

5. Recognizing stillness. The principal reason for introducing the Jacobian and
the solution of linear systems into the midpoint rule is to stabilize the integration. If
the explicit midpoint rule is stable at the desired step size H, it is usually to our
advantage to use it, thereby avoiding the expensive formation of the approximate
Jacobian J and the expensive linear algebra. We say "usually" because the Jacobian
does affect the accuracy of the formula, so that it is not clear just when one formula
is to be preferred.

It is crucial that steps taken with the explicit midpoint rule be stable. This is
because the error estimation procedure must recognize when the smoothness of the
solution permits a step size much larger than the stability of the explicit method would
permit. Our approach is very simple. If the H predicted by the code as suitable for
the current step to be taken with k extrapolations satisfies

where Ck is the constant given in 3 as guaranteeing stability, we use the explicit
midpoint rule, and otherwise, the semi-implicit midpoint rule. This is quite conserva-
tive, because [IYll may be a lot larger than the eigenvalues of J; hence the restriction
on the step size is much more severe than that of the usual stability theory. Being
conservative here is not inappropriate because of the limitations of the usual stability
theory and because using the Jacobian is not as inefficient as one might think.

It is worth remarking that if convergence is not obtained at k extrapolations,
Deuflhard’s order selection scheme will consider k + 1 extrapolations. The resulting
formula is more stable than that of k extrapolations, so that we can still reliably
estimate the next step size. It might seem that the step prediction would be very poor
on changing from the use of a Jacobian J 0 in one step to J 0 in the next, or vice
versa. In point of fact, this is little different from the normal use of the code for stiff
problems. The Jacobian is evaluated at every step and hence normally changes. We
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use J --0 only when this approximate Jacobian should give results very similar to the
ones obtained with the approximation normally used by the semi-implicit method.

Having said how we decide which formula to use, we need only specify when we
evaluate an approximate Jacobian. This is an essential matter, for we do not want to
evaluate it any more than necessary. In particular, if the whole problem is clearly
nonstiff, i.e., the explicit rule is appropriate, we want to reduce these evaluations to
an absolute minimum. As explained in 4, we choose to evaluate the Jacobian at the
initial point and reduce H as necessary to force the explicit rule to be used for the
first step. We consider this desirable even for a nonstiff problem.

METAN1 stores a copy of the Jacobian. This fact is of obvious value for the
extrapolation process, but it also implies that it is never necessary to form the Jacobian
more than once at the same point. In METAN1 a scaled Jacobian is stored. We had
to alter this because the scaling changes from step to step.

Suppose we have an approximate Jacobian evaluated at TJAC, we are at T and
we wish to step to T +H. If TJAC T, there is nothing to decide, so suppose TJAC T.
The first case is that we just attempted a step from T (necessarily with the explicit
formula), and the step failed, so that we are trying again with a reduced step size.
Failed steps are unusual with Deuflhard’s step and order selection scheme, so they
indicate that the character of the problem might have changed from that seen in the
preceding step. We choose to form a Jacobian at T then, so that our decision about
the formula is based on current information. Multiple failures are possible, but, of
course, no more than one Jacobian evaluation will be made.

If the rest (2) using the norm of an old Jacobian says that we should switch to
the semi-implicit formula, we form a new Jacobian and repeat the test. If the test (2)
based on current data says to switch, we then have available the Jacobian required
by the semi-implicit formula.

We do not want to evaluate the Jacobian any more often than necessary, but
from time to time we must do it to account for the evolution of the character of the
problem. The "classical situation" is that one solves a problem with Lipschitz
constant L on an interval [a, b] such that Lib-al is not "large". Such problems are
not stiff. We approximate L by IIJlla. If we get no other signal, as described above, to
form a new Jacobian, we shall do so whenever I(T +H)-TJACI" IIJIl > 50. The idea
is that based on an approximation to L at TJAC, we declare an interval of appropriate
length to be nonstiff, unless we are later contradicted by, say, a step failure. If we
should want to leave the interval either because we have integrated all of it as a
nonstiff problem or because the smoothness of the solution suggests that a "large"
step is possible, we form a new Jacobian and define a new interval of nonstiffness.

Notice that if the problem is nonstiff and difficult to solve because of, say, a
stringent tolerance, we could do many steps without forming a Jacobian. Indeed, if
the problem is clearly nonstitt, the Jacobian formed at the initial point will be the
only one ever formed, and the semi-implicit method with its high linear algebra costs
will never be used. The conservative nature of our algorithm does mean that Jacobians
are formed when it is not necessary to switch, and that the semi-implicit method is
used when it is not necessary for stability. This is a price we pay to ensure that stiff
problems are solved efficiently.

In all our numerical examples, the tolerance EPS is the scalar relative error
criterion of METAN1 in the (weighted) La norm as described in 2. The number of
times the function f of (1) was evaluated is NFEV. All Jacobians are formed by
numerical differentiation. This is the standard option in METAN1 and seems appropri-
ate to a type-insensitive code. The number of matrix decompositions for the Gaussian
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elimination is NDEC. In these codes no account is taken of the structure of the
matrices. The number of linear systems solved is NSOL. The standard for judging
our ideas is METAN2, which is essentially METAN1 with a different norm, as
explained in 2, and a special choice of starting step size, as described in 3. The
code with automatic selection of semi-implicit and explicit methods is called METAN3.

First we present in Table 1 the results for both stiff and nonstiff test sets, without
the problem of the constant Jacobian and of E4 of the stiff set, i.e., sets NS and S

TABLE
Solution of test sets S and NS with one output point.

METAN2 METAN3

EPS NFEV NDEC NSOL NFEV NDEC NSOL

9,442 555 3,967
22,349 587 5,784
50,791 1,264 15,512

10-3 11,688 1,573 11,172
10-6 25,100 2,340 25,265
10-9 51,954 3,789 52,911

of 4. Here we have asked for an answer only at the end of the specified interval of
integration. In 6 we shall take up the effect of additional output. The results show
that we have had considerable success at reducing the linear algebra costs. In addition,
the reduced number of Jacobians formed in METAN3 has somewhat reduced the
total number of function evaluations.

The results of Table 1 illustrate what we conceive to be normal use of a type-
insensitive code. Naturally compromises were made. The effects of these compromises
are clearer in the results of Tables 2 and 3. Table 2 shows that METAN2 is doing a
great deal of linear algebra that is not really necessary. We have reduced it very
substantially in METAN3, but we have been conservative enough that we still must
do a significant number of solutions of linear systems. It is necessary to be conservative
in order to solve the stiff problems efficiently, as displayed in Table 3. Notice that

TABLE 2
Solution of test set NS wit,

METAN2

EPS NFEV NDEC NSOL

10-3 9,717 1,292 9,412
10-6 20,201 1,807 20,457
10-9 36,152 2,484 36,963

one output point.

METAN3

NFEV NDEC NSOL

7,195 316 2,460
16,427 178 2,177
32,238 123 1,905

TABLE 3
Solution of test set S with one output point.

EPS

10-3

10-6

10-9

NFEV

1,971
4,899
15,802

METAN2

NDEC

281
533

1,305

NSOL

1,760
4,808
15,948

NFEV

2,247
5,922

18,553

METAN3

NDEC

239
409

1,141

NSOL

1,507
3,607

13,607
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METAN3 is doing less linear algebra than METAN2 but is making more function
evaluations. The work has been balanced pretty well for this particular set of test
problems, because many of the problems have function evaluations no more expensive
than the solution of a linear system.

Table 4 displays the results of the problems peculiarly correlated to the semi-
implicit midpoint rule. Most of them are from the stiff test set which also favors the
semi-implicit midpoint rule. Despite the special nature of these problems, METAN3
gives comparable results. It does more function evaluations but less linear algebra.
This performance seems quite acceptable.

TABLE 4
Solution o1 test sets SCJ and NSCJ with one output point.

METAN2

EPS NFEV NDEC NSOL

10-3 2,744 312 2,140
10-6 7,854 663 7,273
10-9 18,506 1,179 18,017

METAN3

NFEV NDEC NSOL

3,082 273 1,891
8,947 514 5,522

21,732 758 11,106

6. Stability. In the codes known to us which extrapolate the explicit midpoint
rule, there is the possibility of overflow due to instability. If the various subintegrations
with the midpoint rule succeed in reaching xn +H, the convergence monitors in use
respond to stability difficulties. However, it is possible that a subintegration will not
reach xn +H if the step size is considerably too large. Years ago we observed this in
tests [9], but to our knowledge, no special consideration has been given the matter
in codes. The ideas of Hussels [6] and Deuflhard [2], in effect, adjust the step size
cheaply so as to get on scale at the first step. In conjunction with their convergence
monitors on subsequent steps, overflows due to instability are likely to be rare.

In the present context, difficulties with stability are quite possible. In the develop-
ment of the ideas of 5, we naturally experimented with many variations. On several
occasions we experienced overflow, even though the computers used have a very large
exponent range. In the final version presented in 5 we are certain that no instability
can occur. However, in this work we made an observation which is worth noting.

In their report [1, p. 24] Bader and Deuflhard describe a device for recognizing
a nearly singular linear system arising in the use of the semi-implicit midpoint rule.
It may be useful for this purpose, but it has another use as well. It tests whether
IIl’/k+l --’0kll :> 10 for each step of each subintegration. The norm of the code is a relative
one, so the test here is whether solution components grow more than an order
of magnitude in a single step of the subintegration. If they are growing too fast, the
step size is reduced. This is quite a reasonable way to recognize and respond to
instability. The overflows we experienced came about because we implemented the
explicit midpoint rule as a separate computation. When we introduced the equivalent
test on the growth of solution components, overflow was prevented and the step size
was reduced as needed to secure stability.

7. Output. A characteristic of extrapolation methods is that they do a consider-
able amount of work before producing a result. As a consequence they must take
"large" steps to be efficient. When the step size is restricted, as for example by stability,
lack of smoothness, or output, such codes may become inefficient. Deuflhard’s step
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and order selection algorithm reduces the order, hence cost, when the step size is
restricted. Generally speaking, it is very helpful at controlling the effects of step size
restrictions, but there is no doubt that users should try to get along with results
produced where the code finds it convenient, rather than impose their will. In our
experience, this is acceptable for stiff problems, because solutions often change
radically, and users do not expect to follow these changes in great detail. On the other
hand, users often want to follow the solutions of nonstiff problems in great detail and
their output requirements may seriously impact extrapolation codes.

Restrictions due to output are especially serious for the solution of nonstitt
problems with the semi-implicit midpoint rule, because a new Jacobian is formed at
every step. The algorithm we presented in 5 helps with this difficulty. Reducing the
step size makes it more likely that the explicit formula will be used. The algorithm
for deciding when to form a Jacobian is not related to the number of steps (or output
points), so the number of Jacobians formed is insensitive to the number of output
points. Indeed this number is likely to decrease as the number of output points is
increased, because ambiguous decisions requiring a Jacobian evaluation may no longer
be ambiguous. There is the possibility of improved performance for stiff problems in
this situation, but there is no reason to expect dramatic changes.

We computed results like those of 5 with ten equally spaced output points. For
the nonstitt problems, this is modest output, and the cost was not greatly affected.
METAN3 considerably reduced its linear algebra as ambiguous cases became clearer.
This is a highly desirable result in this situation, which we regard as more typical for
nonstiff problems than for the one output point problems of 5. The cost of solving
the stiff problems went up significantly as the possible large step sizes were restricted.
The relative behavior of METAN2 and METAN3 with stiff and nonstitt problems
aggregated was similar to the case of one output point, already presented in 5.

To show the effects of output strongly, we asked for 100 equally spaced output
points. The results for stiff and nonstiff problems are displayed in Tables 5 and 6.
Comparison of Table 6 to Table 3 shows that frequent output when solving stiff

TABLE 5
Solution of test set NS with O0 output points.

METAN2

EPS NFEV NDEC NSOL

10-3 27,938 4,170 22,533
10-6 46,817 5,929 43,186
10-9 67,682 7,324 65,436

METAN3

NFEV NDEC NSOL

17,877 5 59
32,925 66 647
58,293 63 885

TABLE 6
Solution of test set S with 100 output points.

METAN2

EPS NFEV NDEC NSOL

10-3 19,598 3,148 15,857
10-6 25,999 3,760 22,833
10-9 41,848 4,981 39,832

NFEV

19,614
26,621
43,381

METAN3

NDEC

2,904
3,428
4,469

NSOL

14,628
20,508
34,843
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problems is very harmful. The software ought to recognize this and inform the user,
much as we did with RFK45 [8, p. 109]. Even for nonstiff problems, there is a serious
effect due to the output. Our ideas for controlling the linear algebra and the formation
of Jacobians obviously do very well, but the software ought to recognize and report
the serious impact. One hundred output points is a lot for the nonstiff problems, but
it is by no means uncommon. Users should be directed by the software to codes based
on, say, backward differentiation or Adams formulas if they must have so much output
at specific points.

8. Conclusion. Our investigation has shown that it is possible to base a type-
insensitive ODE solver on extrapolation of the explicit and semi-implicit midpoint
rules. It is a great convenience for a user to be able to ignore the question of stiffness.
Also, when the solver is a module in an applications package, it may not be convenient
for a user to supply information about stiffness. For these reasons some inefficiency
is acceptable in a type-insensitive code. Nevertheless, the developments presented in
this paper show that a type-insensitive code can be quite effective, even compared to
excellent codes intended for a specified type. It also proved possible to increase
robustness by helping the codes get on scale reliably. A by-product of the algorithms
for achieving insensitivity to type is a reduction of the sensitivity of the extrapolated
semi-implicit midpoint rule to frequent output.

9. Acknowledgment. The author acknowledges with gratitude the computing
support provided by L. S. Baca and her valuable comments which influenced the
evolution of the approach to type-insensitivity presented here.

REFERENCES

G. BADER AND P. DEUFLHARD, A semi-implicit mid-point rule for stiff systems of ordinary differential
equations, University of Heidelberg, SFB 123, Rept. 114, 1981.

[2] P. DEUFLHARD, Order and stepsize control in extrapolation methods, University of Heidelberg, SFB
123, Rept. 93, 1980.

[3] W. H. ENRIGHT, T. E. HULL AND B. LINDBERG, Comparing numerical methods for stiff systems of
O.D.E.’s, BIT, 15 (1975), pp. 10-48.

[4] W. B. GRAGG, On extrapolation algorithms for ordinary initial value problems, SIAM J. Numer. Anal.,
2 (1965) pp. 384-404.

[5] T. E. HULL, W. H. ENRIGHT, B. M. FELLEN AND A. E. SEDGWICK, Comparing numerical methods
for ordinary differential equations, SIAM J. Numer. Anal., 9 (1972), pp. 603-637.

[6] H. G. HUSSELS, Schrittweitensteuerung bei der Integration gewb’hnlicher Differentialgleichungen mit
Extrapolationsverfahren, Univ. K61n, Math. Inst. Diplomarbeit (1973).

[7] L. F. SHAMPINE, Evaluation of a test set for stiff ODE solvers, ACM Trans. Math. Software, 7 (1981),
pp. 409-420.

[8] L. F. SHAMPINE AND H. A. WATTS, The art of writing a Runge-Kutta code, II, Appl. Math. Comp.,
5 (1979), pp. 93-121.

[9] L. F. SHAMPINE, H. A. WATTS AND S. M. DAVENPORT, Solving nonstiff ordinary differential
equationsNThe state of the art, SIAM Rev., 18 (1976), pp. 376-411.



SIAM J. SCI. STAT. COMPUT.
Vol. 4, No. 4, December 1983

1983 Society for Industrial and Applied Mathematics
0196-5204/83/0404-0007 $01.25/0

ACCURATE MONOTONICITY PRESERVING CUBIC INTERPOLATION*

JAMES M. HYMAN"

Abstract. A simple and effective algorithm to construct a monotonicity preserving cubic Hermite
interpolant for data with rapid variations is presented. Constraining the derivatives of the interpolant
according to geometric considerations makes the interpolant consistent with local monotonicity properties
of the data. Numerical examples are given that compare the quality and accuracy of the proposed
interpolation method with other standard interpolants.

Key words, approximation theory, interpolation, monotonicity, numerical analysis, shape preservation,
spline

1. Introduction. Piecewise polynomial interpolation is used to deduce probable
values for an implied function defined at a discrete set of points. For an accurate
interpolation, we must carefully retain crucial properties of the data (such as monoton-
icity or convexity), and we must not introduce details or artifacts that cannot be
ascertained from the data. This requires that the interpolant be designed according
to both geometric and algebraic considerations.

The geometric qualities of an interpolant are based on how well the interpolated
curve reflects the intrinsic shape inferred by the data points. A good geometric
interpolant will produce a curve similar to the visually pleasing one of a draftsman.
Although some mathematical properties, such as those that preserve monotonicity
and convexity, can describe the goodness of fit in a geometric sense, choosing the
better curve often is a heuristic decision based on human judgment rather than on
firm mathematical theory.

A good geometric interpolant is most important when the data arise from a
physical experiment and an underlying mathematical structure does not exist. For
these data sets, geometric considerations such as preventing spurious behavior near
rapid changes in the data may be more important than the method’s asymptotic
accuracy. In fact, maintaining monotonicity or convexity in the interpolation process
may be necessary to represent physical reality. For example, if the data come from
an equation-of-state table for density versus pressure, then a nonmonotone interpolant
will have a negative derivative and will imply an imaginary sound speed for the material
[10]. This error can destroy the accuracy of any calculation based on the interpolated
data.

The functional or algebraic properties of a good interpolant in classic approxima-
tion theory are defined more precisely [2]. They include the order of accuracy as the
mesh spacing becomes arbitrarily small, continuity or smoothness of some derivative
of the interpolant, and invariance or linearity properties such as

(1.1) P(af+ g) aPf+ Pg,

where P is the interpolation operator, a is a scalar and f and g are functions. Note
that none of these properties guarantees a good geometric interpolant.

Another consideration is a method’s practicality, as evidenced by its simplicity,
efficiency, and storage requirements. In this report, we restrict our analysis to local
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piecewise polynomial interpolants that, when compared to other methods, rate high
in these three categories.

We have developed and tested a practical algorithm that is excellent both
geometrically and algebraically and is highly accurate when monotonicity properties
of the interpolant do not intervene. Loss of accuracy in favor of shape preservation
occurs only at isolated points where the grid is rough compared to the solution variation.

First, we briefly describe the piecewise polynomial cubic Hermite interpolant and
the restrictions sufficient to guarantee monotonicity. We then describe some possible
algorithms that compute the derivatives needed by the interpolant at the mesh points,
and we give numerical examples that compare our method to similar methods.

2. Cubic Hermite interpolation. Let the mesh {Xi}in= be a partition x < X2 <" <
x, of the interval [xa, x,], and let {fi}, fi =f(xi), be the corresponding data points. The
local mesh spacing is Axi+a/2 xi+a -xi, and the slope of the piecewise linear interpolant
between the data points is Si+a/2 Afi+a/2/Axi+a/2. The data are locally monotone at

xi if 5i+1/25i_1/2>0. The interpolant is piecewise monotone if (Pf)(x) is monotone
between fi and fi+a for x between xi and xi+a. The interpolant Pf is class Ck if (Pf)(x)
is continuous and has continuous derivatives for all orders less than or equal to k.

A. The interpolation formula. Given the data points {fi}, a numerical approxima-
tion of the slope fi at xi is calculated for 1=<i =< n. The cubic Hermite interpolant
then is defined for 1 =< < n as

(2.1) P(x) c1 + (x -xi)c2 + (x -xi)2c3 @ (x -xi)3c4,

where Xi X Xi+ 1,

C1 --fi,

3Si+1/2--/i+1--2/i
C3 C4

AXi+ /2 AX/2+1/2
2S,+1/2--/i+1--ii

The interpolant (2.1) has a continuous first derivative, p(x) Ca, and possibly, but
not necessarily, a continuous second derivative. The continuity of the second derivative
and the order of accuracy depend on how {/i} are calculated.

Note that once {/i} are given, (2.1) becomes a local interpolation formula. By
changing the value of fi or [i at a data point, the interpolant changes only in the
region [xi-1, xi+a]. If the calculation of / also is local, only nearby data points need
be available when interpolating between xi and xi+a. This localness is important
when storage requirements are critical as is the case for very large data sets or
multidimensional interpolation.

Localness of the interpolant also is desirable when data are being readjusted a
few points at a time. This occurs in interactive graphics routines to avoid recalculating
the interpolation function at all data points.

The numerical approximation of {/i} which makes (2.1) a C2 interpolant (for
example, the complete spline interpolant2), is not local. Thus, to gain total localness
for (2.1), we must sacrifice global continuity in the second derivative.

B. Monotonicity. Even when {//} are defined accurately, additional constraints
may be necessary because (2.1) may fail to produce an acceptable interpolant in the
geometric sense for certain data sets. A simple generalization of what was recognized
by de Boor and Swartz [3] is that if the data are locally monotonically increasing at
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Xi, and if

(2.2) 0<= <-3 min (S]-l/2, Si+1/2)

for j or + 1, then the resulting interpolant is monotone in [xi, xi+l]. Fritsch and
Carlson [5] independently found an extension of this criteria giving a necessary and
sufficient condition for (2.1) to be monotone. The de Boor-Swartz criterion is a square
inscribed within the Fritsch-Carlson monotonicity region.

Note that if {/i} are calculated to make the resulting interpolant Ca, then (2.2)
may not be satisfied. That is, there are monotone data sets for which there is no C2

piecewise cubic Hermite interpolant.
When the data are locally monotone, we restrict {/i} to the de Boor-Swartz

piecewise monotonicity range of (2.2) as follows. After calculating an accurate approxi-
mation of/i (for instance, finite differences or by the complete spline formula), we
project it to the allowed monotonicity region according to

min [max (0,/i),3Smin] if 0<Stain,

(2.3) )ki ax [min (0, fi), 3Smax] if 0 > Smax,

if 0 Si-1/2Si+l/2,

where

S/rain rain (Si-1/2, Si+l/2), S/max max (Si-1/2, Si+l/2).

Near the boundary, the de Boor-Swartz constraint can be used by letting S-1/2
S1/2 and S+/2 S-/2.

When an/i associated with a complete spline interpolant falls outside the range
of (2.2), as it inevitably will when the variation between the data points is large,
resetting )i according to (2.3) will cause the second derivative of the interpolant to
jump where/i was reset and at the two nearest mesh points.

If the underlying function is strictly monotone and sufficiently smooth, and/i
is an accurate approximation to the derivative at xi, then as the mesh is refined, (2.2)
will be satisfied in the limit, because

(2.4)
dx

/i -+- O(Ax?) Si+l/2 nt- O(Ax Si-1/2 + O(Ax

Thus, the interpolant is restricted by geometric considerations only when the mesh is
coarse and the asymptotic accuracy in / is meaningless. When the mesh accurately
resolves the function implied by the data, the accuracy in / is retained because (2.2)
will be satisfied.

When the data are not locally monotone, the interpolant also must have an
extrema. Retaining piecewise monotonicity would require that /i =0 and would
"clip" the interpolant by forcing inter-interval monotonicity on nonmonotone data.
However, the piecewise monotonicity constraint can be relaxed in the interval pair
next to the extrema to produce (in the author’s opinion) a more visually pleasing
curve. But if a new constraint is imposed at extrema, the change in decision algorithms
must still produce a stable interpolant. That is, a small change in the data should not
create a large change in the interpolant. If we remove all constraints on the interpolant
near locally nonmonotone data while retaining (2.3) elsewhere, the resulting inter-
polant will be unstable.



648 JAMES M. HYMAN

We chose to extend (2.2) by requiring that fi have the same sign as originally
calculated, and that

(2.5) [/1 -< 3 min IS,+/2[).
The constraining function extending (2.3) is

[min [max (0,/), 3 min (IS,-/], IS,+x/21)], tr >0,
(2.6) ?,

max [min (0,/), -3 min (IS,-/21, ]S,+/I)], cr < O,

where cr sign (f). The sign function sign (S)= 1 if S >= 0 and -1 otherwise.
Often the monotonicity of the interpolant’s derivative is an important quality

that can be incorporated into the interpolant; if the data are convex, a good geometric
interpolant should preserve this convexity. However, a C convexity preserving cubic
Hermite interpolant does not exist for all data sets [11]. For example, a C convex
interpolant does not exist for f x + Ixl when x 0 is a data point. If the C constraint
is dropped, restrictions similar to (2.6) can be incorporated in (2.1) to preserve
convexity [7].

A simple, necessary but not sufficient, and often effective convexity preserving
constraint involves limiting the {]i} so that

(2.7) min (Si-1/2, Si+l/2) /i --<max (Si-1/2, Si+l/2)

by using

(2.8) /i *- max {min [/, max (Si-/2, Si+1/2)], min (Si-a/2, Si+1/2)}.

3. Derivative approximation. The order of accuracy of (2.1) can be, at best, one
order higher than the order of accuracy of/. Therefore, it is prudent to calculate

accurately whenever possible. The difference approximations can be divided into
two classes; local and nonlocal. The local schemes use only f values near xi to calculate
/i. The nonlocal schemes use all {f} values and obtain {/i} by solving a linear system
of equations.

A. Local methods. De Boor and Swartz have shown that there are no linear
algorithms yielding derivative approximations above first-order that also automatically
satisfy (2.2). There are, however, many nonlinear formulas that do. The Butland [1]
algorithm, for example, yields {1i} which automatically satisfies (2.2) and is second-
order on a uniform grid. The Fritsch-Butland [4] algorithm listed in Table 1 is a slight
modification of this formula.

The parabolic interpolation method in Table 1 is linear, and the resulting {1i}
do not automatically satisfy (2.2). This formula can be multiplied by a nonlinear factor
with magnitude 1 + O(Ax) to give the monotonicity preserving formula

(3.1)
(2 + O)Si+l/2Si_l/2

S i2+ 2
1/2 "q" Si-1/2 q- OSi+l/2Si-1/2

Axi-1/2Si+l/2 q- Axi+l/2Si-1/2
Axi_l/2 + AXi_l/2

This formula is second-order for monotone data when

Axi+l/2 Axi-1/2I-2 < 0 _-< 1 + 3 min
\Ax_/2’ Ax-f2."

The tests for the resulting interpolant with 0 1 are not included in this report, but
they are very similar to and only slightly less accurate than the monotonicity constrained
parabolic interpolant.
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TABLE
Local formulas for/i and their order of accuracy for smooth functions and mesh variations.

Akima

Fritsch-Butlandb

Parabolic

Method

Fourth-order finite difference

Formula for f

ISi+3/2 Si+1/21Si-1/2 q-ISi-1/2 Si-3/21Si+ 1/2
Si+3/2 Si+ 1/21 + ISi-1/2-- Si-3/2l

3SminSmax
S/max q- 2Smi

Axi-1/2Si+l/2 + mxi+l/2Si_l/2
Xi+l -xi-1

--fi+2 + 8fi+l--8fi-l +fi-2
--Xi+2 -k 8Xi+ 8Xi_ q- Xi_2

Order of accuracy

O(Ax)

O(Ax 2)

O(X4)

See [2]. b See [4]. See [9]. d See [9].

The fourth-order finite difference method [9] in Table 1 is based on first mapping
{x} to a standard equally spaced reference grid {ri}, and then approximating each term
in the identity

(3.2) df_ df(dx’
dx -dr\drY

-1

with centered fourth-order finite differences for an equally spaced grid. If the mapping
from x into r is not sufficiently smooth (that is, certain high derivatives of the map
are not bounded independent of n ), the order of accuracy of the method will be reduced
accordingly. Thus, the finite difference formula is fourth-order on a smoothly varying
mesh, but only first-order on a rougher mesh and, in fact, could become singular on
a mesh having a local mesh ratio greater than 3.5. When this is the case, the parabolic
method is to be preferred.

The Akima [2] and Fritsch-Butland formulas are nonlinear algorithms for each
)i. Consequently, the sum of the interpolants for data sets (x, f) and (x, g) is different
from the interpolant for the sum of the data sets (x, f + z). The other formulas do not
have this defect in their initial approximations of/i. However, after filtering according
to (2.6), none of the interpolants are additive in the sense of (1.1) for f=x +Ix[,
g x- Ix[ when x 0 is a data point.

B. Nonlocal methods. The most common nonlocal method for computing ]i is
the "not.a-knot" C2 spline interpolation method [2], where /i is O(Ax 3) on an
unequally spaced mesh or O(Ax4) away frdm the boundary on an equally spaced
mesh. The fi’s are calculated so that the resulting interpolant has a continuous second
derivative at the knots. As mentioned in 2 the C2 spline interpolant will not necessarily
satisfy (2.2) for monotone data. By allowing isolated discontinuities in the second
derivative, a slightly deficient C monotone spline interpolant can be constructed in
various ways. A possible solution is to filter the C2 spline {re} according to (2.6).
This is the approach taken in the numerical examples presented here.

An algorithm that keeps the number of jumps in the second derivative small
involves first computing {/i} for the complete spline interpolant in the interval Ix 1, Xn ].
If the interpolant is not locally monotone, we locate point xi where/, is farthest
outside the monotonicity region. We redefine 1. according to (2.6) and solve for the
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complete spline interpolant in [xl, x/] and [x/, x,], using f. and/i as boundary condi-
tions. The resulting interpolant will have a break in the second derivative only at xj.

If none of the resulting {/i} violate (2.6), we are finished. If some do violate (2.6),
we repeat the process, break Ix1, xj] or [xi, x,] into smaller subregions and continue.
This algorithm will always terminate if ]’1 and/n are given at the boundaries and
satisfy (2.6).

Another nonlocal approximation to / is the Fritsch-Carlson algorithm [5]. This
method provides an approximation of f that preserves piecewise monotonicity in
(2.1) with curves geometrically similar to those produced by the Fritsch-Butland
method. Although we have not compared the Fritsch-Carlson method to the other
methods in this report, we have included an example of specific data from their paper
[5]. From this example and other similar ones from their paper, we have found that
the monotonicity constrained algorithms using (2.3) or (2.6) perform very similarly
to the Fritsch-Carlson algorithm. The major difference is that the constraints (2.3)
and (2.6) are much easier to implement. Also the behavior of the (2.6) constrained
interpolant at extrema in nonmonotone data sets is different. The Fritsch-Carlson
algorithm clips the interpolant like the constraint (2.3) does.

C. Boundaries. At the boundaries we will use either the not-a-knot option for
splines [2] or an uncentered difference approximation. The second-order uncentered
parabolic method used with the Akima, Fritsch-Butland, and parabolic algorithms is

(2 AXi+l/2 -1- Axi+3/2)Si+l/2 AXi+l/2Si+3/2
AXi+l/2 -- Axi+3/2or

(2 AXi_I/2 -[- Axi-3/2)Si-/2- Axi-1/2Si-3/2
AXi_I/2 " AXi_3/2

The third-order uncentered finite difference approximations used with the fourth-order
interior formula are

f -22f + 36f+1-18f+2 + 4f+3
-22xi + 36xi+1-18x+2 + 4xi+3’

-2f-1 3f + 6f+l-f+2
--2Xi-l--3Xi +6Xi+l--Xi+2’

22fi 36/i_1 + 18f_z 4fi-3
22xi- 36xi_1 + 18Xi-2--4Xi-3’
2[+1+ 3f 6[-1+[i-2f’ 2--i

_
_Y,_ 3-ii 6x,_ + xi_z

4. Numerical examples. The geometric and accuracy properties of the inter-
polants are compared on both smoothly varying and rough data sets. When the
derivatives are constrained by the extended de Boor-Swartz monotonicity limit (2.6),
we call the resulting interpolant monotonically constrained (MC).
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(a) Akima

0.0
20 8

(b) Fritsch-Butland

2O

0.0
8

(c) Complete spline

1o2-

2O

(e) Parabolic
20

0.0

1.2

(d) MC spline

0.0"-

(f) MC parabolic

0.(3

(g) Finite difference
2O

0.0

(h) MC finite difference
FIG. 1. Interpolation curves for the RPN 15A data.
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(a) Akima (b) Fritsch-Butland

-2 0 2

(c) Complete spline

-2 0

(e) Parabolic

0
-2 0 2

(d) MC spline

o
-2 0 2

(f) MC parabolic

0
-2 0

(g) Finite difference

---I
-2 0 2

(h) MC finite difference

FIG. 2. Interpolation curves for f(x) e
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A. Monotone example. The Fritsch-Carlson RPN 15A data have been used to
compare many different algorithms [4], [5], [8], some not included in this report.
The data points are

x f

7.99 0
8.09 2.76429E-5
8.19 4.37498E-2
8.7 0.169183
9.2 0.469428

10 0.943740
12 0.998636
15 0.999919
20 0.999994

Figure 1 shows interpolation curves of the Akima, Fritsch-Butland, parabolic,
fourth-order finite difference, complete spline, MC parabolic, MC fourth-order finite
difference, and MC spline methods. These data show clearly that the Fritsch-Butland
and MC methods are geometrically superior to the unconstrained methods. The simple
constraint of (2.6) can convert an unacceptable geometric interpolant, such as the
complete spline, into an excellent one. Note that the Akima algorithm, which was
designed as a good geometric interpolant, fails to preserve monotonicity in this
relatively simple example.

B. Nonmonotone example. To interpolate the monotone function f(x)= e -x2,
xe[-1.7, 1.9], the mesh was equally spaced with Ax 3.6/(n- 1). This domain was
chosen so the mesh points would not be symmetrical about the point of symmetry for
the function.

Figure 2 shows that the higher order MC interpolants can be geometrically
superior to the Akima, Fritsch-Butland, parabolic and the unconstrained interpolants
when n 5.

TABLE 2
Comparison of the methods for f(x) e

Method

Akima
Fritsch-Butland
Parabolic method
Finite difference
Complete spline
MC parabolic
MC finite difference
MC spline

n=5

6.0E-2
4.4E-2
3.9E-2
2.2E-2
3.5E-2
3.9E-2
1.5E-2
1.7E-2

error

n=9

6.4E-3
7.3E-3
4.1E-3
3.4E-3
2.0E-3
4.1E-3
3.4E-3
2.0E-3

n=17

1.0E-3
2.4E-3
4.1E-5
7.4E-5
4.0E-5
1.9E-3
1.9E-3
1.9E-3

n =33

1.3E-4
1.6E-4
4.3E-5
2.3E-6
1.8E-6
4.3E-5
2.3E-6
1.8E-6

In Table 2, the errors,

2L2 error [(Pf)(x e
1.7
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of the interpolants are compared as the mesh is refined. Note that the higher order
MC finite difference and spline methods are more accurate than the other methods
both on the fine and coarse grids.

The MC methods agree with the corresponding unconstrained methods when
n 9 and 33, but not when n 17, because the nonmonotonicity of the underlying
function is being interpolated.

5. Summary and conclusions. When only geometric considerations are important,
any interpolant constrained to stay within the de Boor-Swartz monotonicity limits
using algorithm (2.6) is acceptable. The Fritsch-Butland does this automatically (that
is, there are no conditional statements) but the approximating derivatives in other
procedures must be filtered.

When both geometric and accuracy considerations are important, the lower order
methods (Akima, Fritsch-Butland, and parabolic) have larger truncation errors than
the higher order constrained methods.

Therefore, we recommend first computing an approximation ]i to df/dx at the
mesh points, using either the local fourth-order finite difference method (Table 1) or
the nonlocal, but smoother, complete spline approximation. Before interpolating using
(2.1), we filter {/i} with (2.6), so the interpolant will retain the important local
monotonicity properties of the data.

The simplicity of the filtering approach and the dramatic improvements in the
interpolation curve far outweigh the cost of the extra few lines of code. Analysis of
our numerical examples indicates that most cubic Hermite interpolation programs
would be more versatile, robust, and often more accurate, if a monotonicity constraint
such as (2.6) were an option.

Acknowledgment. I am grateful to Blair Swartz for providing me with much
welcome advice in our many discussions during this work.
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MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR
COMPLEMENTARITY PROBLEMS ARISING FROM

FREE BOUNDARY PROBLEMS*
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Abstract. Several free boundary problems (including saturated-unsaturated flow through porous dams,
elastic-plastic torsion and cavitating journal bearings) can be formulated as linear complementarity problems
of the following type: Find a nonnegative function u which satisfies prescribed boundary conditions on a
given domain and which, furthermore, satisfies a linear elliptic equation at each point of the domain where
u is greater than zero. We show that the multigrid FAS algorithm, which was developed by Brandt to
solve boundary value problems for elliptic partial differential equations, can easily be adapted to handle
linear complementarity problems. For large problems, the resulting algorithm, PFAS (projected full
approximation scheme) is significantly faster than previous single-grid algorithms, since the computation
time is proportional to the number of grid points on the finest grid.

We then introduce two further multigrid algorithms, PFASMD and PFMG. PFASMD is a modification
of PFAS which is considerably faster than PFAS. Using PFMG (projected full multigrid) it is possible to
solve a linear complementarity problem to within truncation error using less work than the equivalent of
seven Gauss-Seidel sweeps on the finest grid.
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Key words, multigrid algorithms, free boundary problems, linear complementarity problems

1. Introduction. Several free boundary problems can be reformulated as
an (infinite-dimensional) LCP (linear complementarity problem): Given a domain
l) c R with boundary 0f, and given functions f and g, find u (defined on f) such
that (in an appropriate weak sense)

(a) u (x <-_ f(x ), x e f,

(b) u(x)>-O, x
(1.1)

(c) u (x)[u (x) -[(x)] 0, x a,
(d) u (x) g (x), x

where ’ is a given second order elliptic operator. We do not write (1. l a) in the more
usual form -Sgu(x)+f(x)>-0 because we wish to maintain compatibility with the
notation in previous papers by Brandt.

Well-known examples of free boundary problems which can be written in the
form (1.1) include porous flow through dams (a recent reference is Baiocchi [1978]),
journal bearing lubrication (Cryer [1971a], Cimatti [1977]) and elastic-plastic torsion
(Cea, Glowinski and Nedelec [1974], Lanchon [1974], Cryer [1980]). General refer-
ences include: Duvaut and Lions [1976], Glowinski, Lions and Tremolieres [1976],
Cryer [1977], Glowinski [1978], Cottle, Giannessi and Lions [1980], and Kinderlehrer
and Stampacchia [1980].
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When (1.1) is approximated using finite differences on a grid G, one obtains a
(finite-dimensional) LCP:

(1.2)

(a) LU(x) <=f(x), x G,

(b) U(x) >_- 0, x G,

(c) U(x)[LU(x) -f(x)] 0, x G,

(d) U(x g (x x OG,

where U(x) is an approximation to u (x) at the grid points x G U OG and where L
is a difference operator which approximates . The coefficients of L are O(h-2),
where h denotes the grid length.

By multiplying (1.2) by h 2 and eliminating the known values of U(x) on OG, the
LCP (1.2) may be written in matrix form:

(a) AU<=b,

(1.3) (b) U >=0,

(c) Ur(AU b) 0,

where U is the N-vector of values of U(x) on G, and A is an N xN matrix with
coefficients which are O (1). We will assume that A is symmetric and negative definite.

For example, if is the Laplace operator in R 2, then a possible choice for L
would be the classical five-point difference operator, in which case A would be a
matrix with diagonal elements -4 and off-diagonal elements either 0 or 1.

There is an extensive literature on the (finite-dimensional) LCP (see Balinski and
Cottle [1978]). In particular, if A is negative definite, as we assume, then there exists
a unique solution to (1.2) and (1.3).

Since the LCP (1.3) arises from a free boundary problem, the matrix A has special
properties which make it possible to use specialized algorithms which are particularly
efficient. Such algorithms include projected SOR (Cryer [1971], Glowinski [1971])
the method of Cottle and Sacher [1977], and the modified block SOR (MBSOR)
method of Cottle, Golub and Sacher [1978]; Cryer [1980a] summarizes these
algorithms, and Cottle [1974] gives numerical comparisons between them.

Recently, it has been found (Brandt [1977], Brandt and Dinar [1979]) that
multigrid algorithms are an effective tool for solving linear equations of the form

(1.4) AX b.

The basic idea of these multigrid algorithms is to compute on a sequence of nested
grids. The computation proceeds on a particular grid until the error becomes smooth
and the rate of convergence slows, at which point the computation is transferred to
a coarser grid. When the error has been reduced on the coarser grid, the solution on
the finer grid is corrected using interpolated values from the coarser grid.

In this paper, we show how the multigrid algorithm FAS of Brandt can be modified
to solve the LCP (1.3). We find that the modified multigrid algorithm, PFAS, is
substantially faster than previous single-grid algorithms.

The paper is organized as follows. In 2, we describe PFAS, the projected full
approximation scheme for solving (1.3): PFAS combines the concepts of multigrid
algorithms with those of projected SOR. In 3, we discuss the implementation of
PFAS, and in 4, we give numerical results obtained using PFAS. In 5, we discuss
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alternative implementations of PFAS, the last of which (PFASMD) leads to substan-
tially improved convergence. We also include several less successful implementations
because they are instructive. In 6, we describe results obtained using PFMG, the
projected full multigrid algorithm. The basic idea of PFMG is to compute the initial
approximation on each grid by interpolating an accurate solution on the next coarsest
grid. Using PFMG we are able to solve a problem to within truncation error using
less work than the equivalent of seven Gauss-Seidel sweeps on the finest grid. Our
results are summarized in 7, and some possible extensions are mentioned.

Listings of the programs used in this paper are given in Brandt and Cryer [1980].

2. PFAS (projected full approximation scheme). Brandt [1977], [1980], and
Brandt and Dinar [1979] give a detailed exposition of multigrid methods and their
philosophy, and the reader is referred to these papers for background information.
The algorithm described below, PFAS, is a modification of the FAS (full approximation
scheme) which is considered in Brandt [1977, 5] and in Brandt and Dinar [1979,
2.2].

The domain f R is approximated by a sequence of grids

G1cG2c...GM cR n,
with corresponding grid sizes

hl=2h2=4h3 2M-lht.
Let Fk be the restriction of f to G k,

(2.1) F(x) f(x), x s G k.
Then, on G k the difference equations (1.2) approximating (1.1) take the form

(a) L U (x) -<_ F (x) in G,
(b) Uk (x) >_- 0 in G,
(c) U(x)[LU(x)-F(x)]=O in G,
(d) Uk (x) g(x in OG.(2.2)

k k, UkLet the points of G be ordered: x , x ,..., x Nk e G and let be the vector

U :{U I <-j <-N}=-{U(x). I <-] <-Nk}.

Then, (1.3) takes the form

(a)

(2.3) (b)

(c)

AU <=b ’,
U>_O,

(u)T[AU-b]=O
where

k(2.4) A={aii l <-_i,]<-_Nk}

is a known sparse symmetric negative definite matrix and b k {b} is a known vector
with components b hF(x) except at points x adjacent to 0G.

2.1. The projected Gauss-Seidel algor|thm. It is possible to solve the LCP’s (2.2)
and (2.3) using the projected Gauss-Seidel algorithm which we now describe.

Let u’(x) be an approximate solution of (2.2) and (2.3). We compute recursively
a sequence of approximations u’(x), u ’2(x), .. Let u’S-(x) be given. From (2.2d),
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the boundary values of u k. (X) are equal to g (x). The interior values of u ’ (x), which
together comprise the vector

(2.5) u ’ ={u .k’" 1 <] <N}={u’(x) 1 <-] <N},

are obtained, point by point, by first applying the classical Gauss-Seidel method to
(2.3) to obtain

(2.6) U]
k’s-1/2 U"s-1 -[-[b Z

l<i / k_.u,S-1 ~k,s. kau"- Z alu"s-1 a. + r,

say, and then profecting"

(2.7) u’s= max {0, u’S-1/2}.
The process of applying (2.6) and (2.7) for 1 <=f <--Nk to obtain u k’s from u k’s- will
be called a G k-pro]ected Gauss-Seidel sweep, or a G k-pro[ected sweep. The quantities
y,s will be called the dynamic residuals.

It is known (Cryer [1971], Glowinski [1971]) that u
When implementing the projected Gauss-Seidel method only the latest values

of the solution are stored. We will, therefore, often suppress the iteration counter s
and denote one projected Gauss-Seidel sweep applied to (2.2) and (2.3) by

(2.8) u <- projected Gauss-Seidel [u k" Lk, Fk].
Similarly,

(2.9) Vu k =u’S-u
will denote the difference between the latest approximation u and its predecessor,
while

(2.10) Vu kold U
k,s-1

lg
k,s-2

denotes the previous difference.

2.2. Error estimates for the projected Gauss-Seidel algorithm. When
implementing the projected Gauss-Seidel algorithm as part of a multigrid process, it
is important to be able to estimate the error. In order to do so, we note that since,
by assumption, -A k is symmetric and positive definite, there exists a coercitivity
constant ak > 0 such that

(2.11) wT(--A)w OlkWrW,
for all w e R N.

LEMMA 2.1. Let U be the solution of the LCP (2.3), and let u >-0 be an
approximate solution. Let

(2.12) r (r) b k -Au,
k (r+i), whereand r+

(2.13) r+i= { r if u >O,
min{O,r} if u =O.

Then

(2.14)
k(Uk u )T(-A)(U u ) <= (Uk u )7" (-r+).
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Hence,

(2.15) U u ll2 < c I]r + 112.
Proof. With r+ defined as above, we see that u k satisfies the LCP"

(a) A ku < b r /,

(2.16) (b) u ->0,

(c) (u’)r(Au’-b ’ +r/) 0.

Following Falk [1974], we multiply (2.3a) by the nonnegative vector (uk)r and use
the complementarity condition (2.3c) to obtain

(*) (u’-U)rA’U’ <_(u’_U’)rb .
Similarly, multiplying (2.16a) by (U)7- we obtain

k(**) (U-uk)TAu <=(U--u)r(bk--r+).
Adding (*) and (**) and combining terms we obtain (2.14) and hence (2.15). [:]

LEMMA 2.2. Let U be the solution of the LCP (2.3), and let u >=0 be an
approximate solution obtained after one or more G projected sweeps. Let

(2.17) A =(Dk-L-P)
where D is diagonal, and L and Pk are strictly lower and upper triangular matrices,
respectively.

Then u satisfies the LCP

Au <b_PkVu

(2.18) u>=0,
(ut’)T(Auk-b +pVu) 0.

Hence,

(2.19) IlU-u’ll= IIellzllVull2.
Proof. Consider the projected Gauss-Seidel method defined by (2.6) and (2.7).

k,sFor each point x we first compute the dynamic residual .,s. The new value of u
is chosen so as to reduce the residual. Denote the residual at the point x immediately

,k
after step (2.7) by rj’, so that

’ ).(2.20) f’s=f’-a,(u’-u"-
Remembering that A is negative definite, and hence a ii < 0, we see that there are
two possibilities:

either u’ > 0 and f’ 0,

or u’=0andri
Thus, dropping the superscript s, and setting f {" 1 N] NN},

(2.21) u0, f0, (u))=0.
Let

r =b -A u
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It is readily seen from (2.17) that

(2.22) rk fk +P (u g’s u g’s-1) +P’Vu .
Combining (2.21) and (2.22) we obtain (2.18). Comparing (2.16) and (2.18) we

see that the arguments which led to (2.15) from (2.16) may be applied to (2.18), with
p ,r+ replaced by Vu to obtain (2.19).

As Lemmas 2.1 and 2.2 show, we can estimate the error in an approximate
solution u k in terms of the residual r or the difference Vu; we will usually use Vu
to estimate the error, since this quantity is readily available during a G-projected
sweep.

Remark 2.1. The reader may wonder why we bothered to introduce r+ in Lemma
k replaced by r k The reason is that for the LCP (2.3)2.1, since (2.15) holds with r+

there may be large positive residuals at points x where U (x)= 0, but this does not
mean that the error is large.

In multigrid algorithms it is necessary to compare norms on different grids. We,
therefore, wish to introduce a norm which is not grid dependent. To do so, we proceed
as follows.

We first note that, to a good approximation, the coercivity constant a for -A
satisfies

ck ch2
where a is the smallest eigenvalue of .

Next, assume that the approximate grid function u has been extended to a function
ku (x) on approximating the solution u (x) of (1.1). Then

1/2

Ilu (x) u (x)[l,: I. lu (x) u (x)l dx
1/2

"hZlU-ul
j=l

<
h ,/_2 lip II=llvu
k

IIe I1= h/=-=llull=.

The norms IlPll= are essentially independent of k; for example, for the five-point
formula, Ilell . Thus a measure for the error Ilu(x)-u (x)ll=,. is provided by

(2.23) I[Vu 11 h U-2 [IVu 112,

and this norm will be used in the computations.

2.3. PFAS (projected full approximation scheme). PFAS (projected full approxi-
mation scheme) obtains an approximation t7t to the solution Ut on the finest grid
Gt by recursively generating a sequence of approximations t7 on the grids G.

Each t7 is an approximate solution to an LCP of the form (2.2) with Fk replaced
by a function/ which is defined later. In general,/k is different from F so that t7 k

is not an approximation to U. However, fft=Ft and so t7t is an approximation
to Ut.
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We begin by initializing t7M to some suitable value. For example, we might set

a (x)
g(x) on OGM,

(2.24)
0 in GM.

We also set

(2.25) iivaMl[ 103o, M
8 -’-8

(where 8 is the desired accuracy on the finest grid, and where the astronomical number
103o ensures that at least two GM projected sweeps are carried out),

(2.26)
ff,M (X) FM (X) for X e Gt
OM(X) UM (X) for x Gt.

We now make a number of Gt projected sweeps,

(2.27) a - projected Gauss-Seidel [aM. LM, if,M].
After each sweep we test whether

M(2.28) Ilva’ll <--
If so, the accuracy criterion is satisfied, and we accept M as an accurate approximation
to Ut =- Ot on GM.

It is known that Gauss-Seidel iteration is a smoothing process’ the error
OM(X)_M(X) becomes smoother as the number of sweeps increases, while, at the
same time, the rate of convergence slows down. We, therefore, carry out only a few
G projected sweeps, stopping when either (2.28) is satisfied or convergence is slow"

(2.29) Ilva ll --> nllvu oldII .-M
Here, r/ is a fixed parameter; in our work we have taken r/= .5.

Suppose that (2.28) is not satisfied but that (2.29) is satisfied. This means on the
one hand that the accuracy of t7t must be improved, and on the other hand that it
is inefficient to continue iterating on G. The slow rate of convergence on GM indicates
that the error is smooth, so that the error can be represented satisfactorily on the
next coarsest grid, GM-. We therefore move to Gt-.

Since OM (X) satisfies (2.2), with k M and FM= if,M, the error

(2.30)

satisfies the LCP

LMVM(x <= ?M (X on GM,
VU(X)+aM(x)>--O on GM,

(2.31)
[Vt(X)+a’(X)][LVM(x)--M(X)]=O on OM,
VM (x) 0 on OGt,

where the residual ?M is given by

(2.32) FM (x) ff’M (x)--LMaM (x), X e aM.
As already observed, Vt(x) is a smooth function and may, therefore, be accurately

represented on GM-1. Furthermore, comparing (2.31) and (1.1) we see that V(x)
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is an approximation to the continuous solution v (x) of the LCP

(2.33)

Lev (x <= (x ), x f,

v(x)+a(x)>=O, x,
[v(x) + al(x)][v(x)- W(x)]= o,
v (x) 0 on

(where, by abuse of notation, yt (x) and t(x) are defined on f by appropriate
interpolation between the values of ?M and aM on the gridpoints of G a). Thus, a

good approximation to Vt(x) may be obtained by solving the finite difference
approximation to (2.33) on Gta-. That is, Vt (x) is closely approximated on G
by the solution WM-X(X) of the LCP,

(2.34)

(a) LM-1 wM-I(x) <=SMM--I’M (X), on GM-l,
(b) wM-a(x)+It-aa(x)>--O, onGM-a,
(c) wM-’(X +It-’aM (x )][LM-’ wM-’(x SI-’fM (x)] O, on GM-’,
(d) WM-(X) O, on OG-.

Here I-1 and S-1 are operators taking grid functions on GM into grid functions
on GM-. (As an aid in memorization, note that in IM-XtiM the subscript M and
superscript M "cancel".)

The operators IMM- and SMM-1 can be defined in many ways. One way is to
choose both IMM-1 and SMM_ to be the injection operator:

(2.35) Inj-Xw(x)-- W(X), X E aM-1.

If we were solving a linear boundary value problem, then condition (2.34b) would
not apply, and it would be most efficient to solve for the correction W-x on G-.
Since we are solving inequalities the problem is nonlinear, and it is necessary to solve
for a "full approximation" - on G-1.

Setting

(2.36) OM-I(x) wM-I(x)-.[-II-IIM(x),

it follows that OM-I(x) satisfies the LCP

(a) LM-OM-I(x)<=M-I(x) in aM-I,
(b) O-(x)_->O in a-x,

(2.37)
(c) Ot-I(x)[LM-aOlVt-a(X)--M-(X)] 0 in GM-a,
(d) OM-I(x) g(x) on OGM-a,

where

(2.38)
pM-I(x) SII-IM (x)-t- LM-1III-IM (x)

S-’ [P’ (x) L’O (x)] +L’- - (x).

Finally, we set

(2.39) e



MULTIGRID ALGORITHMS FOR LINEAR COMPLEMENTARITY PROBLEMS 663

and

(2.40) tM-a It-l M,
where 6 is a constant; in our computations 6 has been set equal to .15.

To recapitulate, starting with initial values of tM, e and/M, we first carry
out aM projected sweeps until convergence slows down. We then introduce a

M--1subsidiary problem on Gm-1 with known/M-a and e and initial approximation
-M--1u The process can be repeated, so that at any one stage of the computation
we have a sequence of grid approximations 6M, ffM-a, ffk-a (approximating

M, M M-1 k-1/Q /QM-1, ., /Q-a, respectively), tolerances e e e and right-hand
sides M,

In the general case, Jk is the solution of the LCP

L’IQ’(X)<--_ff’k(X) in G,(a)

(b)
(2.41)

(c)

(d)

or equivalently,

(a)

(2.42) (b)

(c)

/.k(x)->0 in G,
lQ(x)(L’O’(x)-’(x))=O in G,
/Q (x) g (x) on OG,

AOk

O__>0,
(Ok)T(A’Ok -b’)=O.

This LCP is solved approximately using G projected sweeps until the latest approxi-
mation a satisfies either

(2.43) Ilva ll -<_ 
or

(2.44) IlVt/[1 > rt ]lVti old[IG.

If (2.44) holds but (2.43) does not, then a new problem on Gk-a is defined by
setting

(2.45) p-a S-a [p _Lkk]+Lk-ai-a,,
(2.46) e lie,

(2.47) a k-1 I-a ft k,
(2.48) Ok-l= W- +t,-a,
(2.49) Vk 0k a k,

where Wk-a is an approximation to V on G k-a. Unless otherwise indicated, I-1

and S-a will be taken to be the injection operator Inj-a.
At some stage the latest approximation t7 -1 must satisfy (2.43)’

(2.50) Ilva-*ll_-<
if for no other reason than that when k 1 i we cannot introduce any more subsidiary
problems and must iterate until (2.50) is satisfied. Having found an approximation
-k-1u of sufficient accuracy, we return to G. To do so, we first determine an
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approximation W k-1 to Wk-1 from (2.48), namely,

(2.51) wk-l k-l--[-lt k.
Next, let I-a be an interpolation operator taking grid functions on Gk-1 into

grid functions on G k. One choice for I_1 is the bilinear interpolation operator Lkk_l
defined as follows. If P1, P2, P3 and P4 are the corners of a square in G k-a (see Fig.
2.1), then

k-1w (P), 1 <- -<_ 4,

(w ’-I(P)+ wt’-a(P2))/2, 5,
(2.52) L,-w’-a(Pi) (w-X(Pa)+w-a(P4))/2, i=6,

)/W (Pi) 4, 7.
i=1

P

P

FIG. 2.1. Bilinear interpolation from G k-1 to G k.

Since Wk-a is an approximation to Vk on Gk-l,
(2.53) I,-lw-=/-i [/ k-I _/./-I/ k]
is an approximation to V, and, noting (2.49),

(2.54) t2k fig + Ikk_lwk--1
is an improved approximation to . However, because of the nonnegativity constraint
upon , we allow somewhat greater generality, and replace t7 k as follows"

(2.55) ti 0 (tT /i k) k k-1 k).qo(ti +I-lW
Initially we set

(2.56) (a.a)=a
but other choices will be considered later.

PFAS is described by (2.24) through (2.56). A flowchart is given in Fig. 3.1, and
the implementation is discussed in 3. If the algorithm converges, we will eventually
obtain an approximation ti

t satisfying the required accuracy condition (2.28), and
the algorithm will terminate.
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3. Implementation of PF/kS. The flowchart for PFAS is given in Fig. 3.1. PFAS
has been implemented as a FORTRAN subroutine for the case when 1) is a rectangle
in R 2, f is the Laplacian operator, L is the five-point difference operator, I-1 and
S-1 are injections (see (2.35)), and I_ is bilinear interpolation (see (2.52)). The
subroutine PFAS, which is listed in Brandt and Cryer [1980] as part of the program
for solving the porous flow free boundary problem described in 4, is a modification
of an earlier program, FAS Cycle C, of Brandt.

INPUT PARAMETERS: M, TOL, WMAX
INPUT SUBROUTINES: F, G

*-TOL’ k- M’ WU 0’ "5’ "15

103oq lira kllG

projected Gauss-Seidel

Compute llV-u

Is IIV kll <

YES

WU WU+2

Isk =M?
]

Go to finer grid

,-.-I k- 11 eqn. (2.51)

FIG. 3.1. Flow chart for PFAS.

"dg"
Is WU WMAX"-’

YES
NO

YES

ul
ES

Go to grid

eqn. (3.1)

kk-1

PFAS is very easy to implement" the subroutine, with profuse comment cards,
requires only 280 FORTRAN statements. It may also be remarked that many other
interesting free boundary problems (for example, elastic-plastic torsion problems and
cavitating journal bearing problems) are formulated on simple polygonal regions, and
the program could easily be modified to handle these problems.
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The following comments arise.
1. In PFAS, the LCP for Ok is solved in the form (2.42) rather than (2.41), but

the values of fik on 0G k are also stored. Thus,/ h/0 is stored instead of/k. In
going from G k to G-1 we have, from (2.45), since hk-1 2hk,

(3.1)

ffk-1 h_lpk-1

h_ (S-I[Pk --Lkvtk]+Lk-lI-lak)
h_ (S-h-2[k --Akk]+Lk-I-8k)
4S-1 [/;k -A k/ik] +Ak-lI-lti k.

2. A GCwork-unit is the work required for one Gk-projected sweep. The work
for one GCprojected sweep is approximately 2-n(M-k)Gt-work-units, and WU
denotes the total number of GM-work-units. When no confusion is possible we write
"work unit" instead of "GM-work-unit’’.

3. The asymptotic speed of convergence is measured by the asymptotic conver-
gence factor 12, which is defined by

(3.2) = lim [llva’ll 3
WU

4. All the numerical computations were performed on the Univac 1180 at the
University of Wisconsin-Madison. The programs were written in ASCII FORTRAN
and compiled and executed using full optimization.

The Univac 1180 single-precision arithmetic has approximately eight decimals.
The residuals usually decrease quite rapidly at the beginning of a computation so the
round-off threshold is quickly reached. For example, for the problem considered in
4 with M 5, [IuMI[ is about 2 x 103, and the single precision algorithm went into

a loop when Ilvo ll reached 5 x 10-6 after a mere 50 work units.
In the numerical experiments we were particularly interested in measuring the

asymptotic convergence factor . To eliminate round-off effects, all the computations
reported on here used double precision arithmetic. Of course, this is not normally
necessary. Furthermore, even if very accurate solutions of the discrete problem (2.2)
were required, it would suffice to store aM in double precision and all other quantities
in single precision.

The execution times quoted are those provided by the Univac 1180 Exec. System.
As is often the case on timesharing systems, the times are only reproducible to within
about 10%.

Because of its word length, the UNIVAC 1180 can only directly access 64K
words of storage. When M _-> 7, more than 64K words of storage are needed by PFAS,
and there is a significant degradation in performance.

5. To measure , the iterations were continued for the first 100 work units,
unless the residuals vanished before. In practice, one usually iterates only for about
30 work units.

We also used several values of M in order to measure the dependence of /
upon M.

The computations starting at a level-M-level-(M-1) junction and continuing
until the next level-M-level-(M- 1) junction are called a cycle.

While minor variations do arise, a cycle often consists of a sequence of 2 sweeps
at each of levels M-1, M-2,..., 1, followed by 2 sweeps at each of levels
2,..., M-1, terminating with 2 or 3 sweeps at level M. If this pattern is followed
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with 3 sweeps at level M, then the average number of work units per cycle is

(3.3) 3 + 4[2-" + 2-2" +... ] 3 + 4/(2" 1),

and the average number of work units per Gt projected sweep is 1+4/(3(2n- 1)).
Of course, very irregular patterns are observed when the round-off threshold is

reached.
6. It is usually found that II’tTtll decreases steadily but not very regularly, in

part because of slight variations in the number of sweeps at each level. To evaluate
the algorithm, we have used two quantities:

(3.4) r IlVt7tnna[IG the value of IIa’ll at the end of the last complete cycle

before 100 work units,

(3.5) e [lira’ -’ 1/[WUfinal--WUinitial]

wlaere lira initialll is the value of lira’11 after the first Gt sweep;/2f is an estimate
for the asymptotic convergence factor/2.

We usually only quote rf to one decimal place and/2 to two decimal places, since
this is quite adequate for our purposes.

7. In all the experiments reported here, the parameters 6 and rt (see (2.29) and
(2.39)) were given by 6 .5 and rt .15. According to Brandt [1977], the rate of
convergence is not very sensitive to changes in these parameters, and this was confirmed
in a few experiments.

In a few cases, but never for 6 .5 and r/= .15, the program "hunted"" that is,
the program went down from Gt to G 1, up to G k for k <M, and then down again
to G instead of continuing up to Gt. This might happen several times before Gt

was reached again.

4. Numerical results for porous flow through a dam. Calculations were performed
on the well-known free boundary problem describing the flow of water through a
porous dam. The geometry is shown in Fig. 4.1. Water seeps from a reservoir of
height y through a rectangular dam of width a to a reservoir of height y2. Part of
the dam is saturated and the remainder of the dam is dry. The wet and dry regions
are separated by an unknown free boundary which must be found as part of the
solution. For an introduction to the problem see Bear [1972] or Cryer [1976].

head wate

F
free surface

saturated

.,wet)

Y1

B impervious foundation

seepage face

tail water

FIG. 4.1. Seepage through a simple rectangular dam.
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As shown by Baiocchi [1971], the problem can be formulated as follows: Find
u on the rectangle 12 ABCF such that

u + uy <_- 1

(4.1) u ->_ 0

u(u + u,, 1) 0

in

in ,
in 12,

(4.2) u g

(Y Y)2/2 on AB,

(Y2 Y)2/2 on CD,

[y(a-x)+ y(x)]/2a onBC,

0 on DFA,

which is in the form (1.1).
This problem was solved using PFAS. The initial values of ti

t were obtained
by interpolating the boundary values of u linearly in the x direction. A listing of the
program is given in Brandt and Cryer [1980].

We considered the well-known case, yl 24, y2 4 and a 16. In all computations
G was a (2 + 1) x (3 + 1) grid with h 8. The finest grid used was G7 with (128 + 1) x
(192 + 1) 24897 grid points.

To give the reader an idea of the solution, the solution U2 of (2.2) is given to
four decimal places in Table 4.1.

0 4

24 0 0
20 8 2.5371
16 32 18.1486
12 72 47.2732
8 128 89.9564
4 200 146.5702
0 288 218.0000

TABLE 4.1

U for the dam problem.

0
0
6.7841

24.9879
53.9823
94.3247
148.0000

12

0
0
0
7.9120

22.6601
44.7462
78.0000

16

M
GM

Execution time for
100 work units

(seconds)

0 SORopt

2
5x7
0*
.404

TABLE 4.2

Solution of the dam

3
9x13
4(-17)*
.607

.114

.18

.428

.49

* Reached round-off level before 100 work units.

oroblem using PFAS.

4
17x25
1(-13)
.726

1.04

.71

5
33x49
1(-8)
.813

3.55

.84

6
65x97
1(-lO)
.778

13.39

.92

Required 70K workspace so extended storage facility invoked, and timing not compatible.

7
129x 193
1(-7)
.81

.96
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MThe numerical results, for different values of M and e TOL 0, are given in
Table 4.2. The most important conclusions are that convergence always occurs and
that the convergence factor tf is always less than .81.

We now compare the convergence factors f in Table 4.2 with those for single-grid
methods of solving the LCP (2.2).

A popular single-grid method of solving the LCP (1.3) is Gt-projected $OR
(point SOR with projection) which has also been called "modified SOR" by Cottle.

When using Gt-projected $OR, it is observed experimentally that the values of
ti
t settle down quite quickly into positive values and zero values. Thereafter Gt-

projected SOR is equivalent to using point SOR on the subset G=
{x Gt’ Ut (x) > 0}. Thus the asymptotic convergence factor for Gt proiected SOR
is in general equal to the asymptotic convergence factor for point $OR on Gt+. It is
known (Varga [1962, p. 294]) that for a region of area A and for the finite difference
equations corresponding to the five-point difference approximation to Laplace’s
equation with stepsize h, the convergence factor for the optimum choice of overrelaxa-
tion parameter w is approximated quite well by

2
(4.3) px(h) 1.

1 + 3.015[h 2/A]1/2-

In the present case we do not know the area of Gt+, but, as a rough guide, the area
of Gt+ is approximately equal to the area of D, which is about 80% of the area of
the rectangle ABCF. Therefore, for our present purposes the asymptotic convergence
factor for Gt-projected SOR with optimum choice of o) may be taken to be

2 2
(4.4) PSORopt

1 + 3.015[h 2/(.8 X 16 x 24)]1/2 1 1"
1 +.172h

these values are given at the bottom of Table 4.2.
As Table 4.2 shows, for large problems, PFAS is faster than Gt-projected SOR.

On G;, for example, the increase in speed (measured in work units) is
In .81/ln .96 5.2. Against this, two factors must be borne in mind: (1) PFAS is more
complicated and requires more overhead per work unit; (2) PFAS requires somewhat
more storage. We discuss these two factors below, but before doing so we wish to
emphasize that although these factors reduce the advantage in speed of PFAS, the
measured execution times for PFAS are much smaller than those for Gt-projected
SOR.

1. Overhead. To obtain an indication of the additional overhead required by
M 0-8PFAS, we compared execution times forM 5. We first used PFAS with e 2 1

This required 96.156 work units and took 3.40 seconds. We then modified PFAS so
that only the grid k =M was used and so that overrelaxation was used with the
overrelaxation parameter o given by equation (4.4). We were thus using .Gt-projected

MSOR with a nearly optimum o. To reduce Ilva ll e 2.10.8 required 146 work
units and took 4.82 seconds. Since

(3.40/96.156)/(4.82/146) 1.07,

we conclude that, in this application, the additional overhead required by PFAS only
increases the computation time per Gt-work-unit by about 10%.

2. Storage. As implemented here, PFAS keeps the solutions and residuals on all
the grids, and therefore requires storage for 211 +4-1 +4-2+ .]=8/3Gt grids. In
contrast, Gt-projected SOR requires storage for only one Gt grid.
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If storage is at a premium, the residuals on Gt need not be stored, and PFAS
requires only 5/3 times as much storage as Gt-projected SOR. If t7t is stored to
double precision, but a k and/k are stored to single precision for k <M, only 4/3
times as much storage is needed. If F(x) were not the constant 1, but a complicated
function, then either the function values or the residuals would have to be stored for
GM-projected SOR, and PFAS would require at most 33% more storage.

Another possible single-grid algorithm for solving the LCP (1.3) is the MBSOR
(Modified Block SOR) algorithm of Cottle, Golub and Sacher [1978]. This algorithm
is based upon the solution of a sequence of "one-dimensional" LCP’s in much the
same way as line SOR is based upon solving a sequence of "one-dimensional"
equations. We used MBSOR to solve the dam problem (4.1), (4.2) for the case M 5.
The program was kindly provided by Professor Sacher. We tried a few values of the
overrelaxation parameter w, and found that 1.8 gave the best results. With w 1.8,
MBSOR required 114 iterations to reduce II u ’ll to below 2.10-8 and took 13.13
seconds. The following comments arise.

(i) In numerical experiments on the dam problem, Cottle [1974] found that
MBSOR was about 20% faster than "modified point SOR", that is, Gt-projected
SOR. This is consistent with the fact that, for equations, the convergence ratio for
line SOR is only faster by a factor of / than point SOR, while there is more
computation per iteration. This is also consistent with the present results, since
Gt-projected SOR required 146 iterations to reduce the residual to 2.10-8 while
MBSOR required only 114.

(ii) The poor execution time of MBSOR (13.13 seconds) compared to PFAS
(3.40 seconds) can be explained in part by two factors: (a) MBSOR requires more
computation per iteration than is needed by PFAS for a single work unit; (b) the
MBSOR program was written for the case of general coefficients, while the PFAS
program takes advantage of the properties of the five-point difference operator.

(iii) It must also be borne in mind that Cottle, Golub and Sacher [1978] found
that MBSOR was three times as fast as Gt-projected SOR for the journal bearing
problem where the solution is zero at a high percentage of the gridpoints.

We conclude from Table 4.2 and from the above discussion, that for the dam
problem (4.1), (4.2), PFAS is faster than Gt-projected SOR and modified block SOR
for M_->5, that is, for grids of dimension 33 49 or greater. Furthermore, we also
conclude that the values of/2 and 10SORopt in Table 4.2 provide a reasonably accurate
guide to the relative performance of PFAS and Gt-projected SOR. We believe that
PFAS will be faster than both Ga4-projected SOR and MBSOR for a wide range of
problems. Indeed, as shown by Table 4.2, the asymptotic convergence factor t for
PFAS is approximately equal to .8 for all values of M. Consequently, the amount of
work required to reduce the residuals on Gt to below a given threshold e is O(N),
where N is the number of gridpoints in G4. In contrast, both Goprojected SOR
and modified block SOR have computation times which are 0(N3/2).

5. Alternative implementations of PFAS. In this section we discuss alternative
implementations of PFAS, the best of which achieves substantially improved per-
formance.

The improvement in PFAS which might be possible is suggested by considering
the asymptotic convergence ratio, FAS say, for FAS for Poisson’s equation. For FAS,
the error reduction per Gt-sweep is .5. If each Gt-sweep is accompanied by, on
average, one G-sweep for l<-k<-M-1, then the number of work units per
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Gt-sweep is

1+2-2 + 2-4 + 4/3,

and the convergence ratio is (.5)3/4-- 595, as stated by Brandt [1977, p. 351]. In the
present case, as observed in 3, the average number of work units per G-sweep is

1 +4/[3(2n- 1)]= 13/9,

so that

(5.1) /-FAS (.5)9/13 .6188.

This value of /2FAS is observed experimentally. The worst observed value of/2 for
the PFAS results quoted in 3 was/2 .81. Thus, FAS (for equations) is faster than
PFAS (for LCP’s) by a factor of In .6188/ln .81 2.28.

Plausible reasons why PFAS is slower than FAS include the following difficulties:
DI" Negative components o] a k. The inequality (2.41b) requires that Ok be

nonnegative. In each Gk-projected sweep the step (2.7) ensures that ak is nonnegative.
Furthermore, if I-1 is the injection operator, the initial approximation t7 k-1 defined
by (2.47) is also nonnegative. However, (2.54) does not preserve nonnegativity" in
returning to G k from Gk-l, the initial approximation t7 k may have negative com-
ponents, and this is often observed. Of course, any negative components are removed
in the first subsequent Gk-projected sweep, but nevertheless the introduction of
negative components must retard convergence.

D2" Large residuals near the free boundary. At a point x Gk where Ok(x) =0
the corresponding residual

(5.2) /(x) (x)-Lt? (x)
must be nonnegative because of the inequality (2.41a) but need not be small.

D3" Influence of the discrete interface. The discrete interface Fk c R 2 is the inter-
face between the set of points where Ok >0 and the set of points where Ok= 0. Fk

approximates the continuous interface, or free boundary, F separating the points where
the solution u (x) is positive from the points where u (x) is zero.

In special cases it may happen that Fk F for all k, in which case PFAS converges
as fast as FAS. An example is given by problem (5.3), (5.4) below with R 2, for
which F is the line y 5- 2x; it is found experimentally that Fk F for k <= 6.

In general, Fk and F differ by O(hk), and Fk and Fk-1 differ by O(hk). In particular,
it may happen that Ok (X) > 0 while Ok-(x) 0. Furthermore, near Fk- the residuals
may be less smooth because of the projection (2.7) and because of the irregular shape
of Fk and Fk-. This introduces errors in the coarse grid corrections (2.55), thereby
slowing the rate of convergence. Finally, the injection operator (2.35) is not adequate
if the data to which it is applied is not smooth.

To test the influence of the relationship between F and Fk on the convergence
of PFAS, computations were made not only for the dam problem (4.1), (4.2) but also
for the LCP:

(5.3)

(a) Uxx + uyy <- )(x, y) in l),

(b) u _-> 0 in f,

(c) u g on 0,

(d) u (uxx + uyy -[) 0 in f,
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where D [0, 3] x [0, 2], and f and g are chosen so that the exact solution is

(5.4) u [cos (x + y) + 2][max {0; 2.5R -Rx y}]2.

Here, R is a parameter which is chosen close to the value 2. Note that u e C2(12) and
u 0 above the line y R (2.5 x). By changing the value of R we can force gridpoints
to lie very close to the exact free boundary; this may be expected to cause PFAS
difficulty, because if Ok(X) is positive but very small for some x Gk then it will take
PFAS a large number of iterations to determine whether ]k (x) is zero or positive.

Multigrid algorithms can often be speeded up by modifying the operators I-1,
S-1 and I_1. We have tried a number of modifications of the corresponding PFAS
subroutines which were intended to address the difficulties D 1 to D3 mentioned above.

Our first modifications to the auxiliary subroutines of PFAS were not very
successful, but they were very instructive and we briefly summarize them. In all cases,
the results are for the dam problem with M 5.

M1. PFAS was modified so as to enforce nonnegativity of tik immediately after
returning from G-x. This was done by defining q in (2.55) by

(5.5) q(t7 ’, tik max {0,

This modification converged slightly faster than PFAS with/r .803.
M2. The usual situation in which the nonnegativity of 7 k is violated is as follows.
Let a (x) 0, where x G k but xg Gk-. Let y Gk- be a neighbor of x, such

that a(y)>0. It may then happen that W-(y)<0. As a result, (I_Iwk-)(X) may
be negative, and if so the updated value of t k (x) will be negative.

To avoid this, PFAS was modified so that the operator I- became"

(y) if t7 (x) > 0 for all eight

(5.6) I-a(y) neighbors x of y in G,
otherwise.

Remembering from (2.48) that

Ok-= W-I +I-t2,
we see from (5.6) and (2.41b) that the restraint W-(y)->0 is enforced for every
point y G- with a neighbor x G such that t7 k (x)= 0.

This modification converged slightly more slowly than PFAS, with .817.
M3. PFAS was modified so that if the current value of a a4 (x) was zero, then

-ku (x) was forced to be zero for k <M. In effect, (2.7) was followed by a further
operation"

(5.7) Ifk<M and at(x)=0, thent’s=0.
This modification converged, but much more slowly than PFAS, with Cf .887.
M4. Brandt [1977, p. 378] has found residual weighting useful when the

coefficients of the differential equation are changing rapidly. We, therefore, changed
the algorithm so that S- became"

(5.8) 4S-ar (x) Z P(A)rk (x + Ah,),
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where A (A1, m2) for integers A1, m2 and the only nonzero O (A) are

o (o, o)=

(5.9) 0(0, 1)=0(1, 0)= 0(0,-1) =0(-1, 0)=1/2,
o(1, 1)=o(1,-1) =o(-1, 1)=o(-1,-1)=1/4.

This modification cycled between G and G2, as did the further modification for
which I-a was also defined by (5.8), (5.9).

The nonconvergence of Modification M4 requires explanation, and this is provided
by

LEMMA 5.1. Let ( be defined by (2.56). For 1 <-k <-M let 0 be the solution of
the LCP (2.41), where P satisfies (2.45). Finally, let I_a satisfy

(5.10) (I_ (z-) =0)=>(z- =0) for all z- eR-.
Then for PFAS to converge it is necessary that

(5.11) S-I[Pk --LkOk]>=O,
(5.12) ,-O _->0,

(5.13) [I-IO,]Ts-X [pk L Ok O.

Pro@ We apply PFAS by setting O k Ok, and forming the LCP (2.41) on Gk-:

(***) O-__>0,
(Ok-1)T(Lg-10g- _pk-1) 0.

Solving this exactly so that t7 k-a Ok-l, we then return to G k. Since PFAS converges,
the new value of tik given by (2.55) must be equal to Ok. That is,

I-IW k-1 Z-I [Ok-1 --/’kk-10k 0,

which, from (5.10), implies that

Ok-l I-lfk.
Substituting into (***) and noting (2.45), we obtain (5.11) through (5.13).

The following remarks follow from Lemma 5.1.
1. Lemma 5.1 brings out an interesting difference between multigrid methods

for equations and for inequalities. For equations,/k LkOk 0 and conditions (5.11)-
(5.13) are satisfied for any reasonable choice of S-1 and Ik-l, but this is not true
for inequalities.

2. Since Ok solves (2.41), inequalities (5.11) and (5.12) will certainly hold if S-a

and I-x map nonnegative vectors into nonnegative vectors. In particular, this will
be the case if Sk-x and I- take linear combinations of values with nonnegative
weights.

3. If S- and I-1 are injections, then (5.13) is implied by (2.41c).
4. If Sk -a is defined by (5.8) and (5.9) while I- is injection, then (5.13) does

not hold in general. This is because in general there will be points x, y e Gk such that
x e G k-x, gQk (x) >0, tQk (y) =0, y is aneighbor ofx inG k and(ffk --LkgQk)(y) > 0. Then

I-10k (x) O’ (x) > 0
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and

(S-1 (pt, _LkOt,))(x) >= 1/4(p, _LkOkl(y) > 0,

so that (5.13) does not hold. This explains why Modification M4 of PFAS did not
converge.

We now describe two further modifications of PFAS which were tried"
MS. Bearing Lemma 5.1 in mind, it is possible to introduce weighted sums for

which (5.13) does hold. One choice uses weighted residuals only near the boundary"

4r k (x) if t2 k (x) 0 or if t7 k (y) > 0

(5.14) 4S-lr’(x) for all eight neighbors y G of x,

Y p (A)rk (x + Ah) signum [t k (x + Ahk)] otherwise,
A

where

1 if a >0,
signuma=

0 if a=0,

and where the weights p(A) are as in (5.9). This modification converged more slowly
than with PFAS, and it was found that t .854.

M6. As mentioned in D1 and D3 above, if iTS(x)=0 then it may happen that
-k k ku (x)= t7 (x)+I_lw -(x) is not zero. It can be argued that changes of iTS(x) from
or to zero should only be done on G. We, therefore, modified PFAS so that in (2.55)
q9 was defined by

(5.15) <ak<x)’k<x))={k(x) if 2k(X) > 0’
otherwise.

I-1 and S- were injections. This program was called PFASMD.
We solved (4.1), (4.2) with M 5 using PFAS and PFASMD. In each case, the

computations were terminated when [[VM][ <_--2.10-s. The results are summarized
in Table 5.1.

In Table 5.2 we compare PFAS and PFASMD for the problem (5.3), (5.4). As
in Table 5.1 we iterated until [[Vu<>[[ <=2.10-8 on G5.

We conclude from the results given in Tables 5.1 and 5.2 that PFASMD is
substantially faster than PFAS.

Finally, in Table 5.3 we extend Table 4.2 by comparing the measured execution
times for the projected SOR method and PFASMD for the dam problem for various
values of M. In each case, the iterations were continued until [[V[I <= 2.10-s.

TABLE 5.1

Solution of (4.1), (4.2) with M 5 and e
t 2.10-8 using PFAS and

PFASMD.

Method

PFAS PFASMD

Work units 96.15 42.81
Execution time (seconds) 3.40 1.63

t2 .815 .623
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TABLE 5.2
MSolution of (5.3), (5.4) with M 5, R 32/15 and e 2.10-8 for

PFAS and PFASMD.

Method

PFAS PFASMD

Work units 73.62 56.96
Execution time (seconds) 3.09 2.58

t .731 .669

TABLE 5.3

Comparison of Gtprojected SOR and PFASMD for the dam problem with e
M 2 10-8.

M= 2 3 4 5 6
GM 5 7 9 13 17 25 33 49 65 97

GM projected G iterations 19 34
SOR Execution time (seconds) .02 .09

69 146 295
.60 4.88 39.37

PFASMD GM work units 23 30.5 38.7 42.8 45.7
Execution time (seconds) .04 .12 .41 1.64 6.57

As can be seen from Table 5.3, PFASMD is better than projected SOR except
for very small grids.

6. PFMG (projected full multigrid algorithm). In this section we describe
PFMG (projected full multigrid algorithm), which is a modification of the full multigrid
algorithm of Brandt. The flowchart for PFMG is given in Fig. 6.1. PFMG has been
implemented as a FORTRAN subroutine for the case when f is a rectangle in R 2,
and is the Laplacian operator. This subroutine is listed in Brandt and Cryer [1980]
as part of a program for solving the porous flow free boundary problem of 4, and
the problem (5.3), (5.4).

PFMG differs from PFAS in the following respects:
I. Instead of beginning on G, one begins on a coarser grid GLIN and gradually

works up to GM. The computations begin on the initial grid G t, LIN, with an
initial approximation t7 t. a is computed to the required accuracy using grids G
through G as in PFAS, except that, as will be discussed below, the decision to move
to a different grid is based on slightly different criteria.

Once a has been found to sufficient accuracy, the initial approximation a /1 is
obtained from

(6.1) a+ =Jlt+lal,
where Jl+1 is an interpolation operator taking grid functions on G into grid functions
on G t+l. It is known (Brandt [1977, p. 377]) that Jtt/l should be more accurate than
11+1 in order to preserve the smoothness of a

There are two errors in the program as listed in Brandt and Cryer [1980]. On line 1127 change
(ITAU.EQ.1) to (ITAU.EQ.1 AND. T.NE.0). Card 1123 (TAUGNM=TAUGNM+ T’T) should be
placed after card 1126 (*O(IP +JK). EQ.0) T 0).
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wu,,- 0
LIN

Initialize

1
Begin level

WU .25 WU
-0

Begin J. level

[[V/ k[[G 103o L

Begin sweep

ilk Proiected Gauss-Seidel [ilk. A , ]
Compute IlVi kll

WU-WU +4**(k -l)

Decision to to different grid.
Is based the number of sweeps at level k,

k and the number of levelcycles at

YEs

t-l ’-l-l A i’-I

New level

Set boundary conditions
for
l#l+l

Yes

=/?

No

Go to finer grid

lilk+l--lk+
i+l0(i "i

kk+l

I
Go to grid-,_4S ( -Ai)

ff’k- 4S
ek-a.-llvikll
kk-1

ok+lk+l
kk+Akfik

ITAUEX
If ITAU and 1, ITAUEX

2P/(2 1)

If ITAUEX then
k(x) Pk(x), if ilk(y)= 0 for

of
the four neighbors of

r(x) +Pk(x), otherwise

Ilk =M-l,

FIG. 6.1. Flow chart for PFMG.
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In PFMG, Jl+1 is based upon repeated use of the cubic interpolation formulas

(6.2) f(1/2) I-f(-1)+ 9f(0)+ 9f(1)-f(2)]/16,

(6.3) f() If(-1)- 5f(0) + 15/(1) + 5(2)]/16.

Repeating this process, we finally obtain an initial approximation on G.
Thereafter, the computation proceeds essentially as in PFAS.

II. a is used to estimate the local truncation error on Gg-. Suppose that the
difference approximations are of order p and that can be extended to a smooth
function on . Then on G-a,
(6.4) A-I-aa
and

(6.5) S-aAa ha +2-(+2)z-,
where the local truncation error depends upon the derivatives of a Eliminating
the unknowna we obtain

2-(6.6) r -2_1

2p

(6.7)
2’_1

[{45- (/ -Aa)}+{A"-aI-a}-{4S-}].

The estimate (6.7) is not accurate near the discrete interface, and so PFMG computes
k-1

Zz where

k-I(x) ifk-1(6.8) z (x)
0 if /k-l(x) O.

Because of the lack of smoothness of the solution near the free boundary, it is
not entirely clear what the value of p should be. It is known (Brezzi and Sacchi [1976])
that the convergence of the finite difference approximations is probably only O(h 1)
in the wl’2(f) norm, and Nitsche [1975] has proved O(h 2 ln h) convergence in the
infinity norm. However, these are global error bounds, while we are concerned with
the asymptotic behavior of the local truncation error -. Except in a neighborhood of
the discrete interface Fl, p is clearly equal to 2. Since the choice of p may vary over
f, we could perhaps set p 1 near F, but the values of z near F are not very accurate
and so, for simplicity, we have taken p 2 everywhere.

III. As usual in numerical analysis, the estimate (6.7) for .k-1 can be used in
two ways:
(a) To estimate the error a k u. Since r

k 2-2-P’r k-l, and remembering that G k has
four times as many points as Gk- but hk-1 2hk, we see from (2.23) that

Combining (6.7), (6.8) and (6.9) we obtain an estimate for II  ll ,
In the previous sections we were concerned with asymptotic convergence. That

is, we were concerned with the rate of convergence of ti k to fQ over a very large
number of iterations. However, if we want an approximation to the solution u of
(1.1), it is only necessary to iterate until the residual on G is small compared with
the truncation error, that is, until

(6.10)



678 ACHI BRANDT AND COLIN W. CRYER

Once (6.10) holds, further computation will improve the accuracy of t7 k as a solution
of the finite difference equations, but will not improve its accuracy as an approximation
to u. Noting (6.9), we see that (6.10) will certainly be true if

(b) Improvement of accuracy of k--1. Once an estimate for the truncation error
k-1- is available, it can be used to improve the accuracy of the difference approximation

on G- by replacing Fk-(x) by Fk-(X)+’k-(X) (see (6.4)). This is only done at
points x Gk-1 such that tTk-l(y)>0 for all four neighbors y G k-1 of x since the

k- is not accurate elsewhere.value of rz
Of course, this is only meaningful when ]l-k-]l is small compared to IIv  ll 

if the iterations are continued for a long time, then convergence will not occur because
the conditions of Lemma 5.1 will be violated; but PFMG is never used in this way.
In fact, experience with equalities indicates that when z-extrapolation is used, the
best procedure is to avoid relaxation after returning for the last time to the finest grid.

IV. As already mentioned, the logic of PFMG is more complicated than that of
PFAS. Several parameters are introduced, and this enables one to control explicitly
the number of Gk-projected sweeps at any level k, and the number of cycles at level
l. In the computations reported on here, in each cycle on grid G two Gk-projected
sweeps are carried out for l<k <- as we descend from G to G 1, and one Gk-projected
sweep is carried out as we ascend from G to G t. For LIN, up to three G cycles
are allowed, so that a good initial approximation can be obtained. For LIN < <M,
only one G cycle is allowed, while up to 10 Gt cycles are allowed.

We now describe numerical results obtained using PFMG to solve the dam problem
(4.1), (4.2). In all cases, G is a (2 + 1) (3 + 1) grid and LIN 2.

PFMG includes the option of computing lit7 l- u ll and Ila ’- u ll , where u is the
exact solution. For the dam problem, it is possible to compute u analytically using
elliptic integrals (Cryer [1976]), but this has not yet been done" we therefore took
u to be the most accurate approximation known to us, namely the approximation a 7

computed in double precision on a (128 + 1) (192 + 1) grid as described in 4. For
problem (5.3), (5.4) the exact solution is given by (5.4).

We first performed a number of experiments with M 2, 3, 4, and 5"
1. --extrapolation (with p 2) gave slightly worse results for the dam problem

and slightly better results for problem (5.3), (5.4). (This is explained in part by the
observed behavior of - as a function of h, as discussed below.)

2. In contrast to our experience with PFASMD, the use of equation (5.15)
(modification M6) had only a slight effect. (This may be explained by the observation
that the slow convergence of PFAS is caused by the existence of gridpoints near the
discrete interface at which (without modification M6) the computed values of t7 k

fluctuate between zero and small positive quantities. This is a delicate asymptotic
matter below the level of the truncation error, and hence does not trouble FMG.)

3. It was thought that convergence might be improved by multiplying the
difference VtT(x) by h for points x near the free boundary before computing
lira (x)ll . This was found to have negligible effect.

All the results given below are for the case of no r-extrapolation and no
modification.

The results for the dam problem for different values ofM are shown in Table 6.1.
Since we only have estimates for .t-, it is not possible to obtain rigorous error

bounds. Nevertheless, it is interesting to apply the error bounds of 2.
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TABLE 6.1

Solution of the dam problem using PFMG.

M

3 4 5

Gt work units 8.75 6.67 6.41
Execution time (seconds) .0675 .145 .404
Ila’ ll/llu I1 .000665 .000168 .0000532
I1’ 11/11’11 .00080 .000145 .0000388

IIv’ll .0666 .0557 .0339

I1-111 0.0771 0.0795 0.0383

Let Ot denote the vector obtained by evaluating the solution u(x) on Gt. Then,
from (6.4), (1.1), (2.2), (2.3), (2.13) and (3.1),

MAtOt __<bt +-(6.12)

so that, from Lemma 2.1,

(6.13) liar ull= lll+llz.
OM

On the other hand, from Lemma 2.2,

M

For the dam problem, P is an upper triangular matrix with at most two nonzero
elements per row, and IIP"II 2. Thus,

(6.14) IIS" a"l12 llVa"ll=.
M

Combining these inequalities we obtain

lit2’ a’ll=-<- --[IIUIIz + 211va’llz],
oM

or, equivalently,

(6.15) II0 all 1[11+11 + 211vall].
OM

Using (6.8) and (6.9), we conclude that

(6.16) I’OM tM[IG2 I----[-O II’rMz -I[IG + 2IIvMIIG]OM

Next, we note that for the dam problem

(6.17)

where

(6.18) c + -’.055>14/256
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and

Thus, finally, for the dam problem,

ht=16.2-M.

(6.19) I[0M -aMI]o- I[-]]O + 2[]Vall

For example, for M 5 we obtain, using Table 6.1, that

(6.20)
10

IIO- oll/llrll "=< -[z(0.0383)+ 2(.0339)]/(5.9 103) --.000959;

the observed value quoted in Table 6.1 is .0000388.
In Table 6.2 we repeat the computations of Table 6.1 for the problem (5.3), (5.4).

TABLE 6.2

Solution of problem (5.3), (5.4) using PFMG.

M

3 4 5

Gt work units 6.75 5.672 5.414
Execution time (seconds) .101 .271 .861
Ila’ tgr’ll/llu I1 .000985 .000266 .0000645
Ila’ O’11/110’11 .00122 .000376 .0000956
llTfitll .241 .121 .0764
lily-1 [1 1.56 .509 .147

The error estimate (6.19) also holds for the problem (5.3), (5.4), since we are
using the Laplace operator on a rectangle with sides in the ratio 2:3. Applying (6.19)
we obtain

2lo

IIO- aSll/llOll --11/4(.147) + 2(.076)1/(1.2 104) .00115

the observed value quoted in Table 6.2 is .0000645.
The behavior of the global error tit-u can be checked using Tables 6.1 and

6.2. From Table 6.1 we have

From Table 6.2,

a-a=ll.1
/= [.0000532l’/=lit73-J .0--b- J 2782"

[lltTS-ullo] 1/:z

[.0000645]
1/: 1

t]la- u IIJ 00--- 2196"
These results strongly suggest that the global error is O(h ).

The behavior of the local error r can also be checked using Tables 6.1 and 6.2.
From Table 6.1,

[11, II/ll,= [1]/2 [.0383/.0771]a/ 1/2.50
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while, from Table 6.2,

[ll41l/llrzll]/= --[ 147/1 56]1/2-’ 1/21"7
so that r O(h’) with q (.50, 1.7). This explains why r-extrapolation with p 2 did
not reduce the computational effort for the dam problem. The essential difficulty is
of course that the irregularity of the discrete interface makes it difficult to obtain
accurate estimates for -.

Finally, in Table 6.3 we repeat the computations of Table 5.3 for a tolerance
M

e .0339, the value of IIVt7511 in Table 6.1. We are thus comparing the performance

TABLE 6.3

Solution of the dam problem for M 5 and e .0339 using PFASMD (modification
M6), PFMG, and projected SOR.

Method

PFMG PFASMD Projected SOR

Work units 6.41 9.64 60.0
[IVtitlle .0339 .0239 .0296
Execution time (seconds) .404 .447 2.07

of PFAS (with Modification M6), PFMG and projected SOR for comparable errors.
From Table 6.3, we see that PFMG is faster than projected SOR even when only low
accuracy is required. PFAS and PFMG require comparable times, but PFMG gives
much more information and is, therefore, preferable. PFMG also uses fewer work
units than PFAS. This is significant because the number of work units used is
independent of the computer. Furthermore, on the basis of experience with many
problems, it can be said that the number of work units used does not vary greatly
with the problem: for most operators f, FMG requires only 5.4 work units.

We conclude this section with some remarks on the implementation of PFMG.
1. From Table 6.3 we see that the execution time per work unit of PFMG is

greater than the comparable quantity for PFAS by a factor

.404/447
:--:/’ = 1 36
6.41/9.64

This additional overhead is probably due to the cubic interpolation used by J-l, and
could perhaps be reduced by better programming. When is complicated, the
additional overhead required by PFMG is relatively much less significant: it is only
with a very simple operator like the 5-point Laplacian that the additional overhead
is so expensive.

2. In PFMG one often need not have any storage for the finest grid Gtmnot
even external storage. The algorithm visits Gt only twice" at the beginning of the
last cycle and at the end of the last cycle.

At the beginning of the cycle, the following operations are performed" interpolate
(Jt-1); two Gt-projected sweeps; and residual transfer (I-1 and S-). All these
operations can be made in one passage over Gt in such a way that only four columns
of Gt are held in memory at one time. Each time a new column, say column i, is
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created (by interpolation), a relaxation can be made in column i- 1; then the second
relaxation can already be made in column i- 2 and the residuals from column i- 3
can be transferred back to the coarse grid. Column i-4 can simultaneously be
discarded (i.e., replaced by column i). After this visit to G, all the information is
available (in/M-1 and t7 t-1) to solve the Gt- problem to the truncation level of G.

The final return to G (which would require the storage of the previous values
of Ut) is made in order to obtain the solution on Gt rather than on GM-l, but it
does not improve its pointwise accuracy. If one is interested only in knowing some
functionals of the solution, these can be calculated without having the final solution
on G. To approximate a functional (U), for example, one computes
M-1 M-1 M) GM-Io’t where =(t7 -(Ii-a), a-o-u is the final solution on

and t7 is the last solution on G before switching back to Gt-1. Clearly,
can be calculated during the above-mentioned passage on Gt. Note that tr- is a

M-1relative truncation correction", similar to rM It makes the approximation
(t7t-) +r-1 correct to the Gt truncation level. need not be a linear functional.

7. Conclusions and recommendations.
1. Multigrid methods can easily be adapted to handle linear complementarity

problems arising from free boundary problems.
2. Multigrid methods are superior to projected SOR and modified block SOR

(see Tables 5.3 and 6.3).
3. For high accuracy solutions of the discrete LCP, one should use PFASMD

(see Tables 5.1 and 5.2).
4. For solutions which are accurate to within truncation error, one should use

PFMG with no modifications (see Tables 6.1, 6.2, and 6.3).
Finally, we conclude with some comments suggesting possible future applications

of multigrid methods to complementarity problems:
1. For equalities, experience has shown that multigrid methods are as efficient

for problems where is nonlinear as for problems where is linear.
2. Experience from equalities indicates that with similar efficiency (just a few

more work units), one can solve much more difficult problems, such as problems in
which the coefficients of vary by orders of magnitude (e.g., large variations in the
diffusivity of the dam). In such cases SOR and other methods converge very slowly.
See Alcouffe et al. [1980].

3. The truncation error near a discrete interface cannot be reduced by using
higher order approximations, because the second derivatives are usually discontinuous.
A good way to improve the approximation would be to use finer mesh sizes near the
discrete interface. This can be combined very effectively effectively with the multigrid
process (see Brandt [1979, 3]). In fact, a vast improvement is to be expected if
r-extrapolation is used together with local refinements. Fine levels will then be used
only near the interface.

4. It would be possible to use a parallel processor, in which case the Gauss-Seidel
iterations would be performed using the red-black ordering of the grid points (Brandt
[1980a], Foerster et al. [1980], Cryer et al. [1981]).

5. Although the numerical results for PFAS and PFMG are convincing, it would
be desirable to obtain a rigorous proof of convergence, such as is available for the
projected SOR method.
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NUMERICAL STUDY OF INCOMPRESSIBLE SLIGHTLY
VISCOUS FLOW PAST BLUNT BODIES AND AIRFOILS*

A. Y. CHEER

Abstract. A grid-free numerical method is used to simulate incompressible flow at high Reynolds
numbers. The numerical method simulates the flow inside the boundary layer by vortex sheets and the
flow outside this layer by vortex blobs. The algorithm produces a smooth transition between the sheets
and the blobs.

The accuracy of this hybrid numerical method is tested in several numerical experiments. In the first
experiment, the algorithm is used to simulate slightly viscous flow past a circular cylinder. In the second
experiment, the algorithm is used to simulate flow past a Joukowski airfoil at various angles of attack. In
the latter case, the computations simulating the flow at the airfoil’s trailing edge do not "blow-up". In
both experiments, the calculated flow and its functionals (such as lift and drag coefficients) are in good
agreement with both theoretical results and wind tunnel experiments.

Key words. Reynolds number, vortex sheets, vortex blobs, boundary layer, random walk, Joukowski
airfoils, lift coefficient, drag coefficient

1. Introduction. The Navier-Stokes equations, which describe viscous fluid flows,
are difficult to solve numerically, especially at large Reynolds numbers. For example,
a method based on a grid has the disadvantage that the mesh width must decrease as
the Reynolds number R increases. Consequently, at very large Reynolds numbers, a
very fine grid must be imposed or else the numerical viscosity due to the grid will
swamp the effects of the true viscosity as represented by the Reynolds number. In
this paper we use a grid-free numerical method to obtain numerical solutions to the
problems of flow past a circular cylinder and flow past airfoils at varying angles of attack.

Consider a flow of a fluid of small viscosity , past a flat plate started impulsively
from rest. Initially, the flow is irrotational and without circulation. The initial impulse
produces a vortex sheet coincident with the solid surface. This vorticity immediately
begins to diffuse, and is eventually convected downstream. After a short time there
is a boundary layer whose thickness is of order (tt) 1/2. In our study, the solution to
the flow inside and outside this boundary layer is considered separately. The two
solutions are then patched together at the edge of the boundary layer.

In this paper, flow past an obstacle Started impulsively from rest is simulated by
a hybrid numerical method which couples the method of the random vortex sheets
with the method of the random vortex blobs. The random vortex blobs method
presented by Chorin in 1973 [5] is a grid-free numerical method where the nonlinear
terms of the equations are studied through inviscid interactions between vortex blobs;
the effects of viscosity are studied through use of the relationship between diffusion
and random walks; and the no-slip condition is satisfied via a vorticity generation
algorithm. In the random vortex sheet method presented by Chorin in 1978 [6], vortex
sheet elements are used near the boundary to solve the Prandtl boundary layer
equations. This method is also grid-free and has the advantage that the interaction
between vortex sheet elements are not singular.

In the hybrid algorithm introduced by this paper the flow inside the boundary
layer is approximated by the vortex sheet method, while the flow outside the boundary

* Received by the editors July 15, 1981, and in final revised form September 27, 1982. This work was
partially supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Engineering,
Mathematical and Geosciences Division of the U.S. Dept. of Energy under contract W-7404-ENG-48,
and in part by the Office of Naval Research, under contract N00014-76-C-0316.

t Lawrence Berkeley Laboratory and Department of Mathematics, University of California, Berkeley,
California 94720.
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layer is approximated by the vortex blob method. These two methods are coupled at
the edge of the boundary layer. In this coupling, we replace the vortex blobs with
vortex sheets near the boundary, thereby eliminating the problem of convergence of
the vortex blobs near the boundary of the obstacle. The interaction between the blobs
and sheets is not singular, and thus poses no additional complications.

To test the accuracy of this hybrid algorithm, we applied it to two problems: the
problem of flow past a circular cylinder, and the problem of flow past an airfoil at
varying angles of attack. Comparison of our results with those obtained by physical
experiments indicate that we have a good model for simulating viscous fluid flow in
two-dimensions. For our hybrid method, new computational elements are introduced
when we satisfy the boundary conditions, and the total number of computations at
each time step is of order O(rt2), where n is the total number of computational
elements.

2. Problem I: The cylinder problem. Consider a circular cylinder of radius 1 and
immersed in an incompressible fluid of density 1. Consider two frames of reference,
frame A (Fig. 1A) with the origin fixed at the center of the cylinder and frame B with
the origin fixed relative to the fluid (Fig. 1B) and coincident with frame A prior to

(-I,0)

FIG. 1A.

U_cyI (I,0), t>O

FIG. lB.

time O. At time O, the cylinder is started impulsively from rest with a velocity
of 1 (Fig. 1B). The direction of the flow of the fluid at infinity in frame A is therefore
(-1, 0). We shall consider the development of the flow of the two-dimensional
cross section of this problem.
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(1)

The equations of motion written in vorticity form are

t + (U. V)c R-1A(,
(2) A& -,
(:3) u tO,, v -Ox,

where U (u, v) is the velocity field, : curl U is the vorticity, represents the time,
0 is the stream function, A V2 is the Laplace operator, z (x, y) is the position
vector, and R is the Reynolds number. The no-slip boundary conditions we need to
satisfy are"

U."r 0 on the boundary OD, ’r tangent to OD,
(4)

U.n=0 on0D, wheren is normal to0D.

Consider the two-dimensional flow streaming steadily past a circular cylinder
with no slip at the solid surface of the cylinder. Due to the no-slip boundary condition,
vorticity is created at the solid surface. This vorticity diffuses and is convected
downstream, producing a layer of large vorticity adjacent to the solid surface. Through
this (boundary) layer the tangential velocity falls from its value in the main stream to
zero at the solid surface.

In the case when the curvature of the boundary of the obstacle does not change
abruptly, the motion of the fluid in the layer adjacent to the boundary is described
by the boundary layer equations (for theoretical analysis, see Chorin, Hughes,
McCracken, and Marsden [7]). The Prandtl boundary layer equations for two-
dimensional incompressible fluid flow written in vorticity form are

(5) , + (u. v) u,
(6) -uy,

(7) ux + vy 0,

with the following boundary conditions"

(8) U (u, v) (0, 0) at y 0,

(9) u (x, y ) U(x),

where U (u, v) is the velocity vector with u tangential and v normal to the boundary,
c is the vorticity, u is the viscosity, and V is the gradient operator.

3. The random vortex methods in brief.
A. The following is an algorithm for using the random vortex blob method to

approximate the solution to (1), (2), and (3), and boundary conditions (4). For details
of this numerical method see Chorin [5]. For theoretical analysis see Hald [11] and
[12], Hald and DelPrete [13], and Majda and Beale [2].

Step (i). The vortices in the flow move according to the discrete approximation
to the Euler equations.

F_.uler equations.

+ (u. v) 0,

zxO -’,

u 4,,, v -0,

that is, when the boundary layer thickness is much smaller than the radius of curvature of the obstacle.
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Discrete approximation.

where

(10)

(11)

where

n+l
Xi Xi "4v At lgi

n+l
Yi =Yi +At’vi,

At time step,
(x 7, y ’)= position of the ith vortex at time n At,

rij x/(x X’/)2 + (y y )2,
2 n2 n2rij-(Xi --X]) +(yi --y])

r cut off value to be determined in 5 (the value of tr will be chosen so that
the transition between vortex blobs and vortex sheets in the hybrid algorithm
is smooth),

k. strength of the vortex blobs whose center is (x’, y ?).
Step (ii). Viscosity is included by adding a random walk component to the discrete

solution of Euler’s equation (above). Random walks are used to approximate the
solution to the diffusion equation

t R-1A(, sc (x, y, t),

where c is the vorticity and R the Reynolds number.
Thus the discrete approximations to (1), (2) and (3) are"

n+l(12) Xi -=Xi +Atui @’I’ll
n+l(13)

where rtl and rt2 are independent random variables with a Gaussian distribution of
mean zero and variance 2At/R. For more discussion on random walk solutions to the
diffusion equation see references [14] and [21].

Step (iii). The tangential boundary condition is satisfied by using a vorticity
generation algorithm. In this algorithm, the amount of vorticity created on the
boundary is exactly the amount that will satisfy the tangential boundary condition.

Step (iv). The normal boundary condition is satisfied by using the method of
images which in the case of a circular cylinder is particularly simple. Consider a vortex
of strength k situated at a point z in the x, y-plane, and also outside a circular cylinder
of radius a, centered at the origin. The image system consists of a vortex -k at the
inverse point 1/1 and a vortex k at the origin. The vortex k at Z1 together with its
inverse vortex cancels exactly on the boundary, thus giving zero normal velocity. The
vortex k at the origin is needed to satisfy conservation of circulation. (See Fig. 2.)
For the hybrid algorithm outlined in 4, the vortex in the center should be omitted
to satisfy the condition of zero circulation at infinity.2 For a discussion on this point
see 4.

2 A. Leonard, personal communication August, 1982.
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FIG. 2

Step (v). Time is advanced by At. The whole process, step (i)-(v) is repeated until
the desired number of times is reached.

B. We now present the numerical algorithm using the random vortex sheet
method to approximate the solution to (5), (6) and (7) satisfying boundary conditions
(8) and (9). For details of this method, see Chorin [6] and Chorin and Marsden [4].
For documentation on the computer program implementing this method see Cheer [3].

Step (i). As in the previous case, first let the vortex sheets move according to the
discrete approximation to the Euler equations.

Euler equations.

Discrete approximation.

where

u 7 U(x 7) 1/2i 2 cl,
d=-IxT-xl/h,

, + (u. v) o,

Ux +Vy =0.

n+l
Xi --Xi + Atui,
n+l

Yi =y +Atvi,

2 is over all vortex sheets S. such that y > y ’,
h length of the sheet,
U -(I1-I2)/h,

nI1 U(x + h/2)y
nh U(xg -h/2)y -E-flfy

d[ l- xi + -x h

d= l- xi --x h

yn =min (y7, y ),
+ is the sum over all vortex sheets S such that 0 N d[N 1,
_

is the sum over all vortex sheets S such that 0 Nd N 1.

Step (ii). The effects of viscosity are included by adding to the y-component of
the solution an independent random variable rt drawn from a Gaussian distribution
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of mean zero and variance 2vAt. Thus
n+l(14) xi =xi +At" ui,

n+l(15) Yi -’yi +/kt’vi q-Ti.

Step (iii). First note that the boundary conditions u (x, y)= Uoo(x) at the edge of
the boundary layer and v(x, y)= 0 on the boundary are automatically satisfied. The
remaining boundary condition u (x, y)= 0 on the boundary is satisfied by a vorticity
creation algorithm. Vortex sheets are created on the boundary so that the resultant
flow has (u, v) (0, 0). In this way, the transition from zero on the boundary to Uoo(x)
on the edge of the boundary layer is achieved.

Step (iv). Time is advanced by At. The procedure (i)-(iv) is repeated until the
desired time is reached.

4. Hybrid numerical method applied to the circular cylinder problem.
1. First we divide the circle into M segments each of length 2r/M. Let each

segment be represented by its midpoint. For each of the M points on the body, there
corresponds M-points on the edge of the boundary layer. The boundary layer is
assumed to be of thickness O(R-/2). We call theM points on the edge of the boundary
layer M’.

2. On each of the M’ points we calculate the velocity contribution from both the
freestream velocity and the vortex blobs already in the flow. Note that initially at time
zero there are no vortex blobs in the flow, so that the only contribution is from the
freestream velocity. The amount of vorticity at each of these M’ points is curl (u, v).

3. The amount of vorticity created at each point on the boundary is negative
twice the difference between the amount of vorticity at the edge of the boundary layer
and the amount already existing inside the boundary layer. Initially there are no vortex
sheets inside the boundary layer, so the correct amount is twice the amount calculated
on the edge of the boundary layer, i.e. -2i.

4. These newly created vortex sheets, and the vortex sheets already in the flow,
are convected and diffused according to formulae (14) and (15). At time =0 the
only sheets in the flow are the ones created in step 3 above. Since these and every
subsequent newly created sheet are on the boundary, they have velocity (0, 0) and it
follows that the only contribution to their motion initially is the random walk com-
ponent of the flow. After applying formulae (14) and (15), we see that on the average
one half of the newly created sheets will move away from the cylinder and the other
half will move into the cylinder. By doing this, we satisfy the tangential boundary
condition exactly, and achieve a smooth transition from zero on the boundary to the
correct amount at the edge of the boundary layer. Note that at this point all of the
boundary conditions for the boundary layer equations are satisfied.

5. Next we check to see if any of the sheets have moved or diffused outside of
the boundary layer, and if so we turn them into vortex blobs. Since sheets and blobs
are determined by the same parameters, this change is simple and straightforward,
i.e., (xi, y, ) becomes (x, y, kg), where k h . Thus, when a vortex sheet becomes
a vortex blob, the only change is in the intensity of the point to satisfy conservation
of circulation. To preserve antisymmetry, the sheets in the boundary layer (but not
on the boundary) that flow into the object are reflected to their image points. If their
images are inside the boundary layer, they remain sheets; otherwise, they are changed
into blobs. Since we know a priori that the sheets with sharp gradients are close to
the point of separation, one can test to see if sheets have velocity gradient u/v greater
than some chosen parameter determined by the geometry of the obstacle in the flow,
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and if so, turn them into blobs. Note that the newly created vortex sheets do not
follow any of the above rules.

6. We now calculate the velocity of the vortex blobs in the flow. We can, at the
same time, take care of the normal boundary condition by modifying (10) and (11)
to include the image points. With this modification, the complex potential for the
circular cylinder problem satisfying u. n- 0 is

( )a
2 1 N [ (a2) ]#cj log (zi ,2) log ziw(zi)=-U zi--i +--j=l +logzi

where a 1 is the radius of the circle and Uoo (-1, 0). Evaluating this expression,
we get

2-y) 1 (y-y) 1 (y-y)
u 1

(x
+E + Ek(r) (r,) (r,)

1 Z ki
(y’ Yi/r) 1

22 ki
(yi y/r)

(16) -2i (r): 2 (r*q)

Vi

1 (Xi-xj/r)
(17) + 21. k. (r/)e

1 (Xi-x/r)
o’(r)

1 Xi 1 Xi

2rr /1. ki(ri)2 2r 22j kj,cr(ri)
where

ri /X 2 2
+Yi,

(ri)2 (X/ + y/2),
rq /ixi xi) + (yi- yi),
r /(xi x/r )e + (y- y,/r )e,
(r,) x + y,
o"- cut-off to be determined later,
Yl is taken over all vortices such that ri, rq, r >. is taken over all vortices such that ri, rq, r <-_ o-.

7. Vortex blobs move according to formulae (12) and (13) where the u and v
velocities are modified in step 6 above. Transition from vortex blobs to vortex sheets
follows a procedure similar to that used in the transition from sheets to blobs. A blob
can become a sheet either if it flows back into the boundary layer or if it flows into
the cylinder and its image point lies in the boundary layer. In the latter case, the point
is reflected as a sheet. One can argue that if At were more refined, this point would
end up in the boundary layer as it follows its trajectory. Thus, when it flows into the
object as a sheet, it will automatically be reflected in step 5 to preserve antisymmetry.
Note that this cannot be done if the image point is not in the boundary layer for we
only have this antisymmetry property for the boundary layer equations. See Chorin [8].

8. Advance the time step and repeat steps 2-8 until the desired time is reached.
Recall from 3 that in order to satisfy the normal boundary condition on the

circular cylinder we add to our solution the solution of the potential equation with
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boundary condition -u. n 0. Since the solution to the Neumann problem is unique
up to a constant, we choose the constant that will minimize the total number of
computational elements introduced into the flow. For the cylinder problem, the
solution where the image system includes the vortex in the center is the one that
minimizes computation. In the random vortex blob method this choice does not violate
the condition at infinity because, if the circulation at infinity is nonzero, the numerical
algorithm will immediately create vortex blobs on the boundary with the appropriate
strengths so that the condition at infinity is satisfied.

In the hybrid algorithm vortex sheet elements, rather than vortex blobs, are
created on the boundary. When calculating the motion of the vortex blobs, if we
include the contribution of the vortex sheet elements in the boundary layer to their
velocities then the above choice for the solution to the Neumann problem (with the
vortex in the center) would be the best choice. However, if we choose to view each
vortex sheet element as having an image sheet so that the error introduced by ignoring
the contributions of sheets and their images is of the order of the displacement
thickness, then the above choice is not valid. In this case, in order to save on
computation by neglecting the contribution of the sheets and their images to the
velocity of the vortex blobs, we must choose the Neumann solution to be the one that
not only satisfy the Neumann boundary problem, but also fixes zero circulation at
infinity. This corresponds to choosing the vortex at the center to have zero strength.

5. How to choose the cut-off value tr. We approach the problem of determining
the value of tr in the following way. Consider a collection of vortex blobs. If these
blobs are close to the boundary of the object, the effects of their interaction with the
boundary should be the same as the effects of the interaction of the vortex sheets
with the boundary. In other words, the cut-off should have the value that will give
not only fast convergence, but also smooth transition from vortex sheets to vortex blobs.

Let us consider the following example in determining the cut-off. Let the line
y 0 be a wall, and consider the flow to be in the upper half plane. The boundary
layer thickness is 0(R-1/2). Let there be a vortex sheet of intensity situated at point
z at the edge of the boundary layer. Also, let a vortex blob with the same circulation
(i.e., of intensity :h) be situated at the same point z. The image vortex is thus at. Let zz be the point on the boundary such that the segment z lz2 is normal to
the boundary. If we choose tr h/cr, we can verify from formula (16) that the velocity
at z2 induced by the blob at z and its image at 1 is

u2=2 O----r/ zr

Thus, as vortex blobs approach the edge of the boundary layer, their effects on the
boundary coincide with the effects of the sheets on the edge of the boundary layer. We
can, therefore, view the computational elements as sheets near the boundary and as blobs
far away from the boundary. Hence, tr h/r is the value for the cut-off which is
consistent with our hybrid numerical method.

6. Problem II: The airfoil problem. Let

(18) =f(z)=(l+a) z + e

where z =-a +(l+a)e -i, 0<0 <2zr,a=eR. (See Fig. 3.)The parameter a controls
the shape of the airfoil, and the parameter a controls the angle of attack. We partition
the airfoil into M segments each of length hi, 1, 2,..., M. As in the case of the



FLOW PAST BLUNT BODIES AND AIRFOILS 693

FIG. 3

cylinder, the airfoil is immersed in a fluid of density 1. At time 0, the airfoil is
started impulsively from rest with a velocity magnitude of 1 (see Fig. 1B). The velocity
of the fluid at infinity relative to the airfoil is (-1, 0) (see Fig. 1A).

A slight modification of the hybrid algorithm presented in 4 is used to simulate the
flow past the airfoil. The modifications are"

1. Numerical calculations for the potential component of the velocity are carried
out in the circle plane, and Routh’s theorem is applied to obtain the corresponding
velocity in the airfoil plane. For more information on Routh’s theorem see Lin [18].
If the point whose velocity is required is also a ,vortex position the following correction
term must be added:

where ko is the strength of the vortex point situated at z0, and W(z) is the conformal
mapping from the airfoil plane into the circle plane. For more information on the
derivation of this correction term see Clements [9].

2. Treatment of the sheets at the trailing edge of the airfoil is given special
consideration. We assume that vortex sheets lie in the direction of the streamlines.
Since the streamlines of the flow do not bend over the trailing edge of the airfoil,
vortex sheets lying in the direction of the streamlines should not be allowed to bend
over the trailing edge. To calculate the contribution of a vortex sheet to the boundary
condition, consider the situation in Fig. 4 below. We project the sheet situated at f(zi)
onto the boundary of the object in the direction normal to the boundary. Because
this sheet casts no shadow onto the lower part of the boundary the contribution of
this sheet to the boundary condition is restricted to the top part of the airfoil. Also,
there is a portion of the sheet that does not cast a shadow onto the boundary of the

f(z i) ,{i)

FIG. 4
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object and consequently this portion of the sheet has no effect on the boundary
condition of the airfoil. The only contribution is therefore restricted to the portion
of the sheet that when projected normally casts a shadow onto the boundary.

3. The creation of vorticity and random walk components of the hybrid algorithm
were calculated in the airfoil plane.

7. Numerical experiments for flow past a circular cylinder.
A. Numerical parameters. In all of the numerical calculations done on the circular

cylinder problem, the boundary of the circle was divided into M 20 pieces, each of
length h 2r/M. The radius r of the circle was equal to 1.

The cylinder was impulsively set into motion at time 0, where was measured
in nondimensional units (t t*. (U/r), U freestream velocity, r radius). At was
chosen to be 0.2. Numerical experiments were done with At 0.2 and At 0.1 and
with all the other parameters kept fixed. Refining At did not improve the calculations
significantly, i.e., when we compared the calculated lift and drag coefficients with these
choices of At, the average value of the lift and drag coefficient was changed by less
than one percent.

For reasons of economy, we chose max as large as possible, but not so large that
we would lose the main features of the problem. After some experimentation :max-- 1.0
was chosen. Note that a sheet of length h and strength max will eventually become
a blob of strength h Sm. For the values of h and Smx chosen as above, this means
that the value 0.31415 is the maximum strength for each blob.

Physical experiments show that a flow started impulsively from rest goes through
a long transitional period before it becomes fully developed. In our numerical experi-
ments we found that at time 8, the flow was leaving the transitional period and
entering into the stage of fully developed flow. For Reynolds number 1,000, the
numerical calculations were carried out from time 0 to time 8. For Reynolds
number 2,000, the calculations were carried out from 0 to 11. In this case, the
calculations were refined by taking :max to be 0.2 instead of 1.0 at time 8. This
refinement corresponds to creating more computational elements of smaller strength.
Changing max to an even smaller quantity, say sm 0.1, after time 8 did not
improve the results significantly. Again, the results corresponding to max -0.1 and
:max 0.2 after time 8 differ from each other by less than one percent.

In all of the numerical calculations presented in this paper, the vortex in the
center was included when using the method of images. The circulation at infinity due
to this inclusion was small. For example, the circulation at infinity for Reynolds number
Re 2,000 was bounded by +/-0.5 except for a few cases. The average circulation at
infinity due to this inclusion was -0.13. For this reason, the flows were not re-
calculated.

B. Development of the flow. Numerical experiments for flow past a circular
cylinder started impulsively from rest were performed for Reynolds numbers 1,000
and 2,000. The flow development at these two Reynolds numbers differs only slightly.
Figures 5 through 8 show different stages of the development of the flow with max 1.0
until time 8 then max-- 0.2; h 2"tr/M, M 20, r h/’rr, R 2,000, and At 0.2.
This development compares well with physical experiments (see [1] and [23]).

Initially after impulsive start, diffusion outweighs convection. However, after a
short time, the convection of vorticity becomes more significant than the diffusion of
vorticity, especially in the directon of the flow parallel to the cylinder. The vorticity
created to satisfy the boundary condition is carried by this convection to the rear of
the cylinder. This vorticity created is negative in sign on the upper surface and positive
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FIG. 5. Time 2.

FIG. 6. Time 5.

FIG 7. Time 8.

FIG. 8. Time 11.



696 A.Y. CHEER

on the lower surface. Ultimately there is more vorticity of each sign at the rear of the
cylinder than is needed to satisfy the no-slip condition there and backflow is induced
near the surface. The backflow counters the forward-moving fluid and deflects it away
from the rear of the cylinder. Most of the fluid passing close to the cylinder appears
to gather itself into two discrete lumps, or eddies, at the rear of the cylinder. (See
Fig. 5 corresponding to time 2.) At time 2, we see that the eddies in the wake
of the cylinder are just beginning to take form. By time 5, we see that the eddies
are well-developed and the points of separation are about 85 from the forward
stagnation point on both sides. The streamlines leave the body tangentially at the
points of separation. (See Fig. 6.) Furthermore, new eddies are being formed while
the original ones have convected downstream. The region enclosed by the two
separating streamlines grows larger and becomes even larger than the cylinder itself.
By time 8, the eddies created earlier are merging due to diffusion. (See Fig. 7.)
At time t-- 11, the flow is asymmetric and the points of separation can be estimated
from the graph to be around 78 and 115 from the forward stagnation point.

Ultimately, one of the eddies at the rear of the cylinder will break loose from
the cylinder and move downstream. The remaining eddy of the opposite rotation will
consequently become larger, and eventually this eddy will also shed. The shedding of
the eddies causes asymmetry in the flow pattern and in the two points of separation,
and causes dips and rises in the lift and drag coefficients. The numerical experiments
we ran were stopped on or before time t-- 11. This is not enough time for the flow
to develop a vortex street with more than one oscillation. Hence, Strouhal numbers
were not calculated in this study.

C. Lift and drag coelticients. The lift and drag coefficients are calculated using
the formula

(19) L iD p- Fj z
j=l

with

Here L is the value of the lift, D is the drag, Fi is the strength of the vortex point
situated at z (xi, y), zf is the image vortex, A is the characteristic length, and
p density 1. The derivation of this formula can be found in [10].

The drag coefficients for Re 1,000 and Re 2,000 are presented in Figs. 10
and 9 respectively. The drag coefficient for Reynolds number 2,000 starts at 1.017,
drops down to 0.947, then climbs sharply up to 1.407. This corresponds to the impulsive
start of the cylinder. Averaging over time from 0 to 11, we get an average drag
coefficient of Co 1.01. This is slightly higher than the average drag given by experi-
ments. If the values of the first peak in the graph of the drag coefficient (corresponding
to impulsive start) is excluded, we get after averaging from 3 to 11, Co 0.95.
This value is in excellent agreement with experimental values. (See Fig. 11.) Figure
11 is a plot of the measured drag coefficient for a circular cylinder as a function of
Reynolds number. See Batchelor [1, p. 341], Prandtl and Tietjens [23, p. 97] and
Schlichting [25, p. 17]. For Reynolds number 1,000, we get a similar effect. The drag
coefficient starts at 1.158, drops down to 0.946, then climbs up to a maximum of
1.419. The average drag coefficient averaging from 0 to 8 is 1.10. Averaging
from 3 to 8 we get an average of 1.04 which again is in excellent agreement
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FIG. 10.

with experimental data. (See Fig. 11.) The lift coefficient for Re 2,000 starts at zero,
rises to 0.1, and then becomes slightly negative for most of the time until 5.6. It
then oscillates with varying amplitude staying almost always between +1, with an
average which is slightly below zero at time 11, and with a variance of 0.100. The
last dip in the lift coefficient corresponds to the changing flow pattern around the
cylinder, and to the shedding of an eddy at the rear of the cylinder. (See Fig. 12.)

It takes less than three minutes of CPU-time on the CDC-7600 to model the
development of the flow past a circular cylinder from rest to four diameter movements
away. This includes the calculations of the numerical functionals. At time 8, the
flow is modeled by approximately 500 computational elements. A study which
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compares numerical methods other than ours to model flow past a circular cylinder
can be found in Nahavandi and Chen [22].

8. Numerical experiments for flow past airfoils.
A. Numerical parameters. In calculating flow past an airfoil, the conformal

transformation (18) was used. Note that the solution to the irrotational flow is not
uniquely determined and therefore in calculating the flow past an airfoil, we can
choose the potential flow solution to be the one that minimizes the work we must do.
Suppose we choose an arbitrary solution, for example the one that gives large velocities
at the trailing edge. To satisfy the no-slip condition on the boundary, large amounts
of vorticity of the opposite sign must immediately be created in the vicinity of the
trailing edge. As this vorticity is convected downstream, new amounts will be created
to replace it. Eventually, we will reach a state where the amount of vorticity in the
vicinity of the trailing edge cancels out the large contribution from the potential
component of the flow. All this work can be avoided if we choose the potential flow
solution to be the one that gives zero velocity at the trailing edge. This is done by
adding the appropriate circulation term to the fundamental solution of the potential
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equation. For any given orientation of the airfoil, this circulation should have the
value such that the rear stagnation point is located at the sharp trailing edge. By
choosing the circulation to have the value that will make the trailing edge a stagnation
point, we have minimized the amount of work required to achieve steady flow, and
have also enforced the Kutta condition at the trailing edge. For information on how
to determine the value of this circulation term see Milne-Thomson [20].

Recall that numerical calculations for the potential component of the velocity
were carried out in the circle plane, and Routh’s theorem was applied to obtain the
corresponding velocity in the airfoil plane. The creation of vorticity and the random
walk components of the algorithm were calculated in the airfoil plane.

The numerical parameters for the airfoil problem were chosen to be the same as
for the case of the problem of flow past a circular cylinder. The variable parameters
in the problem of flow past an airfoil are a and a; a changes the thickness of the
airfoil and a changes the angle of attack. In each case, the boundary of the cylinder
was divided into M 20 pieces, each of length h 2zriM. Under the conformal
mapping, the airfoil was therefore also divided into M- 20 pieces each of length
hi h" [f’(zi)l. When a vortex sheet flowed out of the boundary layer, it became a
vortex blob of strength equal to hi:i. :max has value 1.0, R 1,000 and At -0.2.

B. Development of the flow.
Case a 0.25, a =-r/12, Re 1,000. We will only present the case where an

airfoil tilted at an angle of -Tr/12 radians is started impulsively from rest.
Immediately after the impulsive start, the top point of separation separates at

the trailing edge. The velocity on the average is greater above the body than below
it. Therefore, different amounts of vorticity are created and shed from the top and
from the bottom.

Backflow develops almost immediately and consequently the point of separation
is pushed back up towards the front of the airfoil. At time 1, the top separation
point is half way up the airfoil (See Fig. 13.) The bottom point of separation is very
close to the trailing edge, and essentially remains there. The streamlines leave the
points of separation tangentially. The flow at the trailing edge behaves very smoothly
and leaves the body tangentially there.

FIG. 13. Time t- 1.

The vorticity created at the boundary first diffuses, then is carried downstream
by convection and finally is shed from the edge by the fluid. So, continual generation
of vorticity at the boundary is necessary to satisfy the no-slip boundary condition.
The deceleration of the fluid close to the body, and the acceleration of the fluid above,
cause the fluid to collect into circular patterns in the area downstream from the top
separation point. These circular patterns get larger and stronger as they roll down the
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FIG. 14. Time 2.

FIG. 15. Time 4.

FIG. 16. Time 5.



FLOW PAST BLUNT BODIES AND AIRFOILS 701

FIG. 17. Time 5.4.

airfoil. Eventually the vorticity in these circular eddies is shed off the tail end of the
airfoil into the wake. There is not a continuous shedding of these eddies and therefore
the concentration of the vorticity in the wake is not uniform. Since the visualization
of this process is more pronounced as the angle of attack is increased, I have included
the plots for the case a 0.25 and a =-zr/6. (See Figs. 20-25.)

At time 5.4 we see that the flow on the top of the airfoil separates very close
to the leading edge of the airfoil. The vorticity in the flow downstream from this point
causes the formation of circular eddies which become larger farther downstream. The
flow in the bottom part of the airfoil separates at the trailing edge. The vorticity in
the wake is not uniform and generates an oscillatory pattern (see Fig. 17).

Drag Coefficient

"’ - Average Drag coefficient

-.o

0.0 94 t.O Z.$ 2.9 .i 3.0 .S 4.0 ,.S S.O

TIME
FIG. 18.
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FIG. 19.

FIG. 20. Time 1.

FIG. 21. Time 2.
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FIG. 22. Time 3.

FIG. 23. Time 4.

FIG. 24. Time 5.
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FIG. 25. Time 5.2.

The lift and drag coefficients in this study were calculated using (19) and the
results are plotted in Figs. 18 and 19. The drag coefficient starts at zero, oscillated
up and down giving an average of 0.49 after time 5.2. Similarly the lift coefficient
oscillates up and down. The average lift coefficient approaches the value 1.5 after
time 5.2.

This run took 68 CP-seconds on the CDC-7600 at Lawrence Berkeley Laboratory.
At time 5, the flow was modeled by approximately 70 sheets and 300 points.

Conclusions. In the previous sections, we have outlined both the vortex-blob and
the vortex-sheet methods. We then developed a hybrid algorithm by coupling these
two methods. This hybrid algorithm was used to simulate flow past a circular cylinder,
and flow past a Joukowski airfoil at varying angles of attack. We have seen that
random-vortex methods for modeling the fluid flow past a circular cylinder yield results
that are very accurate when compared to experimental data. Similarly, good results
are obtained for flow past conformal transformation airfoils. This hybrid method is
grid-free and can easily be adapted to give flow past objects of arbitrary shape.

Note that in our calculations no special assumption is made about the point of
separation, no lower limit on the thickness of the boundary layer is imposed, there
is no evidence of blow-up at the cusp end of the airfoil, and new computational
elements are introduced only to satisfy the tangential boundary conditions. For
discussion of other vortex methods used for flow simulation, see A. Leonard [17],
Kuwahara [15], and Sarpkaya and Schoaff [24].

There is hope that the algorithm presented in this paper can be expanded to
study oscillating airfoils, three-dimensional flows and turbulence.

Acknowledgments. The author extends special thanks to Professor A. J. Chorin
not only for suggesting the problem, but also for his helpful discussions, and to Dr.
A. Leonard for his discussions on the center vortex.

REFERENCES

[1] G. K. BATCHELOR, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967.
[2] J. T. BEAL AND A. MAJDA, Rates of convergence for viscous splitting of the Navier-Stokes equations,

Math. Comp., 39 (1982), pp. 1-27.



FLOW PAST BLUNT BODIES AND AIRFOILS 705

[3] A. Y. CHEER, Program BOUNDL, LBL-6443 Suppl. Report, Lawrence Berkeley Laboratory,
Berkeley, CA, 1978.

[4] A.J. CHORIN AND J. E. MARSDEN,A Mathematicallntroduction to FluidMechanics, Springer-Verlag,
New York, 1979.

[5] A. J. CHORIN, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796.
[6] ., Vortex sheet approximation of boundary layers, J. Comp. Physics, 27 (1978), pp. 428-442.
[7] A. J. CHORIN, T. J. HUGHES, M. F. MCCRACKEN AND J. E. MARSDEN, Product formulas and

numerical algorithms, Comm. Pure Appl. Math., 31 (1978), pp. 205-256.
[8] A. J. CHORIN, Vortex models and boundary layer instability, this Journal, 1 (1980), pp. 1-22.
[9] R. R. CLEMENTS, An inviscid model of two-dimensional vortex shedding, J. Fluid Mech., 57 (1973),

pp. 321-336.
[10] J. M. R. GRAHAM, The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter

numbers, J. Fluid Mech., 97, part 1 (1980), pp. 331-346.
[11] O. H. HALD, Convergence ofvortex methods ]:or Euler equations: II, SIAM J. Numer. Anal., 16 (1979),

pp. 726-755.
[12] ., Convergence of random methods ]:or reaction diffusion equations, this Journal, 2 (1981), pp.

85-94.
13] O. H. HALD AND V. M. DEIPRETE, Convergence of vortex methods for Euler equations, Math. Comp.,

32 (1978), pp. 791-809.
[14] J. M. HAMMERSLEY AND D. C. HAMDSCOMB, Monte Carlo Methods, Methuen, London, 1964.
[15] K. KUWAHARA, Study of flow past a circular cylinder by an inviscid model, J. Phys. Soc. Japan, 45

(1978), pp. 292-297.
[16] L. D. LANDAU ArqD E. M. LIrSCHITZ, Fluid Mechanics, Pergamon Press,.New York, 1975.
[17] A. LEONARD, Vortex methods for flow simulation, J. Comp. Physics, 37 (1980), pp. 289-335.
[18] C. C. LN, On the motion of vortices in two dimensions, Univ. Toronto Studies, Applied Math. Series,

No. 5, 1943.
[19] MILNE-THOMSON, Theoretical Hydrodynamics, 3rd ed., Macmillan, New York, 1955.
[20], Theoretical Aerodynamics, 4th ed., Dover, New York, 1966.
[21] P. A. P. MOrgAN, Introduction to Probability Theory, Oxford Univ. Press, London 1968.
[22] A. N. NAHAVANDI AND S. S. CHEN, A review on fluid forces on circular cylinders in cross flow,

Argonne National Laboratory Technical Memorandum, Argonne, IL, January 1979.
[23] L. PRANDTt AND O. G. TIETJENS, Applied Hydro and Aeromechanics, Dover, New York, 1957.
[24] T. SARPKAYA AND R. L. SCHOA’F, Inviscid model of two-dimensional vortex shedding by a circular

cylinder, AIAA J., 17 (1979), pp. 1193-1200.
[25] H. SCHIACHTING, Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 1979.



SIAM J. SCI. STAT. COMPUT.
Vol. 4, No. 4, December 1983

() 1983 Society for Industrial and Applied Mathematics

0196-5204/83/0404-0010 $01.25/0

A SPACE-EFFICIENT RECURSIVE PROCEDURE FOR ESTIMATING
A QUANTILE OF AN UNKNOWN DISTRIBUTION*

LUKE TIERNEY-

Abstract. Consider the problem of computing an estimate of a percentile or quantile of an unknown
population based on a random sample of n observations. By viewing this problem as a problem in stochastic
approximation, we obtain an estimator that requires only a small amount of direct access storage space
that does not increase with the sample size. We show that a modified version of the simple stochastic
approximation estimator has the same large-sample behavior as the sample quantile, which has the smallest
asymptotic variance among all reasonable estimators. The modified procedure also yields an estimate of
the asymptotic variance of the estimator. Some simulation results are presented to show that the proposed
estimator performs well in samples of moderate size.

Key words, quantile estimation, recursive estimation, stochastic approximation

1. Introduction. Suppose we are interested in estimating the ath quantile (or
100 ath percentile) of an unknown distribution function F using a random sample of
size n. We assume that this quantile is unique and denote it by (a). Thus is
the unique value of x such that F(x)= a. The estimator that immediately comes to
mind is the ath sample quantile, i.e., the [an th smallest of the n observations. Under
mild restrictions on F the sample quantile is consistent and asymptotically normal
with mean and variance n-la(1-a)f(:)-2, where f()=F’(s). In fact, Pfanzagl
(1974) has shown that it is not possible to find a translation invariant estimator of
that has smaller asymptotic variance unless more is known about F, e.g., that F belongs
to a simple parametric family.

Unfortunately, the sample quantile has some computational disadvantages. All
algorithms for computing the ath sample quantile, even the recently developed
time-efficient algorithms with computation time that is linear in n (see Knuth (1973)),
require an amount of direct access storage space that is linear in the sample size. If
n is large then the cost of this storage requirement may be prohibitive. Furthermore,
in most computing environments existing programs have to be modified to allow for
storage space management once storage requirements exceed a certain level.

These problems raise the question whether it is possible to find an estimator that
requires a fixed amount of storage space but retains the asymptotic properties of the
sample percentile. The answer is yes.

In this paper we show that such an estimator can be obtained by viewing the
problem at hand as a stochastic approximation problem. The simple stochastic approxi-
mation estimator, which is described at the beginning of the next section, is modified
slightly to obtain the desired asymptotic behavior. As a by-product of this modification
we also obtain an estimate of the standard deviation of the estimator. The resulting
estimator is recursive and requires only a small, fixed amount of direct access storage
space. Its recursive nature also makes it suitable for use in situations where data is

* Received by the editors January 15,1981.

" Department of Statistics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
Weide (1977) studied this problem and suggested that one break the sample up into blocks of size

r, compute the ath sample quantile within each block and then average across the block estimates. The
storage space required by this procedure is proportional to r. However, Weide’s claim that the asymptotic
distribution of the sample quantile is attained for any sequence r(n) increasing to infinity is incorrect;
r(n) must increase faster than /.

706



RECURSIVE PROCEDURE FOR QUANTILE ESTIMATION 707

collected or processed sequentially. The only restriction that we need to impose on
F is the requirement that it have a bounded derivative that is continuous at .

The next section of this paper introduces the stochastic approximation estimator
and formalizes the statement on its asymptotic behavior in Theorem 1. The third
section presents some simulation results comparing the finite sample behavior of the
sample quantile and the stochastic approximation estimator. Concluding remarks are
given in 4 and a proof of Theorem 1 is given in the appendix.

2. The stochastic approximation estimator. Stochastic approximation was intro-
duced by Robbins and Monro (1951) as a method for finding the solution yo to an
equation M(y) c in which M(. is an increasing function that can only be evaluated
with error. The method is recursive. To update Y,, the current estimate of the root,
one obtains Z,+ =M(Y,)+e,+, an approximation to M(.) at Y,. Here e,+ is a
random error with zero mean that is independent of the previous errors. The updated
estimate of the root is then given by Y,+ Y, -(d/(n + I))(Z,+- c) for some constant
d. Under mild assumptions on the behavior of M the estimates Y, converge almost
surely to yo. Furthermore, if M’(yo) exists and 2 dm’(yo)> I, then the distribution of
/(Y,-yo) converges to a normal distribution with mean zero and variance
d2r2(2 dm’(yo)-i)- (see Sacks (1958)). Here o-2 is the common variance of the ei.

A simple calculation shows that this variance is minimized by setting d M’(yo)-,
and the resulting variance is o-2M’(yo)-2. Typically M’(yo) is not known. However,
one can often construct estimates m, of M’(yo) based on Xo,’’ ", X, and use these
to obtain the modified estimators z,+l Y,,-(d,/(n + 1))(Z,+l-c), where d, m.
Under some additional regularity conditions the distribution of /(I7",- yo) converges
to a normal distribution with mean zero and variance o-:M’(yo)-z (see Ventner (1967)
and Fabian (1968)).

In the years since its introduction, the method of stochastic approximation has
been adapated for use in a variety of estimation problems. For example, Albert and
Gardner (1967) study the problem of estimating the parameters of a nonlinear
regression model by stochastic approximation, and Martin and Masreliez (1975) use
stochastic approximation to obtain robust estimators of a location parameter that are
asymptotically equivalent to Huber’s M-estimators.

To adapt this procedure to the present setting, note that we are interested in
estimating the root of the equation F(x) a. We denote the solution by " and assume
that it is unique. Suppose Xx, Xz,... is a random sample from F and define the
functions Z(., and I(x, y, z) by

1 ifx <=y,
(1) Z(x,y)=

0 ifx>y,

and

1 if Ix-yl-<z,
(2) I(x,y,z)=

0 if[x-y[>z.

Now define the estimators , of recursively by

L- d--z-" (z(x.+l,
n+l

with

(4) d, min ([, (:)-1, dona).
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Here 0 < a < 1/2, do > 0, and/n () is an estimator of f(:) defined by

(5) /,, () 1 nl I(i, Xi+l, h,+a)/(2h,+a)
F/ i=0

for a sequence {h,} that tends to zero at an appropriate rate. The initial estimate 0
of : and do, an initial estimate of f(:)-l, are treated as fixed; in practice they can be
obtained from a small preliminary sample. Note that f, () can be calculated recursively
by setting ]o(:)= 0 and using the identity

(6) fn+l(:)-- 1 (fn()__t(n, Xn+l, h,,+l)/(2h.+x))
n+l

Since E[Z(Xn+I,n)IXo,... ,X,]=F(n), the estimators defined by (3) fit the
framework described above. Furthermore, since E[I(,,,X,,+I, h.+l)lXo,""" ,X.]=
F(,, +h,,+l)-F(,.,-h,,+l), which is approximately equal to 2h.+1/ () if n is large,
/, (5) will converge to f(:).2 The d, are defined by (4) to guard against possible severe
fluctuations of/, () for small values of n. The resulting estimators :, converge almost
surely to and are asymptotically normal with mean and variance n-la (1-a)f()-2,
which is the asymptotic variance of the sample quantile. This result is formalized in
the following theorem.

THEOREM 1. Leta (0, 1), do > O, o, a (0, ), and a sequence {h, } ofnonnegative
numbers that tend to zero and satisfy Zn=X (n2h,)- < oo be given. LetFbe a distribution
function for which f(x)= F’(x) exists for all x and is uniformly bounded. Furthermore
assume thatf(. is continuous and positive at , the unique value ofx such thatF(x a.
Let X1, Xz, be a random sample from F and define , d, and 1, () by (3), (4) and
(5), respectively. Then and ],()f(sc) almost surely, and the distribution of
/n(n-) converges to a normal distribution with mean zero and variance
a(1 a)f(:)-2.

Due to the structure of this estimator, the amount of direct access storage required
is independent of the sample size; the particular implementation described in the next
section requires only six direct access storage locations. Furthermore, since
converges to f(:), the variance of the asymptotic distribution of the estimator can be
estimated by a (1-a)f,(j)-2. A proof of Theorem 1 is given in the appendix.

3. Some simulation results. To determine whether the asymptotic properties of
the estimator derived in the previous section are applicable to samples of several
thousand observations, in which space considerations become important, we conducted
some small simulation experiments using smaller sample sizes. Specifically, we used
samples of size 100, 200 and 500 to estimate the .75th and .90th quantiles of a
standard normal distribution using the sample quantile and the stochastic approxima-
tion (SA) estimator. The simulation experiment was replicated 100 times.

To compute the SA estimator we used the first ten observations in each series
to obtain the initial values o and do, setting :0 equal to the [10a th smallest of the
first ten observations and d equal to the interquantile range of the first ten observa-
tions (specifically, to the difference between the eighth and third smallest observations).
For h, we used the sequence {n -/} (if we restrict our choice of h, to sequences of
the form {n-), then the restrictions on h, imply that 0 </3 < 1; is the center of this

2The slope estimator proposed by Ventner (1967) and Fabian (1968) for the general stochastic
approximation problem can be applied as well. However, we believe that (5) produces estimators of that
are more efficient (in terms of second order efficiency).
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interval). Uniform random numbers were generated using a version of the generator
contained in the McGill Random Number Package "Super Duper," and these were
transformed into standard normal random variables using the Box-Muller transfor-
mation.

The results of the simulations are summarized in Tables 1 and 2. These tables
list the estimates of the standardized mean squared errors, i.e., the mean squared

TABLE
Standardized mean squared errors and mean squared difference between estimators for the

.75th quantile of the standard normal distribution based on 100 replications of the simulation
experiment.

Standard MS
Sample size SA estimator Sample percentile difference

100 2.3771 1.9480 .7034
200 2.1577 2.0005 .3675
500 1.9240 1.7599 .2948
oo 1.8580 1.8580 0

TABLE 2
Standardized mean squared errors and mean squared difference between estimators for the

.90th quantile of the standard normal distribution based on 100 replications of the simulation
experiment.

Standard MS
Sample size SA estimator Sample percentile difference

100 3.6887 2.9817 1.0525
200 4.0743 3.6134 .9012
500 3.0450 3.0262 .9598
oo 2.9231 2.9231 0

errors of the estimators multiplied by the sample size, along with the asymptotic values
of these quantities. In addition, we have listed the standardized mean squared differen-
ces between the two estimators. Even for these small sample sizes the standard errors
of the SA estimator and the sample quantile are quite close. Thus it is reasonable to
expect that the statistical properties of the sample quantile will be virtually identical
in samples of several thousand observations, where the considerations of efficient
storage space use that motivated our discussion become relevant.

4. Concluding remarks. When using the stochastic approximation estimator in
practice it is advisable to use a preliminary sample of size on the order of 100 to
obtain initial values for o and do. Furthermore, to obtain a scale invariant estimation
procedure, the constants h, should be multiplied by an estimate of scale based on the
preliminary sample. Since the variance of 1, (:) is approximately proportional to f(:),
the reciprocal of an estimate of the density at based on the preliminary sample
might be used for this purpose.

An important area of applications for recursive estimation techniques is the
analysis of output from system simulations. Computer simulations of dynamic systems
produce large sets of data that are generated sequentially. In most simulations the
generated output series have a stationary distribution, at least in the limit, but the
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individual observations are not independent. For this reason it would be of interest
to determine whether the stochastic approximation estimator still performs well when
applied to dependent data; this is a subject of current research.

Appendix. Proof of Theorem 1. In this appendix we consider estimators of the
form

(A1) ,+1 ?, d----z--"
n+l

(Z(X,+x,,)-F({))

for n -> 0, where F()=a, the d,’s are nonnegative and determined by X1, Xn,
and Z(x, y) is given by (1). We will prove Theorem 1 using the following two
propositions.

PROPOSITION 1. Suppose that f()= F’() exists and is positive. Suppose further-
more that

E
n+l

<
n=l

and oo almost surely.
,=ln+l

Then , almost surely converges to .
PROPOSITION 2. Assume, in addition to the hypotheses of Proposition 1, that d,

converges almost surely to a constant d with 2df(:)> 1. Then the distribution of
x/-(,-) converges to a normal distribution with zero mean and variance dE(2df(c)-
1)-1a (1 -a).

Proposition 2 is a special case of a very general theorem of Fabian (1968). The
proof of Theorem 1 in terms of these propositions is as follows"

Proof of Theorem 1. Since d, _-< n a, we have

E(
n=l n+l/ .=I

2a--2

So

Now write

1 1 n-1

(A2) f, (:) - 1 (I(:j, X’+I, hi+l)- 2hj+lf(Oj))/(2hi+l) +- Y. f(Oi),
n/=o n/=o

where 0i is such that IOi-il<-hi+l and

P{i hi+l Xj/l j + hi+l} 2hi+lf(Oi).

Such quantities exist by the mean value theorem. Since (.) is bounded, the second
term in (A.2) is bounded. The boundedness off and the assumptions on {h,} imply that

n--1

Y. (I(, Xi+l, h+l)-2h+lf(Oi).)/(2fh)
/=0

is an 2-bounded martingale and therefore converges almost surely to some limit.
Kronecker’s lemma (see Chung (1974, p. 123)) then implies that the first term in (A2)
tends to zero. Hence d, is bounded away from zero and thus Y’.,= d,/(n + 1)= oo
almost surely. So the assumptions of Proposition 1 hold and thus , converges almost
surely to :. This, in turn, implies that the 0i’s in (A.2) converge almost surely to .
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Since f is continuous at , this means that d converges almost surely to f().
Therefore, by Proposition 2, /(?,-() converges in distribution to the desired
limit. [3

To complete our argument, we must prove Proposition 1.
Proof ofProposition 1. Define the following quantities:

dn
n + 1

(Z(’n’Xn+I)-F(L))

and

Bn d--" (F(.)-F())/(-.-).
n+l

Note that B. _>-O. In terms of these quantities the error ,,/1- can be written as

(A3) (n+l-s) (, :)(1 -B,)+A,.

This identity can be iterated to obtain

(A4) (n+l--:)---(0--) fi (1-Bi)+ . At, fl (l-B/).
1=0 k =0 /’=k+l

The sums =oAk converge almost surely since the assumptions on d, imply that they
form an OZ_bounded martingale. Furthermore, B, _-> 0 for all n and B,- 0 almost
surely since f(s) exists and d,/(n + 1)-0 almost surely. These facts, along with a
modification of the argument used to prove Lemma 2 in the appendix to Albert and
Gardner (1967) imply that ,, is almost surely bounded. This, along with the assump-
tions that f(s) >0 and that Y’.,__ (d,/(n + 1)) oo almost surely, implies that En= B,
oo and therefore Hn__x (1-B,)=0 almost surely. Now the lemma mentioned above
may be applied directly to obtain the desired result. [3

Aeknowletlgments. The author would like to thank Lee W. Schruben for suggest-
ing this problem, William F. Eddy for his valuable comments on a preliminary draft
of this paper, and Diane Lambert for many helpful discussions.
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IMPROVING THE ACCURACY OF COMPUTED SINGULAR VALUES*

J. J. DONGARRA

Abstract. This paper describes a computational method for improving the accuracy of a given singular
value and its associated left and right singular vectors. The method is analogous to iterative improvement
for the solution of linear systems. That is, by means of a low-precision computation, an iterative algorithm
is applied to increase the accuracy of the singular value and vectors; extended precision computations are
used in the residual calculation. The method is related to Newton’s method applied to the singular value
problem and inverse iteration for the eigenvalue problem.

Key words, singular values improvement, iterative method, singular values

1. The basic algorithm. In a recent paper, Dongarra, Moler and Wilkinson [1]
described an algorithm for improving an approximation to a simple eigenvalue and
the corresponding eigenvector. In this paper we extend and modify the algorithm to
cover the singular value problem. We know that the singular values of a matrix are
well conditioned in the sense that small changes in the matrix result in small changes
in the singular values. The singular vectors may not be well determined and may vary
drastically with small changes in the matrix. In [3], Stewart describes a somewhat
analogous procedure for determining error bounds and obtaining corrections to the
singular values and vectors associated with invariant subspaces. Here we describe a
procedure for improving a single or arbitrary singular value and singular vectors using
the previously computed factorization.

We begin with a brief description of the basic algorithm.
Given an m x n rectangular matrix A, we are interested in the decomposition

(1.1) A=UXVT,
where U and V are unitary matrices and E is a rectangular diagonal matrix of the
same dimension as A with real nonnegative diagonal entries. The equations can also
be written as

(1.2) Avi --O’iUi

and

(1.3) A ui trivi for each singular value ri.

If o’, u, and v have been derived from some computation on a computer with finite
precision or by some insight into the problem, they are generally not the true singular
value and vectors, but approximations. We know, however, that there exist/z 1,/:,
y, and z such that

(1.4) A(v + y) (tr + tz 1)(u + z)

and

(1.5) A T (u + z) (o" + tzz)(V + y),

where/x 1, txz, y, and z, when added to computed r, u, and v, give the exact left and

* Received by the editors February 5, 1982. This research was supported in part by the Applied
Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S.
Department of Energy under contract W-31-109-Eng-38.

? Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439.
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right singular vectors and the exact singular value. The corrections/xl and Ix2 come
about by the separate nature of (1.2) and (1.3). We compute the correction to er as
/ (/ +/2)/2.

The above equations can be expanded to obtain

and

(1.6)

Ay -o’z I,* lU O’U -Av + la, 1z

A rz -o’y I&2V O’V -Aru +2Y.
If the orthogonality conditions

(1.7)

and

(v+y)r(v+y)=l

(u+z)r(u+z)=l
are included, we then have m + n + 2 equations in m + n + 2 unknowns. We can now
rewrite the equations in matrix notation to obtain

-o’I A -u 0 z / o’u -Av + la, 1Z l
Ar -o’I 0 y [o’v -Aru +/-62y(1.8)
2u r 0 0 bt ! 1-- u Tu z Tz 1"
0 2v r 0 >2 \ 1-vrv-yrY /

Note that this is a mildly nonlinear matrix equation. We can determine the unknowns
(z, y, a, 2)r iteratively by solving

Z(P+I’\ o.(P’lg(P’_Av (p,/-r(P)I A -u (p) 0

y(p+l) r(.,v (., Au(., +U(f,y(.j(1.9)
2 ’r 0 0 /.(lP+1) 1 U(")U(P) Z(P)Z(V)1’

(p+l)/ 1 V()V(P) y(P)y()2V() 0 2

to obtain corrections to u (p), v (). and () by the updates

U
(p+l)

U
(p) + Z (p+l)

(p+l) (p) (p+l)v =v +y

"+ "+("+ +"+)/2.
If A is m n, then this is an (m + n + 2) (m + n + 2) system to bc solved. If this system
is solved, wc can compute corrections , y, and z to the singular value and the singular
vectors, thereby obtaining a more accurate value for the singular value and singular
vectors.

If we handle this as we do in the eigenvalue case [1], we will improve the accuracy
of , u, and v. The accuracy obtained by the algorithm will be full working precision,
with only the residual calculations (the right-hand side of (1.9)) done in extended
precision.

2. Relationship to Newton’s method. The algorithm as described above can bc
derived by the use of Newton’s method applied to (1.2) and (1.3). Wc define functions

fi and f as follows:

f(u,v,,2)=Av-u, f3(u,v,,z)=u-l,
(2.)

f(u, v, ,)=A -v, /4(u, v, ,)= v% 1,
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and

f(x) (/(x), h(x), f(x), f.(x)),

where

X
0-1

0"2

The approach is to find the zeros of f(x). Newton’s method applied to this problem is

(2.2) ft(xi )(Xi+ Xi --f(xi ),

where

The derivative of [(x) is

(2.3) f’(x)

Xi

u(i)\
l)

(i)

/-0-11 A -u 0
Ar --0-2[ 0 --V

2U T 0 0 000 20 T 0

The above method expressed in matrix notation is then just a restatement of (1.8),
ignoring the second order terms in the right-hand side.

Notice that since the method is equivalent to Newton’s method, we could compute
the left and right singular vectors, given a close approximation to the singular value.

3. Effects of various factorizations. If we have computed the singular value
decomposition and retained the matrices produced during the factorization, each
singular value and the corresponding singular vectors can be improved in O(mn)
operations. We will assume that the matrices U, E, and V are available such that
A UEVT. Then the coefficient matrix in (1.8) can be decomposed into the form

(3.1)
0 V 0 0 -0-sI 0 -es VT 0 O,o o o/leo 0 0
0 0 0 1 e 0 0 0

where es is the sth column of the identity matrix and o’s is the approximation being
improved.

This factored form can be used to simplify (1.8). Since U and V are orthogonal,
systems of equations involving the left and the right matrices of (3.1) can be easily
solved by simply multiplying by the transposes. Systems of equations involving the
matrix in the center can be handled by solving 2 x 2 or 4 4 subsystems of equations
as can be seen from the nonzero structure of the matrix:
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(3.2)

If we have a bidiagonal factorization of A, say A UBV where B is bidiagona!,
then we can improve the accuracy in O(mn) operations. Let us assume we have the
matrices V and B from the bidiagonalization procedure. We will concentrate only
on the matrix

This matrix is the interesting part of the one in (1.8) and can be thought of as a rank
2 modification of that equation. The matrix can then be written as

1--A V 0 -rZ +1B 7"B 0 Crv(3.4)

Note that solving systems based on this factored form is a simple task since V- V.
The only actual need for an equation solver comes from

1__B(3.5) -z + n,
and this matrix is tridiagonal. Thus, given the bidiagonal matrix and the V matrix of
the transformation, we can improve the accuracy of the singular values.

If we have instead the QR factorization of A, namely A QR, where R is upper
triangular and Q is orthogonal, then we can improve the accuracy of the singular
value in O(mn + n 3) operations, provided we have some approximation to it. We will
concentrate on the matrix in (3.3). This matrix can be rewritten in factored form as

(3.6) __1A 7- Q 0 -trI + 0 Q

As in (3.4) it becomes a matter of solving equations with a matrix of the form

(3.7) -o-I + I--RT"R.
Unlike (3.5), this matrix is full and, unfortunately, the factor R cannot be used to
simplify the process since the matrix R rR is being modified by a rank n matrix, trI.
Equation (3.7) requires a further factorization to solve systems based upon it.
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4. Convergence of the update process. The convergence results for this method
are the same as for the eigenvalue case. We state the results here but omit the proof
which can be found in [1].

In the presence of round-off error, if the initial error in the singular value is small
enough in some sense and the singular value is an isolated one, the iterative process will
converge.

ff working precision is used in computing the approximate singular values and
extended precision is used in the residual calculation, then when the method converges,
it produces results that are accurate to at least full working precision.

The method is equivalent to Newton’s method; therefore, the convergence is
quadratic.

The method just described has a deficiency" When there are multiple singular
values, the matrix in (1.8) becomes ill-conditioned. The degree of ill-conditioning is
related to the separation between the singular value being improved and its closest
neighbor. Existence of close or multiple singular values can be monitored by examining
the condition number of the matrix in (1.8). If the matrix of (1.8) has a large condition
number, then the iteration will converge with a less than quadratic rate. For identical
singular values, the matrix involved is exactly singular.

This deficiency can be illustrated by an example. For a 2 x 2 system the matrix
has the form

where o- is an approximation to ors. If any o’ is close to o-s, then this system will be
ill-conditioned, and the conditioning depends upon 1/(0--0-i). In this situation one
cannot improve just one singular value but must work with a cluster of them, as well
as the invariant subspace of singular vectors.

5. Results. The following numerical tests were run on a VAX 11/780. The initial
reduction was performed in single precision; double precision was used only to compute
the residuals and to add the correction to the previous result. In single precision, the
working accuracy is 2-28; in double precision, the accuracy is 2-56

The matrices used here come from the original paper by Golub and Reinsch [2].
The first matrix has the form

/22 10 2 3 7\
14 7 10 0 8
-1 13 -1 -11 3
-3 -2 13 -2 4
9 8 1 -2 4
9 1 -7 5 -1
2 -6 6 5 1

\ 4 5 0 -2 2/

with singular values

0-1 x/1248, 0-2 20, 0-3 x/84, 0"4 0"5 0.

The results from the improvement algorithm on this problem are given in Table 1.
All results were achieved using single precision computations except to accumulate
the residuals. The method used was based on the factored form of (3.1).
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TABLE 1

Iteration r u ru v rv
0 35.3270149 0.999999718 0.999999683

35.327043465315658 1.000000000000101 1.000000000000304
2 35.327043465311387 1.000000000000000 1.000000000000000

true 35.327043465311387419

0 19.9999790 0.999999520 0.999999326
20.000000000006048 1.000000000003621 1.000000000003431

2 20.000000000000000 1.000000000000000 1.000000000000000
true 20.0

0 19.5958881 0.999999043 0.999999379
19.595917942277176 1.000000000003258 1.000000000003183

2 19.595917942265425 1.000000000000000 1.000000000000000
true 19.595917942265424785

0 0.00000718535284 0.999998454 0.999999228
-0.000000000004162 1.000000000000745 1.000000000000306

2 0.000000000000000 1.000000000533098 1.000000000281307
true 0.0

0 0.00000120505399 0.999998900 0.999999509
-0.000000000000479 1.000000000000304 1.000000000000061

2 0.000000000000000 1.000000018476308 1.000000001164373
true 0.0

The results in Table 1 show the iteration converging very rapidly. The singular values
are initially correct to working precision, and two iterations have gained full extended
precision.

For the next example we use a standard symmetric eigenvalue problem. The
matrix, W2+k+l [4], is symmetric tridiagonal, and has some pathologically close eigen-
values and singular values. It is defined by the relations

ai=k+l-i, i=1,...,k+l,

ai=i-k-1, i=k+2,...,2k+l,

/3i 1, =2,. ., 2k +1,

where k 5, a is the ith diagonal element, and/3 is the ith subdiagonal element.
See Table 2.

TABLE 2

Iteration tr uru v rv
0 5.7462210 0.999998079 0.999997771

5.746231847961203 1.001536038280316 1.001536023270078
2 5.746231833605774 1.000033093486984 1.000033093488725
3 5.746231833805267 1.000000000729813 1.000000000729813
4 5.746231833809865 1.000000000000009 1.000000000000002
5 5.746231833809865 1.000000000000000 1.000000000000000

0 5.7461471 0.999998012 0.999997719
5.746157555822260 1.000863731344646 1.000863745222875

2 5.746157545424549 1.000016916083231 1.000016916084818
3 5.746157545577390 1.000000000495525 1.000000000495525
4 5.746157545580572 1.000000000000011 1.000000000000011
5 5.746157545580572 1.000000000000000 1.000000000000000
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The singular values displayed in Table 2 are the largest ones of W-i and happen to
be the closest. The matrix has a condition number of 105, as a result, each iteration
makes an improvement of approximately three digits. Note the contrast to the previous
case where the matrix was well conditioned and each iteration gained a full seven digits.

6. Multiple singular values. We are interested in improving more than one
singular value at a time. We are motivated to do so since the approach for improving
one singular value breaks down when there are multiple singular values with close
numerical values. For simplicity we will restrict the discussion initially to two singular
values o’1 and 0-2 and the corresponding vectors Ul, Vl and u2, v.

We know that the two-space in which Ul and u2 and Vl and v2 lie is numerical
well determined. Hence we have

(6.1)

and

A(/)I + yl)- (O’1 -[" 1 ll)(U -[- Z 1) -[- 121(U2 -[- Z2),

A (v2 + yz) 1 12(Ul -" Z 1)-[-(0"2 + 122)(U2 "- Z2)

AT (Ul + Z 1) (0"1 + 1 11)(/)1 q" Y 1) "[" 121(/)2 + Y2),

A r (u2 + z2) 1 12(/)1-1- Yl) + (0"2 -1-

where the corrections yi, z, and 1q are expected to be small.
From above we form

(6.2)

We will require in addition that the orthogonality conditions

[
(6.3) (Vi + yi) (V] + y])

1 ifi/

0-2 -F 122/’

112 .
0"2+t22/

and

(Ui ..[_ zi)T (uj ..F. Zj) {01 if i=/,
ifi/

be satisfied. For simplicity we will assume that the 2 2 matrix of (6.2) which contains
the correction to the singular values is symmetric, therefore, 112 121. In order to
produce the improved singular values this 2 2 matrix must be diagonalized.

Equation (6.2) together with (6.3) give rise to 2n + 2m + 6 equations in 2n + 2m +6
unknowns. This matrix equation has the form

A
AI
U2

T
/)2

2v

--o’21 A
AT" -0"2I
T

Ul
T

/31

--/)2 --/31

--Ul --U2

--/31 --/32

Z1

1:
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As in the case of a single singular value, if one has access to the matrix factorization
then the matrix problem can easily be solved.

In general, if we extend the procedure to handle k close singular values we have

A[vl +yl, )k +yk]-" [Ul -I-Z1,""", Uk + zk][diag (o’i) +M]

and

Ar[ul+z," ", u +z]=[v+y," ", v +yg][diag (cri)+M],

where rnij tij and M Mr and it is expected that y, z, and ti will be small. These
equations together with (6.3) lead to a system of equations of order k(m + n)+ k(k + 1)
and an eigenvalue problem of order k.
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APPROXIMATING CONDITIONAL MOMENTS OF THE MULTIVARIATE
NORMAL DISTRIBUTION*

JOSEPH G. DEKEN

Abstract. An approach to approximating the conditional moments of the multivariate normal distribu-
tion is presented. Symbolic manipulation (via MACSYMA) is used to derive a closed system of polynomial
approximations to the conditional normal moments (higher-order Shepard’s corrections) whch can be
iterated rapidly to obtain higher dimensional results from elementary forms. The motivation of this technique
is to make the E-M algorithm computationally feasible for explicitly treating interval (or rounding-error)
measurements in regression problems. An example with an ill-conditioned regression problem shows the
method’s effectiveness.

Key words. E-M algorithm, Longley data, MACSYMA, multivariate normal distribution, regression,
rounding error, symbolic manipulation

1. Introduction. If X1, X2,’’’, Xn are random p 1 vectors independently dis-
tributed according to a common normal distribution Y(IX, ), the maximum likelihood
estimates of Ix and are well known and easily computed"

_--! Xi .--! (Xi-)(Xi-)’.
n i=l n i=1

In particular, if we wish to estimate the regression of Xlo on Xll, , Xlo-1, the vector
I of regression parameters defined by

E(Xlp X11, X12, Xlp-1 [d,p -: (Xll-it./,1, X12-iu,2,’’’ Xlp- [J,p-1)

has a maximum likelihood estimate/ which is a function of eL. If we partition , as

where A is p 1 x p 1, 12 is p 1 1 and s is a scalar, the estimate is I A-1C.
If the components of the vectors Xi are censored, however, no such simple

maximum likelihood estimates exist. For example, some values X0 may not be observed
exactly, but only specified within a certain range. As one example, measuring instru-
ments for environmental or other contaminants may be able to record values below
a certain level only as trace." Such observations are then only known to lie in the
range of values between the lowest level detectable by the instrument and an upper
limit at which exact measurement becomes possible.

On a much wider scale, censoring is inevitable with numerical procedures, since
any observation cannot be recovered exactly from its finite representation. (For
example, an individual whose height is recorded as 189 cm" may be presumed to
have height more precisely measured somewhere in the interval [188.5,189.5)cm.
Such censoring due to rounding error is often inconsequential, but in ill-conditioned"
regression problems, when the matrix based on the rounded values is nearly singular,
the estimate may vary substantially when various values, all consistent with the
rounded observations given, are taken as the true" observations. A classic example
of such a problem is the data presented by Longley (1967), in which the rounding
error present leads to significant instability of the estimate (Beaton, Rubin, and

* Received by the editors November 5, 1979.
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Barone (1976), Dent and Cavender (1977)). If the recorded values in cases such as
this may be considered as obtained by rounding the "true" continuous observations,
then the correct maximum likelihood estimate/3, incorporating this rounding explicitly,
exists and may be substantially different from that obtained by substituting the
midpoints of the rounding intervals (the rounded values) for the true values.

The kinds of censoring described above may be viewed in the general framework
of "inconplete data". That is, our rounded observations Xi are used only to define
intervals within which the actual values Y0 fall. The E-M method (Dempster, Laird
and Rubin (1977)) of finding the maximum likelihood estimates based on X,..., Xn
is attractive here because if the actual values Y1, , Y, were known, these regression
estimates would be readily computed. The E-M method proceeds iteratively, each
stage involving an expectation (E) step followed by a maximization (M) step. From
starting values (o), ,(o), one finds the expected values I)I+1):=E)(Y]X),

(i):=E (YiYi]Xi) (the E-step), and computes updated estimates (i+a), (i+a) as
the maximum likelihood estimates from y(i+l) and Z(i+l):

(/+1)1 (j+l) (j+l).__ 1 i(/+1) : i
n i=1 n i=1

(the M-step), repeating the procedure until the estimates converge.
In the E-step above the expectation E(i) required is the expected value (either

of Y or of YY’) when Y has a multivariate normal distribution with mean (i) and
variance (i) and is restricted to the interval determined by X. The necessity of calculating
this restricted (i.e. conditional) expectation, particularly in multidimensional regression
problems, motivated the work described here.

2. Approximate conditional moments. The conditional moments such as E(X)
of a multivariate normal random variable X (Xa, X2,’’’, Xp), when X is restricted
to a subset A = P, are not readily obtained numerically, since the required integration
in p-dimensions is time-consuming except for very small p. We present here an
efficient approxiation scheme for these moments, which makes the computation
practical for moderately large p.

For convenience of description, we restrict attention to sets A of the form

I1 x [2 x"" [, where all the . are intervals, but the approach is more general, as
indicated below. We start by observing that the approximations to the ratio

x exp- dx
s- 22

exp dx
_, 2

obtained by the first terms in a Taylor series around 0 may be written as polynomials
in #’

Ek ck (s, t, o’2)/.1, c.
---0

That is, the sum of the first terms of a Taylor series for this ratio about 0 is of the

form
q

(1) 2 cL(r2, tz, s)t2,
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but also may be represented by identifying the coefficients of/x in (1) as

2q

2, s,
ct=0

For example, (lettting v 2), and expanding to order 4 gives

S + (
s )t2 2V (S + (S

E1 + 3 t4 +’’"
3v 45v

( -lst2v +2% +S2t4)s 1 +
45v

3+ 45v +kl5v 45v
+...

(e.g. c(v, s, t) st4/15v , c3(v, s, ) -t4/45v, ).
Since E, the conditional expectation of X, is approximated by a polynomial in, for any k, it follows that the conditional expectation of any polynomial in X,

E(po+pX +pX+ "+pX)==opE is also approximated by a polynomial
0(2=0pc) in , the mean of X. As will be shown below, this polynomial
scheme gives a closed system" when we consider multivariate normal N and the
conditioning {X I, ] 1, 2, , p}, I (s t, s + t). That is, we guarantee that if
g(X) is a polynomial, the approximation

E(g(X.)lx Ix, Xz 6 Iz, X, zip)

E(h l(X1, Xz, X,-I)IX1 Ii, Xp-1 Ip-1)

E(hz(Xl, X2,’" ", Xo-z)lXl I," ", Xp-2 10-=)

E(h-I(X)IX )

involves functions ha, h2,""", hp- at each stage which are always polynomials, and
hence can be approximated by linear combinations of approximations of E.

As an illustration, consider (X, X) bivariate normal, with means , 2, variances, , and regression such that (XzIXa) is normally distributed with mean 2+
21(/1 1) and variance. To approximate E(XzX [, X2 I2), we have:

E(X2IX1 11, X2 12) E(E(X2IX1, X2 I2)X1 I).

Using the fact that X21X has a normal distribution, the innermost expectation above
is replaced by

E(X2]X1 X2 12) Z c lj(0"221, $2, t2)[lll, X2IX1
i=0

E Clj(tYl, s2, t2)(Iz2+21(Xl--tXl))j"
]=0

This last sum is a polynomial O(Xl)=: jm=0 qjX]l, e.g. if m 2,

q0 c10(o’221, s2, t2)+c11(cr221, s2, tz)(txz-/321/xa) + c12(tx2-/321/xl)2,

q (711(0"1,
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and a final approximation gives

E(Q(XI)IXII1) Z qici,(o.2a, sl, tl) Ixo.
a=O

3. Multiple integration. The derivation of conditional moments for multivariate
polynomials

p

O(X) qo + Z qiXi + Z qqXiX. + Y’, qq,XX.X, +..
i= l<=i<-]<=p

when X is multivariate normal can be outlined simply.
1) If we fix (X1,’’’, Xp-1), X, is multivariate normal and Q(X) is a polynomial

in X0. Hence the conditional expectation of Q(X), with (X1,’’’ ,Xp_) fixed and
Xo I,, is approximated (using Taylor’s series as outlined above) by a polynomial in
the mean of (xp[ gl, ", Xp-1) ’’-’. IX :.

2) The coefficients of the polynomial obtained in step 1 above are themselves
polynomials in (Xa,... ,Xo-l). The conditional mean Ix* (because of multivariate
normality) is a linear function of (X1,’’’, X,-1). Thus X has been eliminated and
for (XI;’", Xp-1) fixed, we have a new polynomial )*(X1,""", Xp-1).

3) Letting Y N- :- (X1, , Xo-1), Y is multivariate normal, and the problem
is reduced to finding E{Q*(Y)[ Y1 I1,’", Yp-lelp-1}. Successive applications of
steps 1 and 2 eventually lead to the one-dimensional case.

Specifically, we approximate (A) the expected value ofX first by a sum of terms
of the form Ix i,lx,...,x_. This conditional mean is expanded (C) as Ix plx,...,x,,_x
(bo1X + bo2X2 +" + bpp-lXe-1), which is then reexpressed via the binomial theorem
(B) as a sum of terms of the form (b,lXl + bp2X2 +’’" + bpp-2Xp-2)a(bpo-Xp-1), and
the process A-C-B is then repeated, with X-I, X-2, ", X.

In six dimensions, for example, the process begins:

A C
kX/ -- /./, 6[2345 (b61Xl + b62X2 +" + b65Xs) k

B A k(b61Xl +" + b64X4) (b6X) (b61Xl +" + b64X4)/ix [24
c

(b61X1 + b62X2 +" + b64X4) (bsiX1 +X2 --" -1- b54X4)/
B

(b61Xl + b62X2 q- b63X3) (b51Xl + b52X2 -+- b53X3)kbi64b 54-x4k’v’i+k
A

(b61X1 + b62X2 + b63X3) (b51Xl -+- b52X2 + b53X3)kix 1321
c

(b61Xl -k- b62X2 q- b63X3) (b51Xl + b:zX:z + b53X3)k (b41Xl + b42X2 + b43X3)

B

4. A numerical implementation. In three dimensions, the conditional expecta-
tion problem is defined in terms of the numerical quantities Ix1, Ixz, Ix3, b2, b31, b32,
tl, )2, v3, sl, $2, s3, tl, t2, t3. That is, it is required to find the conditional expectation,
in the region (s l+ tl, sz + t2, s3 + t3) of a polynomial in the random vector X, when X
has a multivariate normal distribution with mean (Ix1, Ix2, Ix3), regression coefficients
b21, b31, b32, and (conditional) variances Var (X3]Xa, X2) v3, Var (X2[Xa) v2,
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Var(Xl)=Vl. Numerical functions suitable for use in a FORTRAN program
(3’,,/3, s,.., below) are derived which give the expectation explicitly as a function of
the input quantities. The polynomial to be approximated is presumed to be of degree
at most two, and perhaps bivariate in X2 and X3. (This case is general enough for all
the means, squares, and products EX1, EX2, , EX, EX, , EXIX2, ,
EXaX3.) In fact, we describe here the approximate values of E(X3), E(X), E(X2X3),
since other expectations reduce, by interchange of variables, to these three. The
approximation used will include powers of up to 4 inclusive, i.e.

3

EX E c,, (s, t, v )z .
ct=0

Appendix A contains an extensive list of the functions Cjk, which have been computed
using the symbolic computation system MACSYMA at MIT. Card versions of these
functions containing FORTRAN assignment statements of the form "C(J, K)
are available from the author.

To approximate E(X3), the integration on X3 is first carried out, yielding

3

2 Cla(S3, t3, l)3)(3-1,61631-2b32+Xlb31-k-X2b32)

2 Cla(S3, t3,/23) (b31Xl)/3(b32X2)V(3-t.l, lb31-tz2b32) -(/3+v)
,=o /3=0 v=o /33’

The above expression is of the form

3 3--ct

ratlX2,
=0/3 =0

where

3

r/3 := b1632 Y’. ( ) "/ S 3 3 U 3 (ld" 3 l’t" b31-1d" 2b 32
"-( +/3

Integration on X2 then yields

3 3-a

( 3

) 6r c/3v(s2, t2, v.)(Ix2-lzab21+b21X1)v . sX,
=0/3=0 3,=0 =0

where

E Y ra/3 b21 c/3v(s2, t2,/22)(/2-/zlb21)
a=(a-2)vO /3=0 rl=a-a O--t

and the final form is

6 3

2 Sa 2 C/3($1, tl, Vl)/d, .
=0 /3 =0
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The approximation of X32 is carried out in the same fashion"

6 3

LzX-- S’a Ca/3(SI, tl, Vl)t.6I,
=0 /3 =0

3

r,/3 b31b32 E O
C23,($3, t3,/)3)(/z3-/.zlb31-/./2b32) v-(a+/3)

(Note that the only change is the substitution of C2/($3, t3,/93) for c13($3, t3, /93).)
To approximate X2X3, the first approximate integration is exactly as in

approximating X3, but the resulting sum is

3-,

X2
0/3=0

i.e. we have ro" ra(/3_l), fl 1, ,4- a. A second integration gives

Y rtl’" c/3r(s2, t2,/92)(/.t2-b21/Zl +b21X1)v

a=0/3=1 v 0

so the final result is

6 3

S E C/3(Sl, tl, Vl)tZf,
=0 /3 =0

where

3/ - (S t2,/9 )(2 tzxbz)s Y’. Y ro b 21 C133, 2,
8=(a-3)v0/3=l n=a-8 O

5. Illustration: the Longley data. The effect of rounding can be shown using the
Longley data (Longley (1967), Beaton, Rubin, Barone (1976)), which involves
economics data from the years 1947-1962:

X" gross national product implicit price deflator,
X2: gross national product,
X3: unemployment (in thousands),
X4: size of armed forces,
Xs" noninstitutional population,
X6: year.

These regressands are used to predict
X7" total derived employment.

The regressands are highly collinear and so the estimates/3, and : must be accurately
computed.
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For these data, the estimated means and covariances using the rounded values
(our starting estimates fio), ;o)) are

(o)
tz (101.68125, 387,698.4375, 3,193.3125, 2,606.6875, 117,424, 1,954.5, 65,317),

(0)

1.091790E4

9.971289E6 9.261894E9
5.867500E4 5.261660E7 8.186470E5
3.272113E4 2.895040E7 -1.081676E5 4.540351E5
6.890906E5 6.424134E8 4.183820E6 1.653842E6 4.536314E7
4.774063E2 4.415418E5 2.787219E3 1.296031E3 3.086006E4 2.125000E1

_3.449687E5 3.218721E8 1.546034E6 1.047826E6 2.199559E7 1.522588E4 1.156305E7_

The vector of regression coefficients is"

.506003E1, -3.581033E- 2, -2.020214, -1.033223

-5.111016E-2, 1.829138E3].

With the exception of the time variable X6, these data may be reasonably modeled
as multivariate normal. We compute here the maximum likelihood estimates in possible
situations:

1) The "year" variable X6 is considered exact, all other variables considered as
being accurate only to the number of places given. That is, if Yi denotes a "true"
value, we have Y1 (XI -.05, Xl + .05), Yi (Xi -.5, Xi + .5), 2, 3, 4, 5, 7; Y6 X6.

2) All variables are considered accurate only to the number of places given.
Identical to case 1 except that Y6 (X6-.5, X6 + .5).

Case 1. Maximum likelihood estimates"

(101.68125, 387,698.4375, 3,193.3125, 2,606.6875, 117,424, 1,954.5, 65,317),

1.091782E4

9.971276E6 9.261894E9

5.867468E4 5.261660E7 8.186469B5

3.272072E4 2.895040E7 -1.081674B5

6.890927E5 6.424134E8 4.183820B6

4.774064E2 4.415418E5 2.787219B3

_3.449686E5 3.218721E8 1.546034B6

4.540035E5

1.653842E6 4.536314E7

1.296031E3 3.086006E4

1.047826E6 2.199559E7

2.125000E

1.522587E4 1.156305E7

/ [1.483547E1, -3.575403E- 2, -2.019400, -1.033005,

-5.153857E- 2, 1.828820E3].

In the covariance matrix and regression vector above, we have underlined digits which
differ from the values in (o) and/(o). On the one hand, the differences are not great
in the regression vectors / and /o), although /]o) and /5) have only two-digit
accuracy. On the other hand, the uncertainty in the values is probably understated
(Beaton, Rubin, and Barone judge the accuracy of the X’s at only two significant
digits), and rounding in X6 time, the most severe case, has been eliminated.



MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION 727

Case 2. Maximum likelihood estimates"

1.091782E4

9.971248E6 9.261894E9

5.867333E4 5.261660E7 8.186468E5

3.272049E4 2.895040E7 -1.08167_5E5

6.890927E5 6.424134E8 4.183820E6

4.787684E2 4.427704E5 2.803387E3

_3.449691E5 3.218721E8 1.546034E6

4.540350E5

1.653842E6 4.536314E7

1.291858E3 3.095919E4

1.047826E6 2.199559E7

2.141268E1

1.526929E4 1.156305E7_

/ [-2.864E1, 2.428E- 2, 1.135, -7.672E 1, -2.671E 1, 8.561E2].

The regression coefficients/ obtained are in complete disagreement with the values
in/o), and the correlation matrix clearly shows that time (row six) is the culprit. The
multivariate normality in this example may be suspect, but there is reasonable agree-
ment with the coefficient values obtained by Beaton, Rubin, and Barone (1976) in a
Monte Carlo study where an additional significant digit is generatedat random and
added to each of the observations. The mean and median values of/3 they obtained
were"

mean/" [-2.644E1, 3.44E- 2, -9.637E- 1, -7.209E- 1, -2.804E- 1, 6.370E2],

median/" [-3.164E1, 3.63E- 2, -9.384E- 1, -6.978E- 1, -3.065E- 1, 6.526E2].

Appendix A. Values of cjk

1 1
Interval (s t, s + t), X 7/(/2,, 0"2), W --.

k=O

k=l

k=2

k=3

k=4

k=5

s(t2w(t2w(w(2t2(s2w(s2w +4)+ 1)- 21s2)-42) + 315)-945)
945

t2w(t2w(w(2t2(s2w(5s2w + 12) + 1)- 63s2)- 42) + 315)
945

st4w3(4t2w(5s2w +6)-63)
945

t4w3(4t:Zw (5s:Zw + 2) 21)
945

2st6w
189

2t6w
945.



728 JOSEPH G. DEKEN

k=0

j=2

t2(2 w( t2( w(/2(2s2 w($2w S2W + 5) + 2) 21 $2( S2W + 3)) + 21 + 315s2) 315) -945s

k=l

k=2

k=3

k=4

k=5

k=O

945

2st2w(t2w(w(2t2(s2w + 3)(5s2w + 1)- 63s2)- 84) + 315)
945

2t4W2(W(2t2(2$2W(5S2W +9)+ 1)-- 63S2)--21)
945

2st4w3(4t2w(5sZw +4)-21)
945

4t6w4(5s2w + 1)
945

4st6w
945

/’=3

S(t;Z(w(t2(w(t(s2w(2s2w(s2w +6) + 3)-- 14)-- 21S(SW +4)) + 105) + 315S2) 315)-- 315S 2)

k=l

k=2

k=3

k=4

k=5

315

t:Zw(t:Z(w(tZ(s:w(lOs2w(s2w +4)+ 1)-- 12)--63S(S-W + 2))+63)+ 315S z)
315

M4W2(W(t2(2S2W + 5)(1052W 1)-- 63S2)--42)
315

14w3(t2(4S2W(5S2W + 6) 3) 21S)
315

2st6w4(S$2w + 2)
315

2s2t6w5
315

/’=4

k=0

8sSt6w + 56s6t6w 4 _4s4t6w 84s6t4w 192st6w -420sat4w + 36t6w + lO08sZt4w
+ 1260s4t2w 189t’_ 1890s2t2-945s4

945
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k=l

k=2

k=3

k=4

k=5

4St2W(t2(w(t2(S2W(2S:zW(5S + 24)- 13)- 54)- 21s2(3s2w + 8)) + 189) + 315s 2)
945

4t4w2(tZ(s2w(2Os2w(s2w + 3)-21)-9)-63s2(sw + 1))
945

4st4w3(t(4sw(5s2w + 8)-9)- 21s 2)
945

8s2t6w4(5s2w+3)
945

8s3t6w
945

/’=5

k=O

(2s8t6w + 16s6t6w4 8s416w 21s6taw 112s2t6w 126sntnw + 63t6w + 462st4w
+ 315s4tZw 189t4-630s2t 189s4)

189

k=l

t2w (lOsSt4w 4 + 56s6t4w 36s4t4w 63s6t2w 144s2t4w 210s4t2w + 27t4 + 378s2t + 315s4)

k=2

k=3

k=4

k=5

189

St4W2(2t2(sZw(2s:Zw(5s2w + 18)-23)- 18)-21s(3s2w +4))
189

st4w3(2t(lOsw(s2w + 2)-9)- 21s)
189

2s3t6w4(5s2w +4)
189

2s4t6w
189

/’=6

k=O

(4s lt6w + 36s 8t6w4 3656t6w 42sSt4w 43054t6w 294s6t4w + 450s2t6w + 1470sat4w
+ 630S t2W 45 6 945s 4 1575 4 315s 6)

315

k=l

2stZw (10s t4W4 + 64S t4w 68S4t4W 63S6t2W 300s t4w 252S4t2w + 135 4 + 630S + 315 4)
315
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k=2

k=3

k=5

2s2t4w2(2t2(2s2w(s2w + 5)(5s2w-4)-45)-21s(3s2w + 5))
315

2s3t4w3(2t2(2sw(5s2w + 12)- 15)-21s 2)
315

4s4t6w4(s2w + 1)
63

4s5t6w
315

/’=7

k=0

(2s 1t6w5 + 20s8t6w4 3 ls6t6w3 21sStnw 366s4t6w 168s6t4w + 58552t6w + 1071s4t4w
+ 315s6tw 135t6_945st4_945s4t2_ 135s 6)

135

k=l

s2t:Zw(10s8t4w 4 + 72s6t4w 109s4t4w-63s6t2w- 540s2t4w 294s’t2w -4- 405t4 / 945s2t + 315s4)

k=2

k=3

k=3

k=5

315

s3t4w2(t2(s2w(4s2w(Ss2w + 24)- 123)- 180(-63s2)s2w + 2))
135

s4t4w3(t:(4s2w(5s2w + 14)-45)- 21s 2)
135

2sSt6w4(5S2W +6)
135

2s6t6w
135

/’=8

k=0

s(16st6w + 176s8t6w- 376s6t6w 168sSt4w3 4592S4t6w2-1512s6t4w + lO080s2t6w
+ 11760s4t4w + 2520s6tw 3780t6-13230s2t4- 8820s4 945s 6)

945

k=l

8s3t2w(lOsSt4w4 + 80s6t4w3- 159S4t4W2--68s6t2w2--882s2t4w --336s4tw + 945t4 + 1323s2t + 315s)

k=2

945

8S4t4w2(t(s2w(4sw(5sw + 27)- 175) 315)- 2ls(3sw + 7))
945
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k=3

k=4

k=5

8sZt4w3(t:Z(4s2w(5s2w + 16)-63)- 21s 2)
945

16s6t6w4(5S2W + 7)

945

16s7t6w
945

/’=9

k=O

s3(2s t6w + 24sSt6w 4 66s6t6w 21 sSt4w 848sat6w 210s6t4W + 2394Szt6w
+ 1932s4t4w + 315s6tZw- 1260t2--2646SZt 1260sat 105S 6)

105

k=l
4tZw (10s8t4w4 + 88S6t4W 218S 4t4w --63s6t2w 1344S2t4w 387S4tW + 1890t4 + 1764St + 315S4)

k=2

k=3

k=4

k--5"

105

5t4w2(4t2(s2w(Sszw(s2w + 6) 59) 126) 21s2(3s2w + 8))
105

S6t4W3(412(S2W(5S2W + 18)--21)--21S 2)
105

2sTt6w4(5s2w+8)
105

2s8t6w
105

/’=10

k=0

s4(4slt6w + 52sSt6w4-176s6t6w -42s8t4w 2394s4t6w -462s6t4w + 8316st6w
+ 4914s4t4W + 630s6tZw 5670t6- 7938s 2t4- 2835s4 2-189S 6)

189

k=l

2s w(lOsSt4w4 + 96s6t4 W 286S4t4w 63s6t W 1944s2t4w 420S4t W + 3402t4 + 2268s2 + 315S4)

k=2

k=3

189

2s6t4w(2t2(s2w(2sw(5sw + 33)- 153)-378)-63s(s2w + 3))

189

742s w (4t (5sw(s2w+4)-27)-21s)
189
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k=4

4S8t6W4(5S2W -I- 9)
189

k=5

4s9t6w
189
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A NEW CLASS OF CYCLIC MULTISTEP FORMULAE FOR
STIFF SYSTEMS*

P. TISCHER- AND R. SACKS-DAVIS,"

Abstract. A new class of two-stage cyclic multistep formulae is developed for the numerical integration
of systems of ordinary differential equations. The formulae are suitable for the solution of both stiff and
nonstiff systems. They are derived by matching the characteristic polynomials of two-stage cyclic formulae
with those of a certain class of second derivative formulae.

Key words, cyclic multistep formulae, stiff ordinary differential equations

1. Introduction. In this paper we consider methods based on the cyclic use of
linear multistep formulae for the numerical integration of the differential equation

y’=f(x, y), x s[a, b],

with initial condition

y(xo) yo, xo=a.

WhenM different multistep formulae are used cyclically to obtain an approximate
solution at M successive values of the independent variable, the resulting method is
called an M-stage cyclic composite method.

The properties of these methods are, in general, different from those of their
constituent formulae. For example, Dahlquist [2] has shown that a k-step linear
multistep formula of order p can be stable only if

<fk+l ifkisodd,
P =[k+2 ifkiseven.

Yet, Donelson and Hansen [3] derived stable cyclic methods from k-step formulae
of order 2k- 1 for k 2, 3 and 4. Furthermore, these methods were shown to be
globally convergent to order 2k. Donelson and Hansen’s approach to order is based
on the construction of an equivalent method or "auxiliary system." A different
approach to order is taken by Albrecht [1], who expresses an M-stage cyclic method
as a one-step method

* A * h4 * *Wn+l Wn -Jl- (Xn, w,,, Wn+l, h)

and considers the components of the local error in the directions of the eigenvectors
of the matrix . Albrecht also derives higher order cyclic k-step methods that are
stiffly stable.

A class of stiffly stable, cyclic composite formulae that has been implemented in
a variable stepsize, variable order code called STINT is described in [6]. The formulae
used in STINT exhibit improved stiff stability properties, order by order, over the
backward differentiation formulae (BDF) and include formulae of orders up to 7.

In this paper we derive a new class of cyclic formulae. Some desirable properties
of cyclic formulae suitable for solving both stiff and nonstiff equations are proposed
below.

* Received by the editors August 26, 1981, and in revised form April 30, 1982.
Department of Computer Science, Monash University, Clayton, Victoria, Australia 3168.
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(i) The extraneous roots at the origin should be equal to zero (as with the Adams
formulae).

(ii) The roots at infinity should be equal to zero (as with the BDF formulae).
(iii) The formulae should exhibit better stiff-stability properties, order by order,

than the BDF formulae.
There are also implementation considerations which are often overlooked when

deriving new methods. When solving stiff equations, it is common to use a Newton
iteration to solve the corrector equation. The iteration matrix used is of the form
akI hBkOf/Oy, where ak and Bk are the leading coefficients of the corrector formulae.
This matrix is expensive to reevaluate in factored form (see also [5]). In order to
reduce the number of reevaluations necessary to ensure fast convergence of the
Newton scheme over a cycle, it is desirable that

(iv) The leading coefficients of the multistep formulae should not vary within a
cycle.

In current implementations, the stepsize is not allowed to vary within a cycle.
This stepsize strategy best reflects theoretical studies of cyclic formulae. However, a
disadvantage of this approach is that if a step is rejected during the final stages of a
cycle, a stepsize reduction will be required and the work in calculating the solution
during the previous stages will be wasted.

For this reason we require that
(v) The number of stages within the cycle is limited to two.
Finally, it is required that
(vi) The leading truncation error coefficients of the multistep formulae used in

the cycle should not be "large".
We note that the formulae used in the code STINT fail to satisfy conditions (i),

(iv) and (v).
In this paper we observe that the stiff-stability properties of two-stage cyclic

formulae closely resemble those of second derivative formulae. By matching the
characteristic polynomials of the two-stage cyclic formulae with those of a certain class
of second derivative formulae we are able to find a class of cyclic formulae satisfying
conditions (i)-(vi). The new formulae exhibit improved stiff stability properties over
both the BDF and STINT formulae and include formulae of orders up to 8. These
new methods are globally convergent to order k and are based on 2-stage cyclic
formulae whose constituent multistep formulae are kth order. We also derive methods
with stages of order k that are globally convergent to order k + 1 in the sense of
Albrecht.

2. Two-stage cyclic formulae. Let us consider a two-stage cyclic composite for-
mula where each stage is a k-step linear multistep formula. We may write the first
stage as

(1)., () .*Otk y2n+kd-a(kl)--lYn+k--1 .t_.. "d-Oto y2n

o (1),e,h(l)f*2n+l +’"+po Ck) := 1,

and similarly the second stage as

t (k2)y * (/2) (2). *2n+k+l -[-C[ Y2*n+k +" "+t0 Y2n+l

(2), (2),e,--h(k J2n+k+l "’" "-+-0 JZn+l), (k2) :-- 1.
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We will adopt the notation of Albrecht [1] and set

z*,+ := (y*,+l, y*./, ,yL/),
0 1 0 0

0 1 0

0 0 1
(1) 1) (1)
0 -- 2 --1)1

and
(1)(1)(xe,,,z*2,,ZL+l; h):= (0, 0,..., 0, ilk J2+k +’" "+flCol)f:z,) T.

We may then express the first stage as the one-step procedure

Z$2n+l =A(1)zn + h(1)(x2n, Zn, Z$2n+l h).

If we denote by z2.+1 the vector composed of the exact solution:

z+ (y(x,+), y(x,+:),..., y(x,+))

and if the stages of the cycle are of order p, then for sufficiently differentiable y we

may write

Z2n+l A()z ( +-)2n +he )(x2n, z2n, z2n+l,h)+hp+l. Y
(p/l) (X2n)t(1) +O(h p

f-(1) Twith (1) (0, 0," ", 0,,..+1)
Similarly, for the second stage we may write

Z2n+2 A (2)Z2n+l + h( (2)(X2n+l, Z2n+l, Z2n+2; h + hP+l Y (p+l) (X2n)t(2) + O(h
/.(2) )T.with

---(i)Here, C’p+,, 1, 2, are the error constants of the stages. Finally, if we set
w, := z2, we obtain

w,,+l=.’{w,, +hc(x,,, w,, wn+l; h)+h’+ly(’+l)(x,,)’]+O(hp+2),
where

ft. := A(2)A ()

and

/(1) /-,(2) t(1) )T.:= (2) +A(2)t(1) (0, 0, 0, --p+l, -p+l --a (k2--) 1---, p+l
Thus we may express the two-stage cyclic composite method as a one-step method"

(1) * A *+h(x,,,, w* * "h),Wn+l Wn Wn+l

*where w, := z2*n. The method has a local error of the form hP+ly(P+l)(x,)?+O(h ’+2)
and the stability of the method is characterized by the eigenvalues of the matrix
=A2)A1.
DEFiNiTiON. Let the eigenvalues of := A2)A1) be /x, 1, 2,..., k. Then

the matrix is strongly D-stable if/x 1 and I,,i < 1, 2, 3, ., k.
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Generally, if the component formulae of the cycle are of order p, then the method
will converge with order p. However, Albrecht [1] has shown that it is possible for
the method to converge with order p + 1 if the vector appearing in the expression
for the local error has no component in the direction of the eigenvector of A
corresponding to x 1. That is,

k

(2) . diu(Ixi) with dl= 0,
i=1

where [u(/i), 1, 2,..., k} are the eigenvectors of . We assume that . has only
linear elementary divisors.

TI-mOREM (Albrecht 1 ]). If the following conditions hold"
(a) A is strongly D-stable,
(b) satisfies the Lipschitz condition

lira(X, yl, Z1; h)-t(x, Y2, z2; h)llklllYl-Yall+kallzl-zall

for x [a, b and h (0, ho],
(c) the starting values are of order p + 1,
(d) the local error is of the form hP+ly(t’+l)(x,){+O(h p+2) with satisfying (2),

then the method (1) converges with order p + 1, i.e.,

IIw* w.ll- O(hO+).
In order to simplify condition (d), Albrecht noted that an equivalent condition

to (2) is to require that

P r, 0 where rio p, p 0.

Now, we may use the fact that the matrices A (1) and A (2) are Frobenius matrices to
further simplify condition (d). In fact, for the 2-stage cyclic multistep formulae that
we are considering, the condition for higher order convergence reduces to a simple
relation involving the coefficients of the component multistep formulae.

LEMMA. Let
(i) 0i) 2i) )

Oeven O --0 "’0(4 +" +t[k/2
en, if is strongly D-stable, condition (d) is satisfied for 2-stage cyclic multistep
formulae g either

(1)() O, a (2) 0 and p+l 0(i) a
O

0 ande 2 1(ii) .+a + (a 0.even/ lp+l

Proof. Let p (Pl, P2, P)T. Then we may write the equations ( -I)p 0 as

(1)1 0 0 0 0 -ao
0 -1 0 0 0 --a

(1)

(1)1 0 -1 0 0 -ce2
(1)0 1 0 -1 0

0 0 0 0 0 -1
(1)0 0 0 0 1 --Ok_

(2) (1)
o k-lCg 0

(2) (1) (02O k-lO --0

(2) (1) 2)o k_lCg 2 0/

(2) (1) (22O k_lO 3 O

C (k2) log (k1!2 O (k2!3
(k2_)10 (kl__)1- ce (2_)2 1

If we label each of the above equations from 1 to k and sum either the even numbered
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equations or the odd numbered equations, then using the facts that if
(i) li) (3i)Oodd "--0 -F-O -+-" "+a2L(k+)/2]-

then
(i) (i)

Cgeven -1" Oodd --’0, 1, 2,
(by consistency) and

a) =1,

we obtain the following single equation"

i=1,2,

(3) (1) ( (k2)(1) (2)
O evenPk 10 -+- O )Pk 0.

(1) (2)Now, if Ceeven Ceeven 0 then the coefficient matrix, T _/, is of rank at most k- 2.
Thus z{ has multiple eigenvalues equal to one and this contradicts the requirement of
strong D-stability. There are two cases to consider

Case 1 If ce
(1) 0, then (2)

Oeven # 0 and the eigenvector p takes the form

(Pl, P2," ", Pk-1,0)T
/(1)with Pk-1 # 0. Then the condition pT, 0 takes the form p+a 0.

Case 2. If c (1)even # 0 then p takes the form
(2) (1) (2)

O k-10 + O
Pl, P2, Pt-2, (1)

O

with p # 0. Then the condition pT, 0 becomes

T

Pk, P)
(1) --O(2) )O (k2-)lO t,-.,(1) t,(2) (2) t,-(1)

(1) ’p+l + p+l O k-l_ p+ 0
O

and we have condition (ii) of the lemma.
We note that by condition (i) of the lemma we have the interesting result, reported

by Donelson and Hansen [3], that a strongly D-stable 2-stage cyclic method composed
of Simpson’s rule (which is 4th order) and any other 3rd order multistep formula
will be globally convergent to order 4. Condition (ii) of the lemma may be used to
find 2-stage cyclic methods which are globally convergent to order p + 1 but whose
constituent formulae are each of order p.

We now investigate the stiff-stability properties of 2-stage cyclic methods. For
the linear problem y’= Ay, (1) takes the form

w* =(h+ ,)w*
where

(hh S(2)(hh )S(1)(hh
and

0 1 0 0
0 0 1 0

S()(hh)

(i)a (oi) a a2 a

(i)

al.i
--oz +hA
c) hhfl )

j =0, 1,..., k-1.

i=1,2,
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The stiff-stability properties of the cyclic method will be characterized by the
eigenvalues of (hA ). For k 3 the characteristic equation, bk (t) := det (if(hA) tI), is
given by

(1)r2 (2))t2&3(t) A 2h2[(-/331)/332))t3 + (-/331)/3]2) +flx)fla)-ill p3

+ Ah [(1)

(4) + (_ ,fl2, + l)fl2,- 1)fl2)
+ (_1)2) 1) 2))]

In general, when the component multistep formulae are k-step, the characteristic
polynomial, (t), may be expressed as

(5) (t) E (Pi hAqi + h 2A 2mi)t’,
i=0

where

P Z (-1)a() (2)
Os

(1) (2)qi= (--1)(a1)/32) +/3 ces ),
(1)/- (2))mi =Z (-1)r(/3r -s

the sums being taken over all r, s satisfying r + s 2/" & r, s [0, min (k, 2/’)].

3. A class of second derivative formulae. Let us consider the following class of
k-step, kth order second derivative formula

When applied to the linear problem y’= Ay, the associated characteristic polynomial
is

k

k(t)= Z (&i-hAfl-’-h2A2%)ti.
j=0

The similarity between pk(t) and k(t) suggests that we may be able to find 2-stage
cyclic formulae with the same stiff-stability properties as second derivative formulae.
Because we desire that the cyclic method exhibit properties (i), (ii) and (iv) of 1, we
restrict our attention to the class of second derivative formulae of the form

k

(6) Y,+, Y,+-I + h Z fliY’n+i + h 2"kY n+k,
j=O

where
2
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The requirement that the formula be of order k imposes k conditions on the Bj, f 0,
1,..., k, so that formula (6) has one degree of freedom. The class of formulae (6)
was considered by Enright [4] who was motivated by the fact that the Newton iteration
matrix used to solve (6) could be expressed as a perfect square. Enright chose to use
the one degree of freedom to raise the order of the formula to k + 1. Alternatively,
it is possible to use this degree of freedom to improve the stiff-stability properties of
the formulae and we determined the formulae of order k which maximized the angle
a in the definition of A(a )-stability. The angle a for these formulae appear in Table
1 together with the values of the leading coefficient, /3k (calculated to 3 significant

TABLE 1
A comparison of a-values.

Order BDF STINT New formulae

2 90.00 90.00 90.00 (/32 0.575)
3 86.03 89.43 90.00 (/33 1.72)
4 73.35 80.88 90.00 (/34 1.72)
5 51.84 77.48 86.64 (/35 1.59)
6 17.84 63.25 76.32 (/36 1.40)
7 33.53 57.66 (/37 1.275)
8 22.15 (/38 1.18)

figures). In cases where there is more than one kth order formula with the stability
angle listed in Table 1, the smallest value of/k was determined. (The computational
advantages of formulae with small leading coefficients are discussed by Shampine [7]).
For a comparison, we give the values of a for the BDF and STINT formulae in Table
1. It may be observed that the new formulae have far better A(a )-stability properties
than either the BDF or STINT formulae.

In the following section we will derive 2-stage cyclic multistep formulae with the
sameA (a )-stability properties as the new second derivative formulae. Unlike a second
derivative method, a code based on cyclic multistep formulae will not require a
user-supplied analytic Jacobian.

4. The new formulae. A 2-stage cyclic method for which the component formulae
are k-step linear multistep formulae contains 4k +4 free parameters. Two of these
are scaling factors. The requirement that each formula be of order k accounts for
2k + 2 parameters. The requirements that k- 1 roots at the origin be zero, that k
roots at infinity be zero and that the two linear multistep formulae have the same
leading coefficients account for the remaining 2k free parameters. Thus conditions
(i), (ii) and (iv) together with the requirement that the component formulae be of order
k uniquely define a class of cyclic formulae. Unfortunately, it turns out that these
cyclic formulae have poorer stiff-stability properties than the BDF formulae of the
corresponding orders.

In order to derive cyclic methods with the same stiff-stability properties as the
k-step, kth order second derivative formulae described in the previous section, it is
necessary to introduce another free parameter.

Consider the cyclic use of a k-step kth order linear multistep formulae with a
(k + 1)-step kth order linear multistep formula as illustrated in Fig. 1. Although the
(k + 1)-step formula requires (k + 1) past values, one of these values is calculated
within the cycle, so the cycle as a whole requires only k-past values. The characteristic
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(k + 1)-step formula

k-step formula

X X

k past values values calculated
in the cycle

FIG. 1. Two stage cyclic [ormulae.

polynomial of the (k- 1)-step, k-step cycle may be obtained from (5) by setting
o: =to) =0.

To illustrate the derivation of the new class of cyclic formulae, let us consider
the 2-step/3-step second order case. The characteristic polynomial for this method is
given by c3(t)/t with co1) =/3o1) =0, where 43(t) is defined by (4). There are 14
coefficients to be determined: a), fl), i= 1, 2, 3, and 2), fl2), i=0, 1, 2, 3. We have

(a) a) 1,

(b) a)= 1,

(C) 1) 2),
(d) )+a)+’)=0,
(e) ia) +2al’) +31) --i) --’)--’)=0,
(f /2(1 +4 +9)-51 -2 -3 =0,

(7) (g) a2 +a?)+2 +a2)=0,

(i) 1/2(]2) +42) +9a2))-fl]2) -2fl2) -3fl2) =0,
(i g-ili 0,

(k) - p +fl p - =0,

(m)g =*.
Equations (7a) and (7b) result from our choice of scaling factor, (7c) is the requirement
that the leading coefficients within the cycle do not vary, (7d)-(7i) are the conditions
that the component multistep formulae are second order, (7j)-(71) are the conditions
that the extraneous root at the origin as well as the two roots at infinity are zero and
(7m) is the condition that the cyclic method have the same characteristic polynomial
as the 2nd order second derivative formulae (6) with stability angle given in Table 1.
The value of fl*= 2 is also given in Table 1.

There are 14 coefficients to be determined and (7a)-(7m) consists of 13 equations.
It is possible to parameterize the solutions to the nonlinear equations (7) in the
following form.
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Stage 1 coefficients.

Stage 2 coefficients.

Here the clj and the fiJ are constants and s is a free parameter. Note that the free
parameter affects only the coefficients of the second stage. Now, the first stage is

(1),,, h(fl* * f(1)e:t t-(1)c,Y2n+3 nt- (21)yCn+2 + 1 Y2n-.l f2n+3 - -t-b*2 J2n+2 /1 J2n+l

while the second stage is
, (22 12)y *Y2n+4 q-O Yn+3 -Jr-Ol 2n+2 + Cr (02)Y2n+l

h(/(2) (2) re (2) re (2) re
3 J2n+4 -- "- 1 J2n -- +12 J2n+3 +2 0 J2n

or

Yn+4 + 07 22)y *2n+3
h (/3"f2". /-(2).e /(2).e

+4 +P2 J2n+3+Pl J2n+2+PO J2n+l)

--sly* n+2 +a Y2n+l

+3 +P2 J2n+2 +Pl J2n+l)].

But if the first stage is solved exactly then the term in square brackets is zero and the
calculated from the second stage is invariant to the free parameter,solution, Y2n+4,

(2)s. Similarly, although the parameter s affects the error constant, p+l, of the second
(2) (2) ()stage, the term p+a -ffk_lWp+l is invariant to s so that the vector

(1) (2) 2) (1))T(0 0 0,+1,+- xCp+l

appearing in the expression for the local error does not depend on s. Of course, the
characteristic polynomial is also invariant to s.

The higher order cases can be handled similarly and for orders p 2, 3,..., 8,
the coefficients of p-step/p + 1-step two stage cyclic multistep formulae were found
by solving sets of nonlinear equations such as (7). The results are listed in Tables 2-8
using the same parameterization as was used in the second order case. All computations
were done on a Burroughs 6700 in DOUBLE PRECISION. The nonlinear equation
solver that was used was the IMSL routine ZSYSTM which is an implementation of
Brown’s algorithm. The coefficients in Tables 2-8 are listed to 16 significant figures.

The formulae listed in Tables 2-8 have the same characteristic polynomial as the
kth order second derivative formulae"

(8) y.+ y.+_a +h .y’ -h "n+i Yn+,
]=0



742 P. TISCHER AND R. SACKS-DAVIS

with the [3k listed in Table 1. As discussed in 3, Enright [4] derived a different set
of formulae of form (8) for which k was chosen to raise the order of the formula to
k / 1 rather than to maximize the stability angle. It is interesting to note that it is
possible to derive k-step/(k / 1)-step cyclic formulae of order k / 1 with the same
characteristic polynomial as Enright’s formulae if condition (7m) is replaced by the
condition (ii) of the lemma (the condition for higher order convergence). In particular,
there is a 3-step/4-step method whose constituent formulae are 3rd order, but which
is globally convergent to 4th order and has a stability angle of 89.99. The coefficients
of this formula are listed in Table 9.

TABLE 2

2-step/3-step, 2nd order cyclic formulae.

a 1) 0.2713503499466539
a 21) 1.271350349946654

a1) 1

-0.06067517497332695
0.2143248250266731

=0.575

a22) -1 +s
ct2) 1

/3o2 -0.04894502624599904 + s/311
/32) =0.1728900524919981 + s/32)
/3 22 0.3010549737540010 + s/3 31
/3(327 =0.575

C(1) -0.1357208041711122p+l
2) (2) .-(1) -0.2451091112584465p+l--2 -’p+l

_,,.(1)-0.1093883070873343 +

stability angle 90

TABLE 3
3-step/4-step, 3rd order cyclic formulae.

-0.7156809323463300
2.421409496232843
-2.705728563886513

/3 (11) -0.8629888978651531
/3(z1) 3.166634912306544
/3(31) -4.013693645981575
/3(41)=1.72

a(9_2) 0.4195749238763092 + sa (31)
a (32) 1.419574923876309 +
0(42) 1

/3(o2) 1.894838801355351 + s/3(11)
/3 (12) -6.952885160409694 + s/3 1)
/3 (2) 9.231466454815180 + s/3(31)
/3(32) -5.312995019637147 + s/3(41)
t4 .7z

C(1) -1.244107937656965p+l
2) (2),(1) -1.198783341043101p+l mo3 ,p+l

,,/-(1)(2) 0.5673210898501973 + p+p+l

stability angle 90



CYCLIC FORMULAE FOR STIFF SYSTEMS 743

TABLE 4
4-step/5-step, 4th order cyclic formulae.

a 1) 0.6103461100271559
a (21) -2.747685823192436
a (31) 4.670005693524193
t (41) -3.532665980358913
c(51) =1.0

0.9215366381763085
-4.136159579898865
7.141520549769378
-5.652569985267611

/3(5) 1.72

a(22) -0.2716147139534076 + s(31)
a(32) 1.222768338553090+ set(41)
a(42) -1.951153624599682 + s

(21
o =1

/3(o2) -2.649958179621567 + s/3])

/3(12) 11.89388403771322 + s/3()

/3 (2) -20.89280076921304 + s/3(31)
/3(32) 17.85562740240295 + s/3(4)
/3(42) -7.606291401927840+ s/3(5a)

/3521 1.72

(1) -1.255794490885898p+l

C(2) _2),.-,() -1.142429125354875p+l p+l

,,-,(1)r(1) 1.307818847289458+scp+lp+2

stability angle 90

TABLE 5
5-step/6-step, 5th order cyclic formulae.

a)= -0.5473524843400159
a)= 3.046981165805116

)= -6.842547445085438
=7.741845845969376
)= -4.398927082349038

a)= 1

/3)= -0.8285692507199495
=4.523688780360865

/3)= -10.05367226203171
/3)= 11.42213178164391
/3)= -6.661863565106905

=.9

?=s
a)= 0.2023989966807180+sa
a)= -1.126707101014822+sa
a =2.473981498420040+sa
a)= -2.549673394085936+s
a)= 1

/3o2) 2.569479392269974 + s/3]1)
/312) -14.02842923277731 + s/32a)
/322) 31.45494082222007 + s/33x)
/3 32) -36.93603791002108 + s/3 4)
/342) 23.96920129089773 + s/35a)
/352) -8.446918649021926+ s/36a)
/3(62)= 1.59

C() =-1 133876687363511p+l
(2)/-(1)

o+1-5 ’p+ =-1.544011552069870

,,t,-(1)
p+x 1.347003669875171 + ’--0+1

stability angle 86.64
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TABLE 6
6-step/7-step, 6th order cyclic formulae.

a)= 0.5065949241573893

a)= -3.347588901033099
a)= 9.288264853658161
a)= -13.85423667736953
)= 11.70833137691048
a)= -5.301365576323402

a)=

0.6632827080818050
-4.318145132370032
11.87138330994840
-17.69684560038281
15.14109874111104
-7.068045626188859

o =?
a2) -0.1622565792899431 + sa31)
a32) 1.072194564235031 + scz4
a42) -2.943247343299985 +
a 2) 4.228025197181846 + sa 6
a6z -3.194715838826949 + s

a(72) 1

-1.966557927018182
12.80281007873031 +
-35.39751311755192
53.77255375657074 +
-48.44295713982840
26.08926183188078 +
-8.166685368910522
1.4

1)
0/1 -0.9495222263711510
) (2),,-,(1) -2.107275459808366p+l --t6 --’p+l

_t--,(1)=0.9261782360977777 + st o/1

stability angle 76.32

TABLE 7

7-step/8-step, 7th order cyclic formulae.

a)= -0.4730377247001383

a)= 3.614094099926330

a)= -11.91361867598596

a)= 21.97700424011387
a)= -24.50710155920918
a)= 16.51027888261980
a)= -6.207619262764723
a)=

/3)= -0.5593384312526297
=4.220709442337714

/3)= -13.79410919873106
=25.36722912840438

/3)= -28.42514847816480
/3)= 19.46252654187500
/3)= -7.551726936498641

0.1354428064536342 +s3)
-1.034807631868773 + sa4
3.390826065383960 +
-6.137117459840426 + sa6)
6.516126407008639 +
-3.870470187137034 +

/3o2) 1.627202025358370+ s/3
/3) -12.27869670539260+
/3 2 40.28383410923075 + s/3
/33) -74.96406486441271 +
/34) 86.48642725198855 +
/32) -63.47949128834042 +
/3 62) 29.33643618328776 + s/3
/3 72) -8.238999899992440 +

C(a) -0.8295861815319158p+l
2) (2)W(1) -2.505506084674061p+l--fX7 -’p+l

(2) 0.7053824986060715 + sCa)+p+l

stability angle 57.66
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TABLE 8
8-step/9-step, 8th order cyclic formulae.

0.4453348513468461
-3.859180665772141
14.71642002045547
-32.27324489323404
44.53945382773937
-39.61766259292482
22.16853315999479
-7.119653707605472
1

/3)= 0.4822252401396465
/3)= -4.136942315524837
/3)= 15.65983206216709
/3)= -34.21855612352479

=47.30113434219221
/3)= -42.45139314249457

=24.20929805095255
/3)= -8.028548065406828

=s,,
-0.1162654110659919 + sa (31)
1.007532253824141 +sa(4a)
-3.827901007455769 + sa a)

8.302866483037190 + sa(6)
11.16589138289488 + sc )

9.369883714651345 + sc ()
-4.570224650096031 + s

-1.384350259109908 + s/3(1)
11.87614560523851 +s/31)

-45.07917311093609 + s/3(31)
99.29376589604582 + s/3(4a)
-139.7912993045485 + s/3(s1)
130.5230230565463 + s/361)
-81.18525412979233 + s/3(7)
33.00040235056584 + s/3(s1)
-8.408425274884485 + s/3(91)

(9) .8

C(1) -0.7390717521435601p+l
(2) ,-(1)

10+,-8 10+I =-2.825608962709170
0.5521149771269926

stability angle 22.15

TABLE 9

3-step/4-step, 4th order cyclic formulae.

-0.7174260738375705
2.426199286279159
-2.708773212441589

=I

]1) -0.8427538469096104
/3(21) 3.108006010400179
/3(31) -3.957345114139985
/3(41)= 1.700745812045397

a 2) 0.4198486192398069 + sc x)

a2) =-1.419848619239807 +s

0(42) =I

1.815760117302048 + s/3a)
-6.696372112348223 + s/3a)
8.936285375215797 + s/3(31)
-5.176267811454826 + s/3(41)
1.700745812045397

C(1) 1.2246541751170991o+1
C(:Z) (z),,-,(x) -1.231315541861302p+l--3 -p+l

,(1)
10+ 0.5075079977249758 + 10+

stability angle 89.99
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There are other approaches to deriving 2-stage formulae with the same charac-
teristic polynomials as the second derivative formulae. A different approach to the
one we have presented is based on cyclic methods whose constituent formulae are
each k-step multistep formulae of order k- 1. Condition (ii) of the lemma is used to
ensure that the overall method is kth order.

In the approach we have taken, the stepnumbers of the constituent multistep
formulae increase within the cycle. We may consider the general case of an M-stage
cyclic method for which the ith stage is a (k + i- 1)-step foimula. Note that the cycle
as a whole still requires only k past values, but has more free parameters than would
be the case if each constituent formula were k-step. These free parameters may be
used to improve the properties of the cyclic method. For example, it is conjectured
that if each constituent formula is of order 2k 1 then the extra free parameters may
be used to find M-stage cyclic methods of order 2k with better stability properties
than the Donelson and Hansen formulae.

5. Numerical testing. To confirm numerically the orders of all the methods
derived, we applied our formulae to the simple problem

y’ -2y y(0) 1.

The relative errors ]y(x)-y*(x)/y(x)] at x 5 are listed in Table 10 for various values
of h. They indicate that the methods have the requisite orders.

TABLE 10
Test results for the problem y’ -2y.

Range of
Formula Order integration h 0.5 h 0.05 h 0.1 h 0.01

2/3-step 2 O.- 5. .64 x 100 .14 10-1 .54 10-1 .55 10-3

3/4-step 3 0.-5. .33x103 .18x10-2 .37x10-1 .28x10-5

4/5-step 4 0.-5. .87x 103 .27x10-2 .45x10-1 .43x 10-5

5/6-step 5 0.-5. .50xlO4 .69x 10-3 .27x 10-1 .19x10-6

6/7-step 6 0.-5. .89 x 104 .99 x 10-4 .87x 10.2 .50x 10.8

7/8-step 7 0.-5. .17x 105 .16x 10-4 .31 xlO-2 .15x 10-9

8/9-step 8 0.-5. .60x 105 .26x 10-5 .12x10-2 .50x10-11

3/4-step 4 0.-5. .35x103 .26x 10-2 .44x 10-1 .41x10-5

To confirm the A (0) stability of our formulae, we applied our formulae to the
problem

y’=-10a2(y-x)+l, y(0)=l, y(x)=e -l12x+x.
The errors ly(x)-y*(x)l are listed in Table 11. All numerical tests were carried out
in DOUBLE PRECISION on a VAX 11/780.
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TABLE 11
Test results for the problem y’ =-1012(y-x)+ 1.

Range of
Formula Order integration h 0.5 h 0.05 h 0.1 h 0.01

2/3-step 2 2.-7. 0. 0. .11 10-15 .11 10-15

3/4-step 3 2.-7. 0. .7810-15 .2210-15 .6710-15

4/5-step 4 3.-8. 0. .4410-15 .5610-15 .2210-15

5/6-step 5 3.-8. 0. .1810-14 .3310-15 .3610-14

6/7-step 6 3.-8. .6410-14 .8910-15 .4310-14 .5610-14

7/8-step 7 3.5.-8.5 .1810-14 .1810-13 .6910-14 .12 10-14

8/9-step 8 4.-9. 0. .8910-14 .2510-13 .3310-14

3/4-step 4 2.-7. .33 10-15 .11 10-15 .11 10-15 .22 10-15
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AN ALGORITHM FOR THE SINGLE FACILITY LOCATION
PROBLEM USING THE JACCARD METRIC*

G. A. WATSONS-

Abstract. The solution of the single facility location problem using the Jaccard metric is considered.
Necessary conditions for a solution are derived, and a finite descent algorithm is developed and illustrated
numerically.

Key words, single facility location problem, Jaccard metric

1. Introduction. A common type of data provided for statistical analysis is of
binary form, where the presence or absence of a number of characteristics in a set of
objects is recorded. For such data, it is appropriate to define a similarity coefficient
and Jaccard’s coefficient is widely used [3], [4], [5]: for example, as claimed in [2], it
is used extensively by ecologists, in the comparison of plant communities in terms of
the species present. If x and y are two binary vectors in R ", then the Jaccard coefficient
s(x, y) is defined by

=1 min (x., y.)
(x 0, y 0)(1.1) s(x, y)= ---Y4=1 max (x., y.)

with s (0, 0) 1. Clearly 0 -< s (x, y) =< 1. Further,

d(x, y)= l-s(x, y)

defines a dissimilarity coefficient, which may be shown to be a metric on the set of
binary vectors [5]. This so-called Jaccard (or sometimes Tanimoto) metric turns out
to be of use in the more general situation when we merely have x and y nonnegative
vectors in R n. According to Sp/ith [6], the Jaccard metric "has been successfully used
for ordinal and other nonnegative data by the author of this article and other authors":
for example, an application is given in [6] to cluster analysis.

The underlying problem is the following single location problem"

(1.2)

Since, for all b, c R,

given ai R n, ai => 0, 1, 2, , m,

find z R z >-0, to minimize Yi= d(z, ai).

min (b, c)= (b +c -[b
max (b, c)=(b +c +[b-c[)/2,

it is easy to see that if z >-0, ai >: 0, 1, 2, , m, then

where

d (z, ai)= 2h (z, ai),

Ilz --ai[[
(1.3) h(z, ai)="z"+"ai"+"zl] -aill’

i= 1, 2,..., m,

and the norm is the L norm on R n. Thus we may consider instead of (1.2) the

* Received by the editors April 30, 1982, and in revised form October 14, 1982.
5- Department of Mathematical Sciences, University of Dundee, Dundee DD1 4HN, Scotland.
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equivalent problem

given ai R", ai >- 0, 1, 2,..., m
(1.4)

find z R n, z >-0 to minimize f(z)=i=l h(z, ai).

In view of the apparent usefulness of (1.4) in practical situations, it would be of
value to have available a systematic method for its solution, and it is the purpose of
this paper to develop an algorithm which may be used to solve the problem. The
method is finite, and may be interpreted as a "vertex to vertex" descent method,
similar in some senses to that of [1], which terminates at a point satisfying first order
necessary conditions for a solution to (1.4): since f(z) is not a convex function of z,
we will in fact merely expect to obtain a local minimum. In the next section, we give
appropriate necessary conditions; in 3 we develop the proposed algorithm, and
illustrate by applying it to some examples.

It will be assumed in what follows that Ila,ll o, 1, 2, , m.

2. Necessary conditions, A crucial role is played by the one-sided directional
derivative of f(z) at a point z, in the direction s, given by

f’(z; s)= lim
f(z +3,s)-f(z).

v-o+ T

This exists for all z, but we will only be concerned with z satisfying z -> O, and begin
by deriving an expression for the directional derivative in this case. Some notation is
required, and we will denote by Z the set

Z {f: Zj (ai).}, 1, 2,..., m,

where (ai)j denotes the jth component of ai. It is also convenient to define the set

Zo {i’ z; 0},

and numbers (Oi)j such that

(Oi)j =sign (zi (ai)i) f lg Zi.

Because of the frequent occurrence of the following expressions, we will subsequently
use the abbreviated notation

O,(z) =[Izll+[la,ll+llz -a,[I, i= 1, 2,..., m.

THEOREM 1. Let z R" satisfying z >= O, and s R" be given. Then

(2.1) /C’(z ;s)= E (llzil/llaill)vSs -IIz -a,llvs
i=a Di(z)2

where, or each i, 1, 2,. ., m,

(ti)i (Oi)j, fz Zi,

(vi)i sign (si), f Zi,

(Vo) 1, i: Zo,

(Vo) sign (s.), i Zo.
Proo[. For any a R", a ->_ 0, let

Z {i: z. a.}, 0j sign (zi ai), f Z.
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Then for y > 0 sufficiently small

(2.2) I[z +Vsll E (zt +ysi) + 2 Ylsi[,
jC:Zo jZo

and also

(2.3) [Iz +ys-a[[ Y Oi(zi+ysi-ai)+ 2 vlsil=llz-a[l+va,
j:z iz

where a
Let B YqZo st +iZo Isil +A. Then for 3’ > 0 small enough that (2.2) and (2.3)

hold,

Ilz all+ 3"ah (z + ys, a)

A (llz / Ila / IIz a II) B (llz a II)
h(z, a)+y

(llz[l/llall/l[z
(2.4)

+O(,3)/
(llz / Ila / Ilz a II) 3

a (llz / Ila II) -lie a IIv ffsh(z,

Setting a ai, summing over i, dividing by 3’ and letting 3"-0+, the relation (2.1) is
obtained.

This result may be conveniently interpreted in terms of subgradients. Using the
standard notation

011sll- {t n"’ltl_-< ,f- a, 2,..., n, sign (st), st 0}.

Then clearly

v, ollz -a,ll, 1, 2,..., m, Vo 011zll.
Further, for each i, w/rs <_- v/rs for all wi c= O]lz all, so that

T Tvs= max ws, i--1,2,...,m.
wieollz-aill

Similarly
T T

V oS max W oS.
wo011zll

We have the following first order necessary condition for a solution to (1.4).
THEOREM 2. Let z >--_ 0 solve (1.4). Then there exist wi O[Iz a, ll, 1, 2,. , m

such that

(2.5) E (llzll/llaill)(w,)-llz-aill o, j/o,

i= Di(z)2 > /" Zo.

Proof. Let z >_-0 solve (1.4). Then we must have

f’(z;s)>-_o

for all s R" with s _-> O, j s Zo. For such an s,
T Tmax WoS e s

womollzll
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where e (1, 1, , 1)r. Thus, by Theorem 1,

(2.6)
([Iz + [lall)v Ws -IIz al[e rs>

/=1 Di(z):z =0,

where for 1, 2,..., m,

(Vi).i (0i)!", jZi, (Vi)j sign (si), f Zi,

for all s R with s. _-> 0,/" Z0. Now assume (with no loss of genera.lity) that Zo
{r + 1, , n}, and that any wi O[Iz -aill is partitioned so that wi [w,] with w R
and w 6R n-r. We first show that there exist vectors w, with wi Ollz-a, ll, i-
!, 2,..., m, such that the equalities hold in (2.5). Suppose not. Then by a standard
separation result in R (see, for example [7, p. 13]), there exists R such that

(2.7) Y’. (llz[l + llall)w rt llz allert
i=1 Oi(z)2 <0

for all w " Wi 011z gill, 1, 2,..., m. Choosing s 6 R with s t., f 1, 2,..., r,
s. 0,/" r + 1, , n, contradicts (2.6).

Finally s =ej, f r + 1,..., n (the fth co-ordinate vector) satisfies (2.6) with

(vi)i (Oi)# f Zi, (vi)i 1, f Zi. Forming vectors w2 from these values, and combining
them with the w whose existence was previously established, we obtain vectors wi,

1, 2,..., m satisfying (2.5) and the proof is complete. ]
COROLLARY. Let z > 0 solve (1.4). Then there exist wi ollz -gill, 1, 2,..., m

such that

y (llzll / I[a[l)wi -Ilz ai[le
i=1 De(Z)2 =0.

In seeking a point z => 0 satisfying the above conditions (2.5) it would appear that
we must search over the continuum of possible values. However, second derivative
information may be used to strengthen Theorem 2, and to eliminate all but a finite
number of points from consideration. The following result is due to Spith [6]; we
give an alternative proof which uses the expansion (2.4).

THEOREM 3. Let z >--0 solve (1.4). Then there exist n indices zx, T2,’’’, ’rn
{1, 2,’’’, m} such that

zi (a.)i, f 1, 2,. ., n.

Proof. Let z >-0 solve (1.4), but there exist k, 1 <-k <_-n, such that kZi,
1, 2,..., m. If zk-0, then (Oi)k =-1, 1, 2,..., m, and it is easily verified that

f’(z e)< 0, a contradiction, so we may assume z 0. Now, using (2.4), we have (for
/> 0 small enough)

(2.8)
2

.f(z +,vs)=l(z)+ef(z; s)+f’(z; s)+O(v),

say, where

1 (vrs +VorS)(V Tos IIz gill- v ’s ([[z /

f (z; s) Z
i=1 Di(z)3
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Thus, letting tr + 1, we have

-f (z; e) 2
i=1 Di(z)3

2
i: (0i)k =1 Di(z)3 0,

with equality only if (0)k =-1, i= 1, 2,..., m, which leads to a contradiction as
before. It follows that

f"(z o’er) < O,

and since f’(z trek) 0, we have a further contradiction which concludes the proof. 1
This result shows that we need only search over such "vertices" to find a point

z such that (2.5) is satisfied. Thus one possible approach is simply to evaluate f(z) at
each of these m" points. This is, however, inefficient in general, and in the next section
we present an algorithm which consists of a systematic descent from vertex to vertex
until a point satisfying (2.5) is reached.

3. A descent algorithm. Let z (1) R" be such that

(a,,)j, j 1, 2,..., n,

for some set of n indices ’1, ’2,""", ’n {1, 2,..., m}. Unless z (t) satisfies (2.5), we
will exchange one of these indices for another outside the set so as to achieve a
decrease in the value of f(z). Thus we consider a step from z (1) to a new point
(t+t) (t) ,y(t)s(t)z =z + where s =+e or -e, for some k {1,2,...,n}, and where
l>0 is chosen so that we reach the nearest new vertex in the direction s m. It is

sufficient for this to achieve a reduction in the objective function that s (l) be a descent
direction for f(z) at z <)" for z zl)+ ys, 0 < ]/ < ,]/(l), it follows by the argument
used in the proof of Theorem 3 that if f’(z<l); s</)) 0 then f"(z<g); s<t)) < 0, and so f(z)
continues to decrease at least as far as f(z<t/x)). We now show how a suitable direction
s) may be obtained, and consider two separate cases. Dropping the superscript (l),
let z be the current point, and define

W {i" zj- (ai)j 0}, ] 1, 2,. ., n.

(a) Nondegenerate case. W. is a singleton i., for every ],/" 1, 2,. , n.
Consider the system of equations

(3.1) 2
(llzll+lla, ll)(,,)-llz-a,

i= Di(z)2
=0, ] 1, 2,’", n

where (Ai)i (0i)., 1, 2, ., m, i., ] 1, 2, , n. Then

i=1 2;-;i2- --i:1 Oi(z)2 Ilzll /lla,,jlJ’
j= 1, 2,..., n.

ii

THOaF.M 4. For the nondegenerate case, let (hi), j 1, 2,..., n be given by
(3.2), and let k be such that

(tii)j[, f 1, 2,’’’, n.

Then if [(hi/)kl 1, z satisfies (2.5); otherwise the direction s trek, with tr sign ((lik)k),
leads to another vertex with a lower function value.
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Proof. If I(h,k)k -< 1, then h, 011z aill, 1, 2,..., m, and (2.5) is satisfied, so
assume not. Let zk mini (ai). Then (Oi)k --1, 1, 2, , m, ik, andit is immedi-
ately obvious from (3.2) that (hik) >0, SO that o" +1. Let z =max/(ai)g. Then
(0i)k +1, 1, 2,. ., m, i and so

IIz(Ai) -Ilzll / Ilaill
/ nonpositive terms.

If (hi) > 1, then IIz-a,ll>tIzll/lla,ll, a contradiction which shows that r =-1. We
have shown that we will step to a new vertex; it remains to show that f(z) will be
decreased, or equivalently that s is a descent direction. Now with vi, 1, 2,. ., m
defined as in Theorem 1,

f’(z; s)-- 2
(llzll+lla,l[)vTs-llz -a,llers

i=1 De(z)2

i=1 Oi(z)2

(3.3)
i=1 Di(z)2 using (3.1)

(llz / Ila II)( (A))
Di(z)z

<0.

(b) Degenerate case. W. is not a singleton, for some i, f= 1,2,...,n.
In this case, there are more than n unknowns in the system of equations (3.1),

and so no unique solution. Of course if W- is a singleton for some values of/’, we may
compute values of (,ij)j from (3.2), and if any of these values exceed one in modulus,
we can obtain a descent direction as before, choosing k by finding the maximum over
this subset of values. Thus we consider only the situation where such values of
have modulus no greater than one, or where W. is not a singleton, for any/’.

In this case, perhaps the simplest way to proceed is to directly compute the
directional derivative in the directions +ej and -e. (using (3.3)) for each/" for which
W. is not a singleton. If z. mini (ai)j, s -ei or zi maxi (ai)i, s +ej, it is easily seen
that (3.3) is nonnegative. If one of the remaining directions gives a negative value,
then progress can be made to another vertex as before. Otherwise, it is readily shown
that z satisfies the first order necessary conditions. For, let s e R be arbitrary except
that s. ->_ 0, f Z0. We will assume, without loss of generality, that s >_- 0, f 1, 2, , r,
s. < 0,/" r + 1, , n. Now the directions ei,/" 1, 2, , r, -e., f r + 1, , n are,
by assumption, not descent directions, so that

Z ([Izll + [la, ll)(v);-[Iz agll
i=1 Di(z)2

>=0,

y ([Izll / llall)(-(vi)) / l[z a,[I
i-1 Di(Z)2 20,

where, for each 1, 2, , m,

(vi)j
sign (s),

]= 1,2,...,r,

f =r+l,r+2, ,n,
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Multiplying in turn by si, j 1, 2,. ., r, (-sj), j r + 1, ., n, and summing gives (2.6).
THEOREM 5. An algorithm based on the rules developed above will converge to a

point satisfying (2.5) in a finite number of steps.
Proof. We have defined a vertex to vertex descent process which can only

terminate at a point satisfying (2.5). In addition, the number of vertices is finite. [3
Considerable improvement in the efficiency of the algorithm, at least for larger

problems, can be achieved by letting the step length exceed ym, if possible. Thus we
test to see if s (l) continues to be a descent direction as we encounter new vertices,
and run through such vertices until one is reached at which s (l) is no longer downhill.
If an iteration is redefined in this way, then the total number can often be substantially
reduced. For example, a problem with m 20, n 10 which required 75 iterations
of the basic method was solved (from the same starting point) in 14 iterations by the
modified algorithm.

The progress of the algorithm is illustrated by giving details of its performance
on a simple example. In the implementation used, the direction of descent was the
co-ordinate direction defined by the largest (in modulus) value of (hij) defined by
(3.2), if this value exceeded one, otherwise by the largest negative directional derivative
in the remaining co-ordinate directions. Running through vertices was permitted, so
that the maximum possible step was taken in each of the calculated directions s l).

Let m 8, n 4 and the vectors ai, 1, 2,. ., 8 be the rows of the matrix

-1 5 3 7-
1 4 6 5
3 7 11 2
4 7 2 5
2 1 5 8
6 4 1 2
5 1 1 9

_7 7 5 3_

In Tables 1-3 we show the progress of the method for 3 different starting points. The
integer gives the iteration number, k is the index to be changed, A is the value

TABLE 1

z f(z) k /max der

0 5 11 9 2.045579 4 -4.842
1 5 11 7 1.977331 3 -4.013
2 5 5 7 1.644590 1 -0.453 -0.081
3 4 5 5 7 1.493896 -0.768 0.043

TABLE 2

z /(z) k /max der

0 7 7 5 3 1.694596 4 3.175
7 7 5 5 1.588243 -3.727

2 4 7 5 5 1.494021 0.535 0.013
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TABLE 3

z f(z) k .max der

0 7 2 2.452621 -3.797
6 2 2.400695 2 -0.659 -0.130

2 6 7 2 1.956758 -1.054
3 5 7 2 1.952666 4 0.577 -0.102
4 5 7 5 1.706781 3 -0.542 -0.100
5 5 7 5 5 1.501278 -1.310
6 4 7 5 5 1.494021 0.535 0.013

found using (3.2) whose modulus is maximum, and der is the minimum directional
derivative in the other co-ordinate directions (if this has to be calculated). From the
results it is clear that in this case (1.4) has (at least) 2 local minima.

Finally we give an indication of how the algorithm copes with some larger
problems. Table 4 shows the number of iterations for data matrices of varying
dimension obtained by generating random positive numbers between 0 and 1. In all
cases the initial approximation was chosen by setting z. to the element (ai)i closest to
the average of all the (ai)j, 1, 2,..., m. As might be expected, the number of
iterations depends primarily on the value of n.

TABLE 4

m n iterations

20 10 9
40 10 11
60 10 11
100 10 11
200 10 17
60 20 26
100 20 25
200 20 32
60 40 49

4. Concluding remarks. A finite descent method has been developed for the
minisum location problem for the Jaccard metric. The method is based on descent
from vertex to vertex along co-ordinate directions, a strategy which seems a natural
one for the problem. Any method operating outside this framework would require
some increase in complexity, and this could well offset any gain in efficiency which
might otherwise appear possible. This remains to be seen, but in any event, a new
method is now available which it is hoped will prove useful for empirical sciences.
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A DESCENT ALGORITHM FOR MINIMIZING POLYHEDRAL
CONVEX FUNCTIONS*

D. I. CLARK? AND M. R. OSBORNEt

Abstract. The idea of continuation applied to the proximal transform of a polyhedral convex function
is used to develop a general procedure for the construction of descent algorithms which has the property
that it specializes to variants of the projected gradient method when applied to such problems as 11 and
l curve fitting and linear programming. The novelty in this approach lies in the application of a generic
form for the subdifferential of a polyhedral convex function which provides an explicit representation in
terms of a small number of parameters. This is illustrated by applications to l curve fitting and the
minimization of piecewise linear functions, and these examples serve to establish the feasibility of a unified
approach. The power of the method is demonstrated by deriving an effective algorithm for the rank
regression problem (the existence of such an algorithrr/makes practical the application of nonparametric
procedures based on rank in robust estimation). The new approach also opens up the possibility of common
implementation strategies, and a tableau like scheme is described based on the use of orthogonal matrix
factorizations.

Key words, descent methods, projected gradient algorithm, nondifferentiable functions, subdifferential,
convex functions, proximal transform, polyhedral convexity, maximum norm approximation, piecewise
linear functions, penalty functions, rank regression, finite algorithms, tableau form, orthogonal transforma-
tions, line search, problem generation

1. Introduction. A polyhedral convex function (PCF) F(x) assuming bounded
values on a polyhedral convex subset of Rp is the pointwise maximum of a finite
number of affine functions. That is F"X

_
Rp R is given by

(1.1)
[ max {f/x ai},

f(x) I<--i<--N

+o xX

where X is the polyhedral convex set

(1.2) X {x; cSx >-- fli, l, 2, M},

and the superscript c denotes the set complement. It is assumed that X has a proper
interior in R p. An explicit form for F(x) can be given using the indicator function for
X to write

(1.3) F(x) max {f/rx- cti} + 6 (x[X)
li<N

where

(1.4) 6 (xlX) { 0, x X,
+CX3, x Xc.

Introducing the elementary PCF

O, -< O,
(1.5) 6(t)

+, > 0,

* Received by the editors June 2, 1981, and in final revised form July 23, 1982.
? Mathematics Department, University of Kentucky, Lexington, Kentucky 40506.
t Statistics Department, Institute of Advanced Studies, Australian National University, Canberra ACT

2601, Australia.

757



758 D.I. CLARK AND M. R. OSBORNE

we have

M

(1.6) 8(xlX)= E 6(fl,--cTx).
i=1

The problem of minimizing a PCF is an important example of a linear optimization
problem, by which we mean that the first order necessary conditions for a minimum
lead to a linear complementarity problem. From this it follows that the solution can
be found by a finite process, at least in principle. Thus the algorithmic interest lies in
developing efficient solution procedures. In this paper we give a descent algorithm
for minimizing a PCF and develop our approach by considering in detail three examples
which provide both specific contexts for treating the main varieties of problem
behaviour, and important applications of the new algorithm. It is convenient to define
an auxiliary vector r by

(1.7) r=Ax-b

where A" R p R is assumed to have full column rank and n > p.
Example 1.1. Parameter estimation in the maximum norm (MAX). Let

(1.8) fT= pi(D)A, ai pi(D)b

where pi(’) should be read "row of" (the corresponding column operator is Ki(.)),

and N 2n. In this case

(1.10) F(x)= max

and X =Rp.
Example 1.2. Minimizing piecewise linear functions. Here we consider the objec-

tive function

(1.11) F(x) Xcrx + /(1i, i, ri)
i=1

where

t[,
(1.12) t(r/, (, t)= {
and r, " _>-O. Two important special cases are

(a) A, =0, rt sr 1 corresponding to the 11 approximation problem or least
absolute deviations (LAD) curve fitting, and

(b) X > 0, rt 1, sr 0 corresponding to the use of a penalty function to solve the
linear programming (LP) problem

(1.13) min cTx" S "--{X; Ax =>b}.
xS

Here X is the penalty parameter which must be chosen small enough. An algorithm
must be able to modify X if the initial value is too large. The PCF corresponding to
(1.11) is obtained by setting

C
T(1.14) ff=x +p(D)A, a p(D)b, i= 1, 2,... ,N
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where the rows of D correspond to the N 2" different ways of putting either -r/i

or ’ into the ith of n locations, 1, 2, ., n.
Example 1.3. Rank regression (RR). Consider (1.7) written in the modified form

(1.7’) r-x0e
(") =Ax-b

where it is usual to refer to x0 as the intercept term, and e") is the vector of dimension
n each component of which is 1. The method to be described eliminates x0 from the
problem and provides an estimate for the remaining parameters x. Let scores d,

1, 2,. ., n satisfy
(i) dl=<d2 -<’’’_-<d.,
(ii) di =-d,-i/l, 1, 2,. ., n, and
(iii) at least one d rs 0 so that dl< d,.

We define the dispersion of r by

(1.15) A(x)= dri
i=1

where g is an index set with elements pointing to the components of r sorted into
increasing order. Note that if r e" then the dispersion of r is zero by (ii) above so
that A(x) is independent of x0. The dispersion is a nonnegative PCF with

(1.16) fr= p,(D)A, a, p,(D)b, 1, 2,..., N

where D’R"-+ Rv has rows consisting of the N distinct permutations of the d,
1, 2,. , n. If the d are distinct then N n !. The suggestion that x be estimated

by minimizing A is due to Jaeckel [12]. The resulting procedure is called rank
regression.

It is assumed that F is bounded below so that the problem of minimizing F(x)
makes sense. However, it is not the case for any of the above examples that the
minimizing x is necessarily unique unless further assumptions are made. One class of
such assumptions frequently made to simplify exposition is that the problem is
nondegenerate in a certain sense (the usage comes from linear programming), and it
will be convenient to follow this practice. Neither the assumptions on the rank of A,
nor the nondegeneracy assumptions are critical to the development of the basic
algorithm. The weakening of these assumptions will be discussed subsequently [16].
Necessary and sufficient conditions for x to minimize F are stated below. They make
use of properties of convex functions which are assumed. An appropriate reference
to this material is [17].

LEMMA 1.1. Let F be defined by (1.1). Then 0F(x), the subdifferential off at x,
is given by

M

(1.17) 0F(x) =conv {iL e zr}- Z 0(/,- crx)cS
i=1

where the index set r is defined by

zr {i; f/rx- a, F(x)},

(1.19)
0, t<O,

o(t) [o, oo), o,, t>O.
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THEOREM 1.1. A necessary and sufficient condition for x X to minimize F(x) is
that there exist multipliers/x _-> 0, 1, 2, , Msuch that

M

(1.20) E ,er conv {iL e r}
i=l

and

(1.21) ,(cx-fl,) O, i=1,2,...,M.

Proof. This result follows by using Lemma 1.1 to restate the condition 0 e 0F(x)
in the form of a multiplier relation.

For PCF’s the question of uniqueness of the minimizer is intimately linked to the
question of strong uniqueness. The properties of strong uniqueness required are stated
in Theorem 1.2.

THEOREM 1.2. Let x* be a strong unique minimizer of the convex function g(x).
Then the following properties are equivalent [19].

(a) ly > 0 g(x* + t) >- g(x*) + vlltll, Vt e R p,
(b) :ly > 0 Vte R p :Iv 0g(x*) 9,v

rt > lltll,
(c) e > 0 Vt e R, Iltll < e t e 0g(x*).
Remark 1.1. Property (c) can be stated as 0 int 0g(x*).
The link with PCF’s can be made using the result [13].
THEOREM 1.3. Uniqueness and strong uniqueness are equivalent for linear pro-

gramming problems.
To apply this result note that the minimization of the PCF F(x) is equivalent to

solving the linear programming problem

min x,+

subject to

[/Tx Oi --- Xp+l, i=1,2,...,N,

and

(1.22) Cx-I>=0,

and F(x) Xp/ provided x, xp/ are feasible and equality holds in at least one equation
f x-- ai Xp+ l.

COROLLARY 1.1. Uniqueness is equivalent to strong uniqueness for PCF’s.
Remark 1.2. The linear programming formulation provides a basis for a sensible

approach only for the MAX example. The cause of difficulty here is not just the size
of N because given r it is often possible to give rules for generating fi, ai for e r
(see for example the discussion of a related problem in [1]). It can be explained by
noting that when X Rp then linear programming theory ensures that at an extreme
point of the feasibl region lr -> p + 1 and dim {f, s r} p. Consider now the LAD
problem. It is well known that these requirements force r to have at least p zero
components so that [r[->_ 2 as the rows of D defining the f, or, can have components
4-1 corresponding to each zero. A second example is provided by the RR problem.
Assume the d are distinct. Then the linear programming conditions force a range of

possibilities from p groups of pairs of tied residuals (]rr[ 2p) to one group of p + 1
tied residuals (]r] (p + 1)!). In either case this implies that there are large numbers
of redundant constraints active at an extreme point in this formulation of the problem,
and this makes it difficult to determine which subsets of the constraints, adequate to
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specify the extreme point, give directions consistent with all the active constraints.
Thus it is necessary to seek out structural information (zero residuals, groups of tied
residuals) and to develop descent directions and tests for optimality based on this.

The development of the basic ideas of the algorithm is given in the next section.
We consider the use of continuation with the proximal transform of the PCF, and
this proves attractive because

(i) rates of change of solution quantities are piecewise constant along the optimal
trajectories, and

(ii) the minimizer of the proximal transform is also a minimizer of the PCF for
sufficiently large but finite values of the continuation parameter.

Continuation could be used to follow a trajectory from the initial point to the
solution, but this strategy depends on the whole past history of the process and on
such possibly arbitrary decisions as the selection of the starting point. We prefer to
use the defining equations of the continuation process, which are local in nature, to
generate a descent vector. In fact the key step in our development is the determination
of the conditions for a descent vector in a form which is directly identifiable with the
basic equations of a projected gradient algorithm. However, the continuation process
suggests naturally the development of further options.

(i) To test if any of the defining constraints on the current descent step can be
relaxed. This is analogous to the process of deleting a constraint from the basis in
linear programming, but we do not require a full basis to be established so that we
allow explicitly nonsimplex steps.

(ii) To pass thorough points where the continuation information should be
updated if it is possible to make further progress in the. current descent step. In the
LAD case one possibility is just the line search procedure of Barrodale and Roberts
[2], and Bartels, Conn, and Sinclair [5] that has proved so successful in ttiis application.

In presenting this information we have elected not to attempt a treatment in full
generality, but rather to consider in detail each of Examples 1.1-1.3. This approach
has the advantage that it permits us to isolate each of the different structural alternatives
and different computing strategies in a specific environment.

Numerical implementation of the algorithms for each example is facilitated by
the formal similarity of the resulting linear systems. A result is that the basic operations
in each case can be carried out by updating a tableau much as in the classical
implementations of the simplex algorithm for linear programming, but with the
interesting difference that the updating procedure permits the use of orthogonal
transformations. Results of numerical experiments show the new algorithm in a very
favourable light. Taking this in conjunction with the experience with projected gradient
algorithms reported by the other authors referenced in connection with the and
MAX examples suggests that this general approach can be recommended for the
minimization of polyhedral convex functions.

2. Development of the basic algorithm. We were lead to the basic form of the
algorithm to be presented here as a result of developing a finite algorithm for
minimizing Huber’s M estimator using essentially a continuation method [8]. This
suggested that we seek a form of objective function having the properties that

(i) an initial estimate can be found readily,
(ii) the rate of change of the solution is piecewise constant on the continuation

trajectory, and
(iii) the solution is obtained after a finite change in the continuation parameters

(implying a finite computation process).



762 D.I. CLARK AND M. R. OSBORNE

Happily the first function tried met all requirements. Clearly, a further desirable
property is that the function to be minimized is strictly convex, and the simplest way
to make the PCF F(x) strictly convex is to add a term 1/2fix-Xol[2, where the norm is
the least squares norm. This suggests considering

(2.1)

Let P*(xo, 3’) satisfy

e(x, xo, ) llx- xoll + F(x),

(2.2) P*(xo, 3,) min P(x, Xo, 3,).

Then P* is the proximal transform of F introduced by Moreau [15], and studied, in
particular, by Rockafellar [18].

Given Xo let x(y) minimize P(x, Xo, y). Then x(y) is uniquely determined as P is
strictly convex. Thus the continuation trajectory is well determined and x(0)= Xo. The
key result fixes the behaviour of x(y) for large y.

THEOREM 2.1. Let x(y) minimize P(x, Xo, 3’). Then there exists yo < c such that
x(y) minimizes F(x) for y-> 3’0.

Proof. If x* minimizes P(x, Xo, 3") then

(2.3) 0 0P(x*, Xo, 3") x* Xo + 3" 0F(x*).

The proof of the theorem consists in constructing a suitable x* from the set of
minimizers of F(x) when 3" is large enough.

If the minimizer of F is unique then it is strongly unique by Theorem 1.3. By
Theorem 1.2 0 int 0F(x*) so that there exists r > 0 such that

-(x* x0) F(x*).

Equation (2.3) now follows provided 3’" >- 1.
If the minimum of F is not unique then the set of minimizers forms a polyhedral

convex set S defined by

S ={xX; 0 0F(x)}
(2.4)

{x X; tSx-a <- min F, l’I}

where

(2.5) 17 {i; :ix S f/rx- ci min F}.

Now select x* to minimize 1/21Ix- Xoll2 for x in S. The necessary conditions for an optimum
give multipliers Ai _-> 0, l-I, and vi _-> 0, 1, 2, , M such that

(i)

(2.6) (ii)

(iii)

M

X*--Xo X A/f/T+ X liciT
iI-I i=1

Ai(I/x* -ai-min F) 0, H,

/i (CTX* Bi) 0, 1, 2," M.

It follows from Lemma 1.1 and (2.6) that

X* XO(2.7) 0F(x*)
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and by convexity as 0 0F(x*),

x* Xo- Za oF(x*), 0<-_-<.

Thus, 0 OP(x*, Xo, y) provided y >Yn.
Remark 2.1. This theorem is implicit in [18, Prop. 8]. The above proof addresses

the theorem directly and is given for completeness.
It remains to check that dx/d3" is piecewise constant on the optimal solution

trajectory to verify that all the required properties hold. This is done first for the
particular case in which the following assumptions are valid for each x in X. They
will be specialized subsequently to the MAX problem. The index set 7r is defined in
(1.18).

Assumption 2.1. 17rl<=p +1.
Assumption 2.2. dim {fi, 7r} min (17rl, p).
Assumption 2.3. X RP.

The first two assumptions are the most significant. The first is readily seen to be a
nondegeneracy condition by considering the linear programming formulation of the
minimization problem given in (1.22). By the rank assumption x, F(x) are determined
completely when 17rl p + 1. Thus if ]zrl >p + 1 then there is the possibility of multiple
specifications, and hence the chance of cycling between such reference sets without
making progress. The second assumption is a numerical convenience, but it also serves
in conjunction with the first assumption to exclude the cases in which zero or tied
residuals give rise to large numbers of elements in 0F(x). If X Rp then a feasible
initial point is required and active constraints must be taken into account using
Lagrange multipliers.

To develop the continuation method consider the condition (2.3) for a minimum
of P(x, Xo, 3’) which as a consequence of Assumption 2.3 reduces to

I1
(2.8) 0 x- x0 +

i=1

I1where Ai->0 and Y=I , 1. Implicit in the idea of continuation is the requirement
that (2.8) is (nearly always) ditterentiable as a function of 3". Differentiating gives

dx I1
(2.9) 0 =-7,__ +

i=1

where

d
(2.10) :i /-73" (3"hi), 1, 2,..., I 1.

The feasibility of this step requires that the set of pointed to by r does not change
in an infinitesimal variation of 3", and, as we are interested in a minimizing trajectory,
this requires that the subsidiary equations

T dx
(2.11)

be satisfied for some X > 0. These equations can be arranged to give

dx
(2.12) 0 +g+

i=
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and

(2.13) v -3’ O, 1, 2,..., Icrl- 1

where

and

(2.15) vg ,n.(i+l) ,n-(1), i= 1, 2,’", [rr[-1.
The scale factor g can now be absorbed by setting

(2.16) Y 1.
i=1

Equations (2.12) and (2.13) are conveniently summarized in matrix form as

dx
(2.12) o =-:-+g +

and

(2.13) VTdx-- 0.

These equations are fundamental to our method. In fact each of Examples 1.1-1.3
will differ only in the specification and interpretation of the quantities appearing in
(2.12) and (2.13).

DEFtNIq:ON. V is the (current) reference matrix. The columns of V form the
reference, f,(1) is the reference origin.

Remark 2.2. It is interesting to compare (2.12) with the expression for an element
in 0F(x). This gives

u 0F(x) ==>
i=l i=1

u=g+V

so that the current reference provides an explicit parametrization of dF(x). Thus dx/d’y
looks like an element ofF except that the : need not satisfy the convex hull conditions.
If they do, and if lTr[ =p + 1 so that (2.13) forces dx/d’y O, then optimality follows
immediately. It is reasonable to expect that the : will evolve to give values satisfying
the optimality conditions as the computation progresses.

It is easy to see that dx/d3,, :1, [ [2,..., :11]T are uniquely determined by
(2.12), (2.13) and hence by the index set zr. We have

vTv --vTg
and this system is invertible by Assumption 2.2 so that and also 1 1-i=2 i are
independent of y. Substituting for in (2.12) gives dx/dy which is also independent
of y, and this verifies that the rate of change of solution quantities is piecewise constant
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on the solution trajectory. This suggests a continuation algorithm. However, there
are two kinds of behaviour that interrupt the continuation process and cause revision
of 7r and hence of dx/dy and [2.

(i) A new must be added to 7r if at any point tSx-ci F(x). But (2.13) suggests
that elements of V tend to stay around so that there is a tendency for the dimension
of V to increase until it has rank p and the system (2.12), (2.13) consequently has
only the zero solution for dx/dy. It follows that there must be a corresponding
mechanism for deleting columns. This is provided by the second kind of behavior
interrupting the continuation process.

(ii) dx/dy determines an optimal trajectory only if/i 0 and /i--1 hold in
(2.8). Assuming that the current values of :i have been determined at 3’0 then integrating
(2.10) gives

(2.17) Ai(y) (1- "Yl) i--l’Y--0-i (’/)

where the constant of integration is chosen to make x continuous as a function of y.
If at any stage Ai(y) 0 and c < 0 then 7r must be updated by deleting i. A straightfor-
ward application of Lemma 2.4 (derived below) shows that optimality is maintained
on the revised trajectory.

The criterion for deleting an element from zr depends on the past history of the
process through the term A(y0) in (2.17). Early numerical experiments tended to
indicate that this could be less than satisfactory. This led us to consider an alternative
method for using the system (2.12), (2.13) which exploits the local nature of its
solution. This development is based on the following results.

LEMMA 2.1. If ]r] =p + 1, and 0 <-_ <= 1, 1, 2, ., p + 1 then x minimizes F.
Proof. If I,rl =p / 1 then (2.17) gives dx/dy =0 so that (2.12) becomes

Iol
0=g+ V= Y

i=1

but this is equivalent to 0 0F(x).
COROLLARY 2.1. The minimum o] F is unique i and only if 0<:i < 1, i=

1,2,...,p+l.
Proof. By Theorems 1.2 and 1.3 x is a unique minimizer if and only if 0 int 0F(x).

As V has full rank this requires

g+ v(+) F(x)

for arbitrary 1 such that IIqll small enough. This will be the case if and only if the
components of are not at their bounds.

LEMMA 2.2. If the system (2.12), (2.13) has a nontrivial solution dx/dv then for
small enough e > 0

(2.18) F + e <F(x).

Proof. Let e OF(). Then g+ Vkfor some tt satisfying,i > 0, z.;o ,i 1. Thus

(2.19) :g

The result now follows from the definition of the directional derivative of a convex
function [17] as (2.19) ensures that the directional derivative is negative.
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Remark 2.3. Equation (2.19) provides a generalization of the idea of a descent
direction to convex nondifferentiable optimization problems.

Remark 2.4. To estimate the reduction that can be achieved note that for at
least one k r it must be true that

dx Tdxf-> f --, isr
dy

as otherwise F is unbounded below. Progress can be made in the direction determined
by dx/dy until for some k 7r (setting r fx- a., / 1, 2, , N)

rdx dx
r + e f -d- ri + e f

dy’

so that the maximum allowed value of e is the smallest positive e where

rk ri k 7r c,(2.20) eg -(fg _fi)r dx/dy
and the actual reduction achieved is

Ar _(ri-r)ff dx/dY>o"
(fk --fi) dx/dy

Remark 2.5. It should be noted that the nondegeneracy assumption is important
in ensuring that residuals not in the current reference are strictly less than the current
value of F.

As orthogonal factorization techniques will be used in the implementation of our
algorithms it is convenient to use them at this stage to give an explicit form for the
solution to (2.12), (2.13). This result will be used frequently.

LEMMA 2.3. Let V be factorized into

where

Q [QIIQ2]
is p x p orthogonal and U is (ll- 1) x (17rl- 1) upper triangular. Then 01 is
and provides an orthogonal basis for the column space of V, dx/dy satisfies

(2.22)
dx

--020dy

(hence projected gradient), and the multiplier vector is given by

(2.23) [j= -U-IQ(g.

LEMMA 2.4. Assume k+l < 0 ]or some k, 1 <- kll- 1. If the corresponding column
is removed from V to give a new reference matrix V, and a new descent vector dR/do/then

rdR(2.24) vk --< 0

so that rr(k + 1) can be deleted from rr. If 5 1 -a,i=2 :i < 0 then the origin constraint
can similarly be removed.
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and

Proof. In the first part there is no restriction in assuming that k 17rl- 1 so that

v=

It follows from (2.14) and (2.16) that g= f as the origin is unchanged so that

Tdf V"I2(2Tg V’tk(O1)elO2 g--Vk

as v#Q2 0 by (2.21). Thus

mdx

To prove the second part of the lemma assume that f(2) becomes the new origin. Now

so that

g [0[ r] -i-- 1e(k)T, g -1

where e(k) is the vector of dimension k each component of which is 1.
It is readily seen that

where yespan(Ki(O), i= 1,2,...,k) as 0.(OrI?)=0 for f=k+l,...,p so that
reduction of this matrix to upper triangular form need alter only the first k rows. We
have

T T(v, y)y {g + v}

_(vT 2 T { e }lY) --(Vly) yTdX yT k)T)

Remark 2.6. The striking feature of this result is that it does not require that
[ =p + 1, and this should be compared with the analogous situation in the simplex
algorithm. Such a result is suggested by the connection with continuation where it is
necessary if optimality is to be preserved on the continuation path. However, it also
provides a way of weakening the constraints (2.13) restricting dx/dy and so makes
possible a more ecient direction of descent.

So far nothing has been said about the choice of origin constraint. The next result
shows that dx/dy is independent of the choice of origin so that (for example) a new
origin can be selected to minimize the amount of work in updating the factorization
of V.

LEMMA 2.5. The current descent vector dx/dy depends only on and is independent
of the choice of origin.
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Proof. Let V. correspond to the choice of f,(j as origin. Then

V. IV + (f(l-f(j)(e(k + ei)r]P
V K.( V)(e(k + e.)T]p

where P is the permutation matrix interchanging columns 1 and/’. But this gives
immediately that

and

The desired result is a consequence of these equations.
The form of descent algorithm we consider can now be described.

ALGORITHM 2.1.
(i) Set x0, determine initial r, V. Factorize V if ]zrl > 1.
(ii) Compute .

(iii) Test for optimality. If optimal then stop.
(iv) Let k point to the most negative of the :t, 1, , Irrl. Delete correspond-

ing column from V. r := r/{zr(k)}.
(v) Update factorization of V to take account of column deletion.
(vi) Compute dx/d3,.
(vii) Determine smallest e > 0 from (2.24). r := rr U {k }.
(viii) Update factorization of V to take account of variable addition.
(ix) Go to (ii).

Remark 2.7. The test (iv) to determine the column to be deleted from V is an
"unnormalized" test in the sense that no attempt has been made to ensure that the
problem scaling permits such comparisons to be made meaningfully. One form of
normalized test looks at the rate of reduction in the PCF in each of the directions
obtained by deleting a column of V corresponding to a negative sci. Here we compare
directional derivatives wi given by

These are available provided the diagonal elements of (UTU)-1 are known, and these
can be updated economically whenever the factorization of V is modified. For
simplicity discussion here is limited to unnormalized tests and this corresponds to
standard usage. However, our experiments have indicated some advantages in nor-
malization, and there is some published evidence which supports this (for example
the LAD algorithm given in [7]).

The nondegeneracy assumption ensures that this algorithm is finite.
THEOREM 2.2. Provided the nondegeneracy assumption is satisfied then Algorithm

2.1 terminates at a minimum ofF after at most a finite number of steps.
Proof. Successive values of F are decreasing and bounded below so that the

algorithm is convergent. Also any limit point x* of the sequence of iterates {x} must
minimize F as otherwise there is a nontrivial direction of descent for each xg close
enough to x* and this will suffice to give a lower value than F(x*) by the nondegeneracy
assumption.
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To show the algorithm is finite note that there are at most a finite number of
possible index sets 7r. If 17rl =p + 1 then x, F(x) are determined uniquely so that once
17rl =p + 1 for the first time nondegeneracy and the descent property of dx/dy ensure
that index sets cannot be repeated. Thus the index set , can be repeated only if
],k]-<p and at least one i <0. Assume now that the number of repetitions of ,k is
unbounded. There must be a corresponding (sub) sequence of points {k} converging
to x* minimizing F as epi F is closed. Then ,k_ r*, the extremal reference, and
Ir*l<_-p / x by assumption 2.1. But this gives :i <0 for the optimal reference as the
multiplier vector is unique by Assumption 2.2.

Remark 2.8. It should be noted that the above argument does not require x* to
be unique. Nondegeneracy is used as a sufficient condition both to ensure that progress
can be made in the direction defined by dx/dy, and to ensure a unique and therefore
nonnegative multiplier vector at x*.

Example 2.1. This simple form of the algorithm is appropriate for the MAX
problem, Example 1.1. The necessary identifications are easily made. Let r. Then
there is a k k(i), 1 <=k <=n such that (by (1.8), (1.9))

fi sgn (ri)ak, o sgn (ri)bt,.

The nondegeneracy assumption is usual in discussions of this problem, while the rank
assumption requires that

rank (A,)= min (p,

where A= is the matrix with rows given by the ak. This assumption also can be regarded
as usual. Descent algorithms have been considered for the MAX problem by Cline
[9], and by Bartels, Corm and Charalambous [4] who give references to earlier work.
Bartels and Joe [14] consider carefully an algorithm which does not rely on our
assumptions. The Bartels-Conn-Charalambous algorithm is similar to ours although
it does not appear to exercise the option of relaxing columns from V before Izrl p + 1,
and it permits the use of a line search to extract the maximum benefit from each
descent direction. To see how this is possible note that the minimum ek > 0 in (2.24)
could occur for an fk such that dx/dy < 0 so that there is scope to further reduce
F in this direction. However, if this is done then the line search will eventually
terminate with 17rl- 2 in general as all the elements in the previous reference are now
discarded at the first new tie. Thus at least another p- 1 steps will be needed before
an optimum can be attained. This is a sufficiently large number relative to the number
of steps expected if the algorithm is to be competitive that this option was not
investigated further. Supporting evidence for this decision is provided by Lemma 2.6
which shows that in the particular case under consideration a constraint entering the
reference matrix cannot immediately be deleted so the structure of the problem seems
to be opposed to moving past the current point. This will not be the case for Examples
1.2-1.3.

LEMMA 2.6. Let k be the index to be added to r. If equation (2.16) for the updated
quantities is written as

o=u + +Evlv ]
then

T
Vk ax/ay(2.25)
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Proof. In this case the updated factors give

where

P2vk

and P. is the projection onto the columns of Q2, so that P2 Q2Q’. Now the origin
constraint is not changed when a new variable is added to the reference matrix so
that g . We have

_yTdi T T -vdx/dy
0= -y Y g + Y Vkk ][P2vk[[ +

3. Piecewise linear functions. This is one of the important problem classes where
the standard convex hull form of 0F(x) is impractical and where an alternative
parametrization must be sought. Here the important structural information is summar-
ized in the zero components of r, and the calculation of 0F(x) is simplified by noting
that

(, tl/t, e O,
(3.1) O(r/, r, t)=

I-r/, r], t= 0.

Applying this formula to evaluate 0F(x) gives
LEMMA 3.1. Let

(3.2) o" {i, rg 0},

(3.3) Ii(W ---a(i), i= 1, 2,..., [o’l,
and

(3.4) g=/"Cq- E I(nb i, ri)ai"
io r

Then

(3.5) u s 0F(x) :> u g + Vk

where the components of k must satisfy the constraints

(3.6) -r/i =< Ai -< (g, i= 1, 2,..., 1o-[.

In this case P(x, Xo, y) is given by

P(x, Xo,  llx- xoll / yF(x)

so the condition for a minimum is that there exist Ag, -r/g-<_Ai <-ri, 1, 2,..., ]o1,
such that

(3.7) 0 x Xo + y{g + Vk}.

The equations for the continuation trajectory are found by differentiating (3.7) to
obtain

dx
(3.8) 0 -7- + g + V

aT
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where

d
(3.9)

and by noting that differentiability implies that the set of zero residuals must not
change in a small enough variation in 3’ so that

(3.10) Vrdx-- 0o

The similarity between these equations and equations (2.12), (2.13) is evident, and
the further development of the continuation algorithm follows as in the previous
section. For this reason we proceed directly to consider the use of (3.8), (3.10) for
calculating a descent direction. It is convenient to make essentially the same simplifying
assumptions as before. Note that they apply for each

Assumption 3.1. Irl-<_p.
Assumption 3.2. rank (v) I 1,

The following results parallel Lemmas 2.1, 2.2, 2.4, 2.5.
LEMMA 3.2. ff p, and -rli <= <= , 1, 2,. ", p, then x minimizes F.
Proof. If for =p then it follows from Assumption 3.2 and equation (3.10) that

dx/dy 0. But then (3.8) and Lemma 3.1 give .0 0F(x).
The argument used to prove Corollary 2.1 now gives"
COROLLARY 3.1. Let x minimize F(x). Then x is unique ifand only if -hi < i < i,

1, 2, ,p.
The proof of the next result is identical to the proof of Lemma 2.2
LEMMA 3.3. If the system o]equations (3.8), (3.10) has a nontrivial solution dx/d’y

then this defines a direction of descent ]’or minimizing F at x.
If x is not optimal then either <p and/or there exists k, 1 -< k <-Io’l, such that

:k f-r/k, srk]. The next result shows that in the latter case Kk (V) can be deleted from
the reference. If =p then this operation permits the construction of a nontrivial
direction of descent.

LEMMA 3.4. If :k f-r/k, srk], and a=k)is deleted from the reference,

sgn (k) sgn (k)

where quantities computed ater the deletion are indicated by bars.
Pro@ The solution of (3.8), (3.10) is given by Lemma 2.3. Identifying quantities

before and after deletion gives

where rk ff(rtk, srk, :k)/sCk, and

02

where y tl,l(Q1). Thus

--a,(k) a,(k)

T-TUeQ(g+rak)) Uk(Z--)

using (3.8). But by assumption sgn ()= sgn (k--rk).
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Remark 3.2. This result does not require Itrl=p. Thus a reference column
associated with an infeasible multiplier can be relaxed at any stage. The reason for
considering this strategy is that the resulting descent direction is less constrained in
(3.10), but this is not a proof that this direction is more efficient in any other sense.

The final result shows that it is possible to predict the multiplier associated with
a column added to the reference. This result parallels Lemma 2.5. A key feature is
that all the information needed to compute the multiplier (component of !) is available
before the reference is augmented.

LEMMA 3.5. If ag is the column to be added to the reference then

(3.11) :-k ’k + a" d/llP2akll2
where k is the resulting multiplier, , g ’k ak,

P2 is the profection onto the columns of Q2, 7k --(lk, k, Ok)/Ok, and O -1 if r goes
from negative to positive and + 1 otherwise.

Proof. For the updated reference we have

Q [Vlik] and

where y= P.adllPall. Thus, taking the scalar product of (3.8) with y, we have

0 ywdi T T T

-y’y=Y g--’kY ak+ky ak
-adx/dy

Remark 3.3. To estimate the step in the direction determined by dx/dy note
that it is possible to move until a new zero residual is introduced. For the kth residual
the distance ek to the next zero is given by

dx
(3.12) r + ea--7- 0.

aT

Thus the step is determined by g min ek over values of k tr such that ek > O. That
a positive step is possible is a consequence of the nondegeneracy assumption (Assump-
tion 3.1). The change in F is given by

(3.13)
k trc k ere k dy

Remark 3.4. In contrast to the MAX problem several options are available at
the new point x + g dx/dy.

(a) The column corresponding to the new zero residual can be added to the
reference and a new descent direction computed. This corresponds to the strategy
used in the MAX problem.

(b) The multiplier associated with the column to be added can be computed using
(3.11). If jk [--rk, ’k] then it is a candidate for immediate deletion, and this is an
attractive strategy because the result is to leave the reference unchanged so that the
relatively costly operation of updating the matrix factors is avoided. However, note
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that the residual in question (say rk) passes through zero so that g must be updated by

(3.14) g:= g- (’k

It follows that, in general, the direction of dx/dy is changed unless [cr =p- 1 when
the direction is essentially defined uniquely by (3.10).

(c) The directional derivative of F in the direction determined by dx/dy is equal
to gT (dx/dy)/lldx/dvll. By (3.14)the change in directional derivative in passing through
rk =0 is

(3.15) AF =-(’k +k)Oka[ dx dx
=((k +lk) a-y

Thus dx/dy is still downhill at x + g dx/dy provided

(3 16) gT dx dx
ff-y+((k +k) ayy <0.

If dx/dy is still downhill then more progress can be made in this direction without
any further computation. The important feature of this case is that the ek already
computed contain the information needed to locate the subsequent zero residuals in
the direction dx/dy. This makes possible the provision of an efficient line search
algorithm.

Remark 3.5. Options (b) and (c) coincide when =p-1o In this case Q2 has
a single column (say q) so that

rdx
ak -=-a’qqg -sgn (a’q)]lPzakllqrg,

and

adx/dy sgn (a dx/dy)(dxT/dT)g
IlPza]l [a’dx/d.),[

Now sgn (adx/dy)=-0k, and substituting in (3.11) gives

]a dx/d’yl

so that the constraint is deleted immediately if

dxT / dxay <-(k +(k)g/

and this is equivalent to (3.16). Fast implementation seems more difficult with
option (b).

We now give a summary of the algorithm possibilities. The basic procedure is
much the same as Algorithm 2.1, but the various options for adding to and deleting
from the reference are indicated.

ALGORITHM 3.1.
(i) Set x0, determine initial r, V. Factorize V if Irl > 0.
(ii) Compute .

(iii) Test for optimality ([ol p, -rtk <--k --< ’k, k 1, 2,..., [r[).
(iv) Let k point to the component of maximizing bj max (.- ’i, -rb. -.),

] 1, 2,..., ]o’[. If b. > 0 then the kth column can be deleted from the
reference.
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Option D(i). Delete kth column.
Option D(ii). Delete kth column only if Itrl p.

(v) If column deletion update g and factors of V.
(vi) Compute dx/dy, {ek k o"c, ek > 0}, set e 0.
(vii) Determine column to enter reference.

Option A (i) Determine k corresponding to smallest
Option A (ii) Determine k corresponding to smallest ej in E, e ek.
Compute Sk using (3.11).
If k I--r/k, ’k then g := g- (k + "rtk)Ok ak

X := X + e dx/dv
go to (vi).

Option A (iii) Determine k corresponding to smallest

F’ := F’ + (sr, + r/k)[a" dx/dyl; e := e + ek

ej := ei-ek Vei 6

repeat while F’< 0.
(But don’t do computations like this!)
x := x + e dx/dy.

(viii) Update g and factorization of V to take account of variable addition.
(ix) Go to (ii).

THEOREM 3.1. Provided the nondegeneracy assumption is satisfied then Algorithm
3.1 terminates at a minimum of the LAD problem after at most a finite number of steps.

Proof. This follows by essentially the same argument as Theorem 2.1.
Remark 3.6. This algorithm specializes to known algorithms in certain cases. For

example in the LAD problem the choice of options D (ii) and A (iii) gives the algorithm
of Bartels, Conn and Sinclair [5]. The method of Barrodale and Roberts [2] fits into
the same picture once [tr[ =p as then projected gradient and reduced gradient
algorithms generate essentially the same descent directions. Conn [10] has considered
a penalty function algorithm for linear programming which also corresponds closely
to our procedure when r/k 1, rk --0, k 1, 2,’’ ", n. This requires a procedure for
modifying the penalty parameter X. An appropriate strategy corresponds to that
adopted by Bartels in [3] and replaces step (iv) of the algorithm by

(iv)’ Let k point to the arithmetically largest component of . If :k > 0 then a(k
is deleted from V, tr := tr/{tr(k)}. If [cr < p then go to (v).
(Otherwise k < 0 and ]o’l =p and the appropriate strategy is to reduce X to
obtain a downhill direction.)
X :=aX (O<a <1)
go to (ii).

4. Rank regression. The rank regression problem, Example 1.3, provides a
second type of example in which the number of elements in 0F(x) OA(x) is potentially
extremely large. Here the cause is ties in the ranking of the components of r as
permuting the corresponding scores does not change A(x). Thus each distinct permuta-
tion of the di associated with each different set of ties generate a new element in OA(x)
by (1.16) and (1.17).

To specify the tied residuals we introduce an index set tr such that

(4.1) O" =0"1U0"2"" "UO’q

where tri is the subset pointing to the ith group of ties, i- 1, 2,..., q. It will be
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convenient to set

(4.2)

and

IO’i[-- mi + 1, i=l, 2,...,q

q

(4.3) Y mi=m.
i=l

Associated with cri we define the group origin a,(1), and the matrix V/where
(i)(4.4) vj Kj(V/) a,(+l)- a,(l), /" 1, 2,. ., mi.

The matrix V which appears in the parameterization of 0A(x) is given by

(4.5) v= [v lv l Iv.].

The simplifying assumptions in this case become"
Assumption 4.1. m <- p.
Assumption 4.2. rank (V) m.

As before they are assumed to hold for each x X R P.
LEMMA 4.1. U 0A(x) <=> U g + Vk where

(4.6) g= d,i)ai+ d,i))
io i=1 ]=1

where u is the index set such that
(a) d(i is the score associated with ri, and
(b) within each group d(,(i)>-d(,(k if j k, and where

k k) k2) kq,
k is the vector of multipliers associawd with the ith group, and

k k k
(i" < du((mi-i+2))(4.7) d,)) A,

for k 1, 2,. , mi, and w any permutation o[ 1, 2,. ., m.
Remark 4.1. The inequalities (4.7) do not depend on the choice of group origin.

To see this let the contribution to 0A(x) from the ith group with i(k) pointing to the

group origin be g) + V) "’). Then a change of origin to i(1) gives

+ + +[vi

g+ Vi x(i, + e_ - 2 x
]=1

where r yj,, di and

gl1) + Wi x(i)

A i,k)

(i,k)Ak-2
(i,k)

A (i,k)
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Direct substitution shows that the inequalities (4.7) hold for k(’k) if and only if they
hold for k(g).

Proof. It is readily seen that the elements in OA(x) must have the declared form
by using (1.16), collecting terms, and summing explicitly. The more difficult part is
determining the constraints on k), and we use directly the subgradient inequality

(4.8) u0A(x):> A(x+t)-->A(x)+uTt VtR p.

Let W [VIE]-1 where E is made up of columns of the unit matrix chosen so that
VIE,] has full rank. Then any t can be written in an obvious notation as

P q rni p

(4.9) t-- 2 ojpj(W)T , o}i)w}i)q_ OjWj.
j=l i=1 j=l j=p--m

Because the ordering of the columns of V/ is disposable, and because the system of
inequalities (4.7) is invariant under change of group origin, there is no lack of generality

(i)in assuming that the a are ordered for each such that

li (2 (i)0 < < < <Omi.

The only point to note is that the group origin can always be chosen to ensure that
(i)a is nonnegative. To see this let a,) become the new origin Then s-1 :"" --0 s-1

while for ] s 1

v(i) v(i) (i) (i) (i) (i):: --1 --Ys-, j :: j --s-1.

Thus starting with any ordering it is necessary only to choose the origin corresponding
and then to reorder the columns of the resulting V.to the most negative of the a

With these assumptions, and assuming also that Iltll is sufficiently small that only
rankings within groups are disturbed, then the subgradient inequality gives

q

A(x+t)=A(x)+gTt+ 2 2 d(i)(a-ai())rt
]i

q
(i

i=11=1

q

(i)(i)A(x)+grt+ 2 2 a1
i= i=

In similar fashion, replacing t by -t in (4.8) gives

q

A(x-t) A(x)--grt 2
i=11=1

(i)h (i1eA(x)-grt 2 2 a
i==

Thus u OA(x) if and only if

(i)h (i,k) < (i)d(j (i(mi+l))--j (j) (1))+j
j=l j=l j=l

()as the a can be varied independently for each i. Note that these inequalities take
account of the choice of origin and the reordering of the columns of required to

()order the to permit arbitrary t. These inequalities can be rearranged to give the
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equivalent set

(4.10)

j=l s=2 j=s

(i) (i)where/31 a ’,/3j a. -a-l,/" 2,. ., rni are arbitrary nonnegative numbers. The
inequalities (4.7) follow at once as a consequence of Remark 4.1.

Lemma 4.1 gives a parametrization of 0A(x) in the form needed for the develop-
ment of the descent algorithm. The equations for dx/dy are

dx
(4.11) 0 =--y+g+ V
and

(4.12) V7"dx-y O.

If these equations have a nontrivial solution for dx/dy then this defines a descent
direction.

LEMMA 4.2.

u Vu oa(x).

Progress can be made in the direction defined by dx/d’y until a new tie occurs.
Equation (4.12) shows that ties tend to persist. Thus there must be a mechanism for
breaking ties so that progress can be made when dim (V)=p and 0 e 0A(x). Deleting
a column from the reference corresponds either

(i) to a single residual moving away from a group, or
(ii) to a group splitting into two nontrivial subgroups, as progress is made in the

direction determined by dx/dT. To be specific note that there is no restriction in
assuming that it is the qth group that divides. We define

(4.13) s(q) ={0, rq (i) ,
1,

and assume that a,k+l) becomes the origin of the new group (including the case
of the trivial group containing a single element). After possible reordering we can write

(4.14)

and

(4.15)

where sr is the sum of the scores associated with the elements in the new group so that

(4.16) " Y’, d.).
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LEMMA 4.3. If
ct+l

(4.17)
/=1

then the residuals in the new group increase faster in the direction determined by di/dy
than the residuals remaining in the old group.

if
r+1

(4.18) E d.((.())+;-a )$(q)T(q)

then the residuals in the new group decrease relative to those remaining in the old group
in the direction determined by d/dy.

Proof. The general approach is familiar. Set

where y span (xi(Q), 1, 2, , m). Then

and

so that

o 0

and the result follows from this as Vq)Tdi/dy determines the relative movement of
the groups as it gives the difference in the rates of change of the residuals corresponding
to the group origins.

Remark 4.2. The conditions (4.17) and (4.18) should be compared with the
inequalities (4.7). They show that () fails at least one of the tests characterizing an
element of 0A(x), and this shows immediately how to generate a downhill direction
by deleting v) from the reference matrix by (5.14). To implement this test let the
index set wq point to the components of () sorted in increasing rank. Then check
for the most violated of the inequalities,

k k

i= i=1

and

mq mq

j=mq-k+l j=ma-k+l

for k 1, 2,..., mq. The ordering defined by wq and the value of k giving the most
violated inequality then fix s().

The final lemma in this section considers the case of a tie when two groups (each
of which may be the trivial group consisting of a single residual) come together and
asks if this new group is stable in the sense that the resulting multiplier vector does
not immediately violate the inequality which permits the group to interchange and
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move apart. If the new group is not stable then the relatively expensive computation
required to update the matrix factors can be avoided. Assume that Vq, Vq+l coalesce
to form potentially Vq then

Irq [Wql Vq+ll0 _[_ $(q)T

where

LEMMA 4.4.

and

(4.19)

Proof. We have

where

s")T [Ole("/)TI 1 ],

where y P*/IIP*II. Thus

’ ao-q+l(1) arq(1).

[ g- ’, and 01 [Oxly],

o yT df T{g

T S(q>T(q>)yT=y g- (’-

The desired result follows on noting that

y g=- IP *II and yr

COROLLARY 4.1. The groups Vq, Vq+ can inwrchange their rankings provided
either

(4.20) V(q+(1)) < (q(1)) and 2 d(q(1))+mq-i+l
]=1

or

ma+l+l
(4.21) p(o’q(1))< t)(O’q+l(1)) and Y.

/=1
dv(o.q(1))+i-1 > s(q)T(q).

Remark 4.3. The two options of most interest in the variable addition part of
the algorithm are

(i) interchanging groups and continuing if either of the tests (4.20) or (4.21) are
satisfied, and

(ii) line searching in the direction determined by dx/d3, until the direction
determined by dx/dy is no longer downhill.

Both options are available, but the basis for comparison has changed somewhat. In
particular, it is no longer so clear that a fast algorithm of the kind described for
Example 1.2 in the next section can be effective. The problem is that in the previous
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examples it was necessary to record for each residual the length of step required to
reduce it to zero, while here it is the distance to the next tie which is important; and
this depends on the rate of change of the other residuals. For each residual, distances
to first, second, and subsequent ties are potentially needed. Recording and sorting
these quantities is a much more substantial problem computationally and storage wise,
and it may be that the naive algorithm sketched in Algorithm 3.1 is preferable.

The algorithm described here uses the option of interchanging groups on the
basis of (4.20) and (4.21).

ALGORITHM 4.1.
(i) Set initial x, compute and rank initial r, determine ties and factorize initial

V.
(ii) Compute .
(iii) Test for deletion of column from reference matrix. If possible go to (v).
(iv) If m =p then x is optimal, otherwise go to (vi).
(v) Delete column from V, update g and factors of V to correspond to new

ranking.
(vi) Determine dx/d,.
(vii) Compute first tie in the descent step in the direction of dx/d/.
(viii) Increment r, x.
(ix) While new grouping is unstable update g and go to (vi).
(x) Update g and factors of V.
(xi) Go to (ii).

The justification of the algorithm follows by the standard argument.
THEOREM 4.1. Provided Assunfptions 4.1 and 4.2 are satisfied then Algorithm

4.1 terminates at a minimum of fi,(x) in a finite number of steps.

5. Implementation. In this section three questions relating to the implementation
of Algorithms 2.1-4.1 are discussed. These are

(i) development of a computational scheme which exploits the generic form of
the equations determining dx/d,, ,

(ii) development of an efficient line search procedure in the variable addition
phase for piecewise linear problems and

(iii) devising suitable test problems for evaluating the algorithms.
It proves to be possible to organize the computation around transforming the

matrix.

(5.1)

and updating the vector

(5.2) v [rlx].
Assume that at the current step we have available the matrix

(5.3)

where 0 is the matrix of the orthogonal factorization in Lemma 2.3. Then we can
generate as a linear combination of the columns of

(5.4) e

As V is a linear function of the columns of M, can be read off as the same function
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of the columns of/I]/and this permits calculation of

(5.5) -.
Deletion of a column from the current reference requires modification of the matrix
factors, and this can be carried out using the now familiar techniques described in
[11]. The key point is that the operations are carried out on /not on an explicit
form for U. After updating e if necessary, the rates of change of r and x can be
determined from

Tdx T(5.6) dri a,. ---y -a; O2c2 -[0, c2r]xiC/lr), i= 1, 2,..., n,

and

Thus updating the solution quantities is achieved by

w [0, ]t.w := + e [drTIdx7"] := w7"
e

Again the transformations to update the matrix factors are applied to M and not to
an explicit form for in adding the new column to the reference.

This development shows that a major part of the computation can be carried out
in an elegant and economical manner by applying transformations to a tableau in the
manner of the simplex algorithm of linear programming. However, in contrast to the
Jordan elimination steps used in the simplex algorithm, the transformations used here
have the superior stability properties of orthogonal transformations.

To implement the line search algorithm for Example 1.2 we note that there are
two main parameters relevant. The first of these is the number of elements in Y-., and
the second is the position of the optimum e in the sorted list. In the experiments we
carried out IEI has turned out to be close to n initially, and usually IEI was at least as
large as n/2. More striking has been the position of the optimum e. Initially it turns
out to be near the head or middle of the sorted list of ek, but it settles down quite
rapidly until by the time Irl is about p/2 it is always in the bottom few elements of
the sorted list. On the basis of this evidence we conclude that

(i) there are always enough elements in to make it necessary to take the task
of finding the optimum e seriously, and

(ii) it is worthwhile adopting different search strategies in the initial steps of the
computation and in a second phase in which behavior is more predictable
(and progress is slower).

In the first phase we follow [7] in adopting a strategy based on Hoare’s partitioning
algorithm. The steps are as follows.

(i) Set directional derivative Dx at current point,
(ii) Set partition bound e (we use the median of the first, last, and middle

elements of the current list).
(iii) Partition E into two sets L {ek; e < e } and R {e e => e }.
(iv) Compute G Dx
(v) If G > 0 then go to (vii).
(vi) Dx := G, E := R, go to (ii).
(vii) Z := L, go to (ii).
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The process terminates when the number of elements in is sufficiently small to
permit the optimum e to be read off. In the second phase there seems no point in
undertaking anything more elaborate than a few steps of a standard comparison sort.
Note that in the first phase we might expect to find the minimum in about m log2 m
comparisons, where m is the number of elements in the initial list, provided the
successive choices of the partition bound are not unfortunate. Thus the changeover
from phase 1 to phase 2 should occur as soon as the optimum e appears consistently
in the bottom log2 m elements of the sorted list. The heuristic Itr >-p/2 has proved
satisfactory.

For Examples 1.1, 1.2 testing has been largely based on sequences of randomly
generated test problems. The method used has followed closely that suggested by
Bartels [3] for generating LP problems with known solution and modified subsequently
by Bartels and Joe [6] to generate MAXproblems. We describe here the corresponding
method used to generate piecewise linear test problems. It uses two random number
generators: a uniform generator RND, and a second generator FNRnd which will be
discussed below. The main steps are as follows.

(i) Set up o-c by using J INT (N RND + 1) to generate N P distinct integers
in [1, N].

(ii) For J cr c, R (J) FNRnd, It(J) O(rti, i, R (J))/R (J). (In LP problems this
must be modified to force R (J)-> 0.)

(iii) For I 1, 2, , P set Y(I) -r/r) + (’r)) + rtt)) * RND, X(I) FNRnd,
C(I) FNRnd and for J 1, 2,. , N A(L J) FNRnd.

(iv) Let K be the smallest index in r. Determine KK(A) SO that the
optimality condition is satisfied. This gives -Ir(K * KK (A
C/KIr(I)*(A)+,, Y(I)*(A)+x*C. (If X #0 and not too small this
equation can be used to determine C. In the LP case put X 1 to obtain the
Kuhn-Tucker conditions).

e(v) Generate the right-hand side for I=1,2,...,N B(1)=Yr= A(J,I).
X(J)-R(I).

Two different forms have been used for FNRnd:
(a) FNRnd (RND -.5) S

where S is a scale factor, and
(b) FNRnd (1-2a)/(c 1)+(1-RND)-1/ for c 1.2.

The uniform generator appears to produce very well behaved problems on which the
algorithms work very well and distinguishing between options is often difficult. The
second generator is based on a Pareto distribution with a very long tail. It produces
a wide spread of numbers, and experience indicates that the resulting problems offer
a more serious challenge.

6. Numerical experiments.
(i) Example. MAX. Numerical results obtained using algorithm 2.1 are given

in Table 6.1. The problems were generated using a procedure very similar to that
employed in the piecewise linear generator sketched in 5, and the figures quoted
are for the average of five runs. The Pareto generator was used in all cases. The results
appear excellent. Two interesting features are that for a wide range of parameters
the number of iterations (number of addition steps) appears to be approximately 2p
independent of n, and in every case [zr] <p + 1 except in the last steps of the iteration.
Here deletion from the reference when Izrl < p + 1 appears a good strategy. The strategy
of deletion only when 17rl =p + 1 also performed well. It gave very similar results to
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TABLE 6.1
Average number of iterations in the MAX problem.

10

20

2 3.0

10 20 40 80 160

3.6 5.6 4 4.2 3.6

9.6 11.6 10 11.4 12.4

22.6 20.8 21.8 20.8

40 53.2 47.8

those in Table 6.1 for small values of n and p but required more iterations for larger
values (19% more when n 160, p 20 in the worst case).

However, a note of caution must be added. Both the strategies performed badly
on the problem of fitting polynomials of low degree to e at 50 equispaced points in
[0, 1]. The difficulty is that most of the time the descent step terminates at a point
adjacent to a point in the current reference which it then replaces in the next deletion.
This results in very slow progress towards the optimum. What is lacking here is some
way for making the sizeable corrections that the line search facility provides for the
other examples. It appears that ascent algorithms [1] are favoured in this case when
the problem data varies systematically and slowly. It also shows that some discretion
is needed in interpreting the results of studies based on random data.

(ii) Example. Piecewise linear problems. Calculations have been carried out with
Algorithm 3.1 in both LAD and penalty function special cases using both random
number generators. In the LAD case the uniform random numbers did not provide
much discrimination between the possible options. However, with the Pareto data the
best algorithm was provided by the option choices corresponding to the method of
Bartels, Conn and Sinclair [5]. It was disappointing that deletion from the reference
when Io’[ <p did not prove a good strategy except in the apparently very regular
problems produced by the uniform generators. It appeared that weakening the con-
straints on dx/dy leads to a problem similar to hemstitching suggesting that the
minimum in the Pareto case is frequently in a narrow valley. This strategy performed
better in all the other problem classes considered.

For the penalty function problem we give numerical results of two kinds. We
compare the performance of Algorithm 3.1 on data produced by both the uniform
and Pareto distributions in Tables 6.2 and 6.3, and for reference we give in Tables
6.4 and 6.5 results obtained using the reduced gradient form of the penalty function
algorithm described in [16]. Comparisons suggest that this latter algorithm performs
in a similar manner to the penalty algorithm of Bartels and the careful simplex
implementation of Hanson and Wisniewski [3] (although the tests were done using
uniform random number generation only) so that it provides a useful means of assessing
the new method. In all cases X0 .025, and this proved small enough. The results
show clearly the way in which the difficulty of the problems changes when the random
number generator is changed from uniform to Pareto, and also suggest a definite edge
for the new algorithm. In this case both numbers of iterations and the cumulative
total of the line search steps are given (again averaged over five replications). Other
options, for example terminating the line search if proceeding would make a constraint
infeasible, have been tested with generally negative conclusions. However, for small
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TABLE 6.2
Algorithm 3.1, uniform data.

10

2O

10 20

8 7.2
15.6 18.6

17.4
48

7.6
28.8

18.6
65.4

8.2

15

49.2

5.13

85.4

240.1

160

44.4
157.4

80

7
73.6

15.4
121.8

TABLE 6.3
Algorithm 3.1, Pareto data.

6.8
5

10

2O

10

15.4

20

8.4

17.8

3O

44

4O

8.4

17.2

37.8

42

65.6

119.4

8.8

22.6

50.2

8O

90.4

119

2O8.6

160

8.8
156.4

29.2
239.2

56.2
324

TABLE 6.4
Penalty algorithm, uniform data.

10

2O

5.8

10

14.4
7.8

18.4

15.2
32.4

11.8

21.6

32.8

4O

41.2

71.8

107.2

24

49.4

8O 160

57

140.2

228

14.2
108

30.6
290.2

TABLE 6.5
Penalty algorithm, Pareto data.

IO

2O

10

12.8
37.2 59

22
44 109

13.4
155.4

27.6
216.2

53.2
267.6

14.8

34.4

63

160

326.4

447.2

549.8
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p and n a mixed strategy which permitted column deletion early in the computation
(say for the first p/2 iterations) but then forced the reference to build up to p columns
proved excellent. This performance was not maintained for larger p (say p 20).

(iii) Example. RR. For this example facilities for generating random problem
data have not been implemented, and testing of the algorithm has been restricted to
contrived examples designed to test particular features (such as a group splitting into
two proper subgroups to generate a downhill direction), and to a standard problem
used for experimenting with methods for robust estimation. The program details
surrounding the core algorithm prove more complex in this case, but the general
performance measured in terms of iterations and line search steps appears about the
same.

Calculations have been carried out on an HP 9845B computer programmed in
BASIC.
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ERRATUM: A GENERALIZED EIGENVALUE APPROACH
FOR SOLVING RICCATI EQUATIONS*

P. VAN DOORENt

In the above paper, some errors appeared in the treatment of the spectral
factorization problems for both the continuous-time and the discrete-time case.

The corrections to be performed are the following. Formulas (46), (47), (50) and
(51) have to be replaced by their "dual" forms which appear below:

(46) Z(s)+Z’(-s)=R’(-s) R(s),

(47)
C’(D +D,)-1C -t- P[A B(D +D,)-1C

+ [A B(D +D,)-1C]’P +PB (D +D’)-1B’p 0,

(50) Z(z)+Z’(z-)=R’(z-1) R(z),

(51) P F’PF + (H’-F’PG)(J +J’- G’PG)-I(H G’PF).

Acknowledgment. The author is grateful to Bert van Gent who pointed out these
errors.

* This Journal, 2 (1981), pp. 121-135.
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